生计可持续性视角下精准扶贫的政策效应评估及其分异研究——以武陵山区石柱县为例
Policy effect and differentiation of targeted poverty alleviation from the perspective of livelihood sustainability:Taking Shizhu County, Wuling Mountains as an example
通讯作者:
收稿日期: 2022-11-9 修回日期: 2023-03-5
基金资助: |
|
Received: 2022-11-9 Revised: 2023-03-5
Fund supported: |
|
作者简介 About authors
刘倩(1989— ),女,山东肥城人,博士,讲师,主要从事可持续性减贫研究。E-mail:
巩固拓展脱贫攻坚成果是十四五时期的重要任务,提升农户生计可持续性是防止返贫和实现脱贫地区高质量发展的关键,在生计可持续性视角下系统评估精准扶贫政策效应,可为此提供重要依据。论文构建涵盖生计资本、生计环境和代际发展能力3个维度的扶贫政策效应评估框架,以武陵山区石柱县为案例区,采用双重差分法(DID)和倾向得分匹配法量化了精准扶贫对农户生计可持续性的影响,并讨论了其分异性。研究表明:① 精准扶贫使农户生计可持续性水平整体提升了20.5%,农户生计资本、生计环境和代际发展能力分别提升21.3%、23.9%、15.8%,农户生计环境改善更突出,而代际发展能力具有一定时滞性。② 精准扶贫对生计要素禀赋较好的兼业型农户带动效应更大且显著,其次是务农主导型和务工主导型脱贫户,而以“输血式”帮扶为主的补贴依赖型农户则被边缘化,加剧了群体间生计可持续性分化。③ 精准扶贫政策效应空间分异性明显。相比经济基础条件较好的王场镇和黄水镇,精准扶贫对具有区位优势的龙沙镇、贫困程度较深的中益乡的带动效应更大且显著。④ 围绕强化对山区教育与技术投入、对偏远地区资源倾斜以及引导贫困边缘群体治理等方面提出巩固脱贫攻坚成果的对策。研究可为提升巩固脱贫攻坚成果政策的匹配性和精准性提供科学依据,有助于深化中国反贫困理论认识。
关键词:
Consolidating and expanding the achievements of poverty alleviation is an important task during the 14th Five-Year Plan period. Improving the livelihood sustainability of farming households is the key to prevent the return to poverty and achieve high-quality development in poverty alleviation areas. From the perspective of livelihood sustainability, a systematic evaluation of the effects of the targeted poverty alleviation (TPA) policy provides an important basis for achieving these goals. In this study, an evaluation framework was constructed from the dimensions of livelihood capital, livelihood environment, and intergenerational development capacity. Taking Shizhu County in the Wuling Mountains as the study area, this research used the difference-in-differences (DID) and propensity score matching (PSM)-DID methods to quantify the effects of the TPA policy and discussed the differentiation of policy effects. The findings are: 1) The TPA policy improved the livelihood sustainability level of farming households by 20.5%, and improved the livelihood capital, livelihood environment, and intergenerational development capacity by 21.3%, 23.9% and 15.8%, respectively. The improvement of livelihood environment was more prominent, while the improvement of intergenerational development capacity was relatively weak. 2) The TPA policy had a greater and significant effect on farming households with multiple livelihood strategies, followed by agriculture-oriented households and off-farm employment-oriented households, while subsidy-dependent households with "blood transfusion" assistance were marginalized. The TPA policy aggravated the differentiation of livelihood sustainability among groups. 3) The effect of the TPA policy showed spatial specificity. Compared with Wangchang Town and Huangshui Town that had better basic economic conditions, TPA had a higher and more significant impact on Longsha Town that has locational advantages and Zhongyi Town that was at a deeper poverty level. 4) Countermeasures and recommendations were put forward to consolidate the achievements of poverty alleviation from the aspects of continuously strengthening education and technology input, intensifying efforts to alleviate poverty in remote areas, and providing policy-based guidance for the governance of poor marginal groups. The research provides a theoretical basis for improving the matching and accuracy of policies to consolidate the achievements of poverty alleviation, which may help deepen the understanding of China's anti-poverty theories and practice.
Keywords:
本文引用格式
刘倩, 雷洋洋, 喻忠磊, 唐红林, 叶文丽, 杨新军.
LIU Qian, LEI Yangyang, YU Zhonglei, TANG Honglin, YE Wenli, YANG Xinjun.
“巩固提升脱贫攻坚成果,提升脱贫地区整体发展水平”是十四五时期的重要任务。2022年中央一号文件再次强调“巩固拓展脱贫攻坚成果,确保不发生规模性返贫”的底线思维。然而,脱贫地区地理资本与生计资本的“双重劣势”效应凸显[1],脱贫户发展能力较弱、脱贫基础尚不稳定[2]。尤其受新冠疫情、自然灾害等各类重大突出公共事件冲击影响,规模性返贫风险凸显[3]。国家乡村振兴局数据显示,2022年6月全国纳入监测的脱贫不稳定户、边缘易致贫户、突发严重困难户等共490.5万人[4]。贫困户脱贫摘帽后能否真正“稳得住”“能致富”成为巩固拓展脱贫攻坚成果的“痛点”和“盲点”。生计视角是观察贫困治理取得实质性进展的主导性视角[5],实现农户生计可持续性发展是突破贫困陷阱、阻止返贫的关键,也是中国反贫困治理和乡村发展的核心任务[6]。厘清精准扶贫(targeted poverty alleviation, TPA)对贫困人口生计改善程度、诊断贫困治理薄弱环节是检验贫困治理成效的关键,为巩固脱贫攻坚成果提供了靶点。因此,基于可持续性生计视角开展精准扶贫政策效应评估为后扶贫时代优化扶贫资源配置提供了科学依据。
科学度量减贫效应对增强减贫政策的持续性和实践性具有重要意义。近年来,国外学者从贫困人口的收入或金融资本等方面评估了农业发展减贫绩效[7]、经济或金融减贫效果[8-9]、农村扶贫投资开发以及社会福利政策的减贫效应[10-11],针对性减贫政策对贫困人口发挥了日益重要的作用。随着中国逐步完成全面建设小康社会的减贫任务(2010—2020年),国内学者使用不同空间尺度的面板数据或典型地区调研数据,基于生计视角讨论了精准扶贫政策对农户的影响。具体包括:1) 测度精准扶贫政策对农户生计整体影响。精准扶贫优化了农户生计的地理空间[12],降低了贫困农户生计脆弱性,尤其对脱贫边缘户作用明显[13]。有学者也指出精准扶贫政策对生计可持续性影响不显著[14],脱贫后期农户生计可持续性降低[6]。2) 关注扶贫政策对农户生计资本、生计结果的影响分析。精准扶贫带动了贫困户生计资本积累,优化了农户生计策略选择[15],提高了贫困户生活质量和收入水平[16],但不同农户增收效果具有一定差异[17],贫困户的纯收入和转移收入增加明显[18]。然而,也有学者认为精准扶贫对农户生计资本和生计发展能力作用不明显[19]。3) 聚焦揭示单项减贫项目对生计资本、生计结果的作用。其中,产业扶贫提升农户生计资本总量,但产业扶贫对农户生计资本的影响在不同省份的差异较大[20]。易地搬迁项目对农户外出务工收入具有正向影响[21];乡村土地整治项目带动脱贫户人力资本提升[22];光伏产业带动农户金融资本积累[23],但在提升生计资本上具有负激励作用[24]。从研究方法上看,数据包络分析[11]、TOPSIS[14]、倾向匹配得分[20]、双重差分[16]和中介效应模型[25]等方法被用于政策评估或政策机制分析。
整体而言,从微观层面出发探究精准扶贫对农户的影响成为一种新趋势,契合了脱贫摘帽后基层政府和单位推进“回头看”“脱贫稳定性排查”任务的现实需求。尽管已有研究初步揭示了精准扶贫效果,但仍存在一些不足。首先,精准扶贫的特色在于通过“一揽子工程”、一系列综合性政策措施全面消除绝对贫困,这一过程使贫困人口收入明显增加、贫困地区的基础设施建设和公共服务明显改善,最终实现扶贫、扶志和扶智的综合治理效果[24]。然而,已有研究多关注农户福利(收入或消费变化)或生计资本短期变化[16-17,19-20,24],忽视了外部软性(社会保障、乡村治理等)与硬性(基础设施、人居环境等)环境改善带来的防贫效应以及农户人力资本提高等对生计带来的长期影响,导致精准扶贫政策效应评估结果存在一定偏差,偏离了精准扶贫多维性减贫目标的政策初衷。其次,尽管有研究分析精准扶贫对农户生计可持续性影响[6,14,17,26],但多基于单差法或定性分析,未能精准回答扶贫政策究竟在多大程度上影响了贫困群体生计可持续性的问题,导致研究结果的政策指导性存在一定不足。此外,精准扶贫的关键在于因村因户因人进行靶向性扶贫,即突出了贫困地区的地域性和贫困群体的异质性。然而,已有成果对精准扶贫的政策效应分异性研究较薄弱,导致对脱贫后预防返贫的重点群体和扶贫资源倾斜的区域揭示不足。
武陵山区是14个脱贫攻坚片区之一,有超过一半的县(42个)为国家扶贫开发工作重点县,片区内人地关系紧张,土地退化、石漠化现象突出,非农就业人口增长缓慢、县域经济发展薄弱等问题使其乡村生计发展及巩固脱贫攻坚成果问题具有典型性和代表性。鉴于此,本文突破以往减贫政策效应分析框架囿于单一福利或生计资本度量的局限,在整合精准扶贫对农户宏观(生计环境)与微观(家庭和个体)、静态与动态影响的基础上,尝试构建可持续性生计视角下精准扶贫政策效应多维分析框架,以全方位、多要素刻画精准扶贫对农户综合性、系统性影响。采用双重差分模型和倾向得分匹配法,量化精准扶贫政策对农户生计可持续性的影响,并尝试回答以下问题:1) 如何量化表征精准扶贫政策对农户可持续性生计综合影响;2) 精准扶贫政策效果如何,是否存在异质性?若存在,这种异质性在不同群体和地区间表现如何?因此,本文将脱贫攻坚战视为一项拟自然实验,基于2015—2020年微观农户调查数据,初步回答上述2个问题,以期为巩固脱贫攻坚成果、实现脱贫攻坚与乡村振兴有效衔接提供科学依据,为深化中国反贫困理论提供有益的思路和借鉴。
1 研究区域与数据
1.1 研究区概况
武陵山原连片特困地区地跨湖北、湖南、重庆、贵州4省市交界地区的11个地(市、州)、71个县(市、区);2019年贫困人口49万人,贫困发生率为1.7%;农村居民收入增长11.0%,低于全国原集中连片特困地区约0.5个百分点。石柱县地处武陵山区北部(107°59′~108°34′E、29°39′~30°32′N)、三峡库区腹心(图1),是国家扶贫开发重点县、少数民族县。石柱县面积3016.06 km2,地貌由东北—西南走向山地平行纵贯,形成典型“两山一槽一坝”的地形格局,其地形分区包括:沿江小平原区、方斗山低山区、方斗—七曜山所夹槽谷区、七曜山北部高山区和七曜山南部中山区(图1)[27]。石柱县脱贫户中因病因残致贫占比高达50.60%,因缺技术和劳动力占比25.87%。在脱贫攻坚有效推进下,石柱县贫困发生率由2014年的12.70%下降到2019年的0.23%,农村居民年人均可支配收入由2014年的8586元增长至2019年的15456元,实现85个贫困村、6万余人脱贫,2019年石柱县退出国家扶贫开发工作重点县。然而,2019年石柱县脱贫返贫率为4.92%,脱贫稳定性面临挑战。在十四五时期,石柱县巩固脱贫攻坚成果的任务较重。
图1
图1
研究区域及样本村落的分布
注:图中I、II、III、IV、V分别为沿江小平原区、方斗山低山区、方斗—七曜山所夹槽谷区、七曜山北部高山区和七曜山南部中山区。
Fig.1
Location of the study area and distribution of the sample villages
1.2 数据来源
1.2.1 农户问卷数据
(1) 样本村的确定。数据来源于课题组在2021年7—8月开展的农户调研,采用分层抽样和随机抽样确定样本村。具体步骤:1) 依据石柱县地形分区[27],参考不同分区内各乡镇脱贫攻坚状况,在不同地形分区随机抽取1个乡镇(抽中的乡镇为:王场镇、鱼池镇、龙沙镇、黄水镇和中益乡)。2) 依据是否为贫困村、贫困发生率和贫困村退出年份,兼顾贫困村与非贫困村等类型①(① 2019年初石柱县已脱贫人口为6.01万人,其中分布在贫困村、非贫困村的脱贫人口分别为2.43万、3.58万人,占总脱贫人口的40.433%、59.567%。鉴于非贫困村的脱贫人口占比较高的实情,将非贫困村也纳入调研村范围。),在每个镇随机抽取4个村进行调研,共计20个村(表1)。
表1 调研点及有效样本分布
Tab.1
地理单元 | 调研乡镇 | 样本村 | 有效样本量/户 |
---|---|---|---|
I 沿江小平原 | 王场镇 | 石溪村、双龙村、太和村、蛟鱼村 | 130 |
II 方斗山低山区 | 鱼池镇 | 白江村#、金竹村#、山轿村、水田村* | 126 |
III 方斗—七曜山所夹槽谷区 | 龙沙镇 | 长坪村、中海村#、石岭村#、永丰村# | 118 |
IV 七曜山北部高山区 | 黄水镇 | 金花村#、万胜坝村、清河村、洋洞村 | 124 |
V 七曜山南部中山区 | 中益乡 | 建峰村#、坪坝村*、全兴村#、盐井村# | 134 |
注:*为深度贫困村,#为一般贫困村,其他为非贫困村。
(2) 采用随机抽样和判断抽样获取农户调研数据。课题组依据石柱县扶贫办提供的贫困户名单,参考脱贫户属性、致贫原因和建档时间对脱贫户进行随机抽样。非贫困户(即一般农户)为非概率抽样,由当地对农户家庭情况(包括家庭成员及收入、生活质量和生产经营状况等)十分熟知的村干部(例如村主任等)进行筛选。非贫困户一般是家庭收入在贫困线附近,但未被识别为贫困户的相对困难户,以形成可比较的“对照组”。问卷调查均采用面对面访谈方式进行,每户调研时间均为30 min以上,共发放问卷646份,获得有效问卷632份,有效率97.83%,含脱贫户311户,一般农户321户。问卷内容涵盖:户主及家庭成员信息,自然资本、物质资本、金融资本和社会资本状况,居住地环境及基础设施状况,农户家庭保障及帮扶状况等。
(3) 问卷信度与效度检验。采用Stata 13.1软件对调研数据进行信度与效度检验,结果显示,Cronbach's α值为0.873>0.700,表明样本数据具有良好可信度。KMO检验值为0.801>0.600,Bartlett's检验出的相伴概率小于0.001,表明调研数据间相关性较高,具有良好结构效度。
1.2.2 地理空间数据和统计数据
1∶1万村级界限和乡镇界限、1∶1万道路和居民点分布图源于石柱县国土局;30 m分辨率DEM数据来源于国家基础地理信息网站,用于提取样本区乡镇、村的平均海拔和坡度。统计数据源于石柱县统计局、石柱县乡村振兴局(原扶贫办)提供的《石柱土家族自治县统计年鉴》(2016—2020年)、《石柱县贫困户台账表》(2015—2019年)、《石柱县贫困户名单》(2015—2019年)。
2 研究方法
2.1 分析框架及指标选取
党的十八大以来,精准扶贫、精准脱贫战略通过一系列政策组合拳,因村因户帮扶、因人因贫施策,超常规注入资金、信息、技术、管理和制度等与贫困户自有资源进行整合,激活农户生计要素,突破贫困陷阱“锁定效应”,消除了农村绝对贫困[24]。以“增强内生动力”为特色的精准扶贫政策治理体系对农户生计系统产生多层次影响:1) 在家庭层面上,带动农户生计资本增量、优化和重塑生计资本结构,使其生计趋于安全、稳健和协调发展[5]。2) 从宏观上看,补齐了贫困地区基础设施建设和公共服务的短板。通过移民搬迁、生态治理等改善了生计环境、优化和重构了生计空间,增强了农户对生计资本的可控性和可得性[28]。3) 从长期来看,激发贫困人口内生动力、提升人力资本,构筑了预防返贫的长效机制,解决长期以来农村地区存在的贫困代际传递问题,真正实现彻底消除农村贫困[5,29]。因此,精准扶贫绩效评估需要从多维度、全方位视角出发,既要关注短期内生计资本的提高,也要兼顾农户生计环境的改善,更要凸显长期的生计动态发展能力。
英国国际发展部(Department for International Development,DFID)开发的可持续生计分析框架(sustainable livelihoods approach,SLA)为可持续生计研究提供了一种规范化的工具和系统化的思路[6],强调家庭或个人的资本积累总量或资本组合在维持家庭可持续生计策略上的作用,是从贫困家庭或个人层面分析贫困产生的原因。这一框架对讨论贫困治理效应具有借鉴性,亦有学者通过借鉴该框架初步分析了贫困治理效果[6,26,30],但多是在静态视角下对某个时间点家庭或个体生计资本或福利的考量,而未考虑家庭未来发展能力或潜力,缺乏对未来农户发展动态性的关注,导致精准扶贫治理效应刻画并不充分。
对此,本文对可持续生计分析框架(SLA)进行拓展,从生计资本、生计环境和代际发展能力维度构建可持续性视角下精准扶贫政策效应评估框架(图2),以表征精准扶贫对农户生计直接与间接、短期与长期影响。
图2
图2
生计可持续性视角下精准扶贫政策效应评估框架
Fig.2
Evaluation framework of the effects of the targeted poverty alleviation policy from the livelihood sustainability perspective
表2 生计可持续性指标体系与权重
Tab.2
维度 | 一级指标 | 二级指标 | 指标释义与赋值 | 权重 |
---|---|---|---|---|
生计资本 | 自然资本 | 生物生产面积x1 | 生物生产面积=耕地面积×2.8+林果面积×1.1+林地面积×1.1 +鱼塘×0.2+园地×0.5 (hm2) | 0.073 |
物质资本 | 住房结构x2 | 住房结构:土/木房=0,砖瓦/砖木=0.25,砖混(平层)=0.5,楼房(2层)=0.75,楼房(3层及以上)=1 | 0.115 | |
固定资产x3 | 微型农业机械设备(小型拖拉机、农用排灌动力机、收割机、脱粒机等)与常用家庭耐用消费品(电脑、洗衣机、电视机、摩托车、电瓶车、冰箱、空调、小汽车、货车等)的数量之和 | 0.107 | ||
牲畜养殖x4 | 牲畜数量=牛×1+驴×0.8+羊×0.6+猪×0.4+鸡×0.2(羊单位) | 0.063 | ||
人力资本 | 劳动力数量x5 | 成年劳动力(16~65岁)数量(人) | 0.092 | |
健康水平x6 | 劳动力健康水平之和:无法自理(患重大疾病)=0,部分自理(频发疾病且影响生产生活)=0.25,基本健康(偶发疾病且轻微影响生产生活)=0.5,较健康(偶发疾病但不影响生产生活)=0.75,非常健康(无患病)=1 | 0.108 | ||
金融资本 | 人均收入x7 | 年总收入与家庭人口比值(以对数化处理)(元/人) | 0.125 | |
信贷机会x8 | 可获得政策性贷款(例如,小额信贷或贴息贷款等):是=1,否=0 | 0.078 | ||
社会资本 | 社会网络x9 | 获得帮助的人数和关系网络支持种类(如现金借款、就业提携、子女上学帮扶、实用技术传授等):无=0,1种=0.25,2种=0.5,3种=0.75,4种=1 | 0.087 | |
公共参与x10 | 现场参加或微信群参加村内公共事务(例如集体选举或表决、公共工程修建等):从不参与=0,较少参与(参与度约25%)=0.25,一般情况参与(参与度约50%)=0.5,经常参与(参与度约75%)=0.75,全部参与=1 | 0.060 | ||
社会信任x11 | 对村干部或驻村工作队的信任程度:几乎没有=0,较少=0.25,一般=0.5,较多=0.75,非常信任=1 | 0.092 | ||
生计环境 | 基础设施条件 | 生产生活设施x12 | 生产生活设施之和。是否有安全饮用水/新建饮水点:是=1,否(旱季饮用江湖水/人畜饮水困难)=0;生活用电是否稳定:是=1,否(停电天数≥7 d)=0;庭院是否硬化:是=1,否=0;是否有新修灌溉水网/蓄水池/冷库/农产品临时收储点等:是=1,否=0 | 0.118 |
交通设施建设x13 | 入户道路类型:山路、陡坡路(仅能供畜力运输工具通行)=0,村间小道(能通行摩托车)=0.25,村道支道(能通行小型农用车)=0.5,村主干道=0.75,乡镇道路=1 | 0.144 | ||
道路可达性计算公式: | 0.105 | |||
农村信息化设施x14 | 是否至少有1台上网设备或至少1部手机:是(可流畅使用互联网)=1,否=0 | 0.204 | ||
公共服务 | 医疗卫生服务x15 | 村内是否拥有卫生所/卫生室:是=1,否=0 | 0.113 | |
农业生产组织x16 | 参加村内农业生产合作社/互助社/龙头企业/集体经济组织:是=1,否=0 | 0.156 | ||
社会保障 | 社会保障x17 | 已享有社会福利保障(农村居民养老保险、新农合、大病险、低保、农村特困供养、残疾补助、高龄补助)的数量 | 0.160 | |
代际发展 能力 | 教育状况 | 受教育水平x18 | 青壮年劳动力(15~45周岁)的受教育程度:文盲=0,小学=0.25,初中=0.5,高中及大专=0.75,本科及以上=1 | 0.307 |
教育政策支持x19 | 子女是否享受“雨露计划”/三免一补/营养餐/学生特困救助/助学贷款等政策支持:是=1,否=0 | 0.196 | ||
技能状况 | 技术水平x20 | 青壮年劳动力(15~45周岁)的技术水平:无技能(无业)=0,农业生产技能(仅从事农业经营的劳动者)=0.25,初级技工+农业生产(从事打零工且具有农业经营的劳动者)=0.5,中级技工或自主经营(从事长期务工或自主经营)=0.75,高级技能(从事具有一定专业或高技术劳动者或企事业单位人员)=1 | 0.208 | |
技术运用x21 | 劳动力对新种养殖技术或新职业技能运用情况:未运用无帮助(未获得收益增加)=0,有运用且有一定帮助(获得收益且增加的收益≤原家庭收入的50%)=0.5,有运用且帮助较大(获得收益且增加的收益>原家庭收入的50%)=1 | 0.289 |
该框架兼顾精准扶贫对农户生计短期与长期效应,克服已有精准扶贫评估的静态性、事后性,从宏观(生计环境)与微观(农户个体)、静态性与动态性综合视角来揭示精准扶贫的影响,可为精准扶贫政策评估提供一种新思路。
对选取的指标进行共线性检验,分别计算方差膨胀因子和相关系数,保留方差膨胀因子小于10的指标,剔除相关系数大于0.75的指标,对指标进行筛选获得3个维度21个指标,如表2所示。
2.2 农户生计可持续性测度
2.2.1 数据标准化和权重计算
由于各评判指标具有不同的量纲和量纲单位,为消除指标之间的不可公度性,需要对评判指标进行无量纲化处理。采用极差正规化方法将数值转化到0~1之间。
其中,正向指标极差正规化计算公式:
负向指标极差正规化计算公式:
式中:
为克服指标赋值的主观性,采用熵值法进行指标权重计算。具体过程详见文献[37]。
2.2.2 农户生计可持续性
式中:
2.3 模型设定
2.3.1 双重差分法
双重差分法(difference-in-differences,DID)通过控制研究对象之间的事前差异,过滤时间效应等固定效应的影响,将政策实施的效果分离出来,以反映政策实施干预效果,是政策效应评估应用较广泛的方法[24]。精准扶贫可被视为在贫困地区进行的拟自然实验,将贫困户视为实验组,而非贫困户视为对照组,利用DID法检验精准扶贫对农户生计可持续性的影响。为了控制政策环境的异质性,确定差分计算统一可行的时间节点(政策落地的2015年和精准扶贫收官的2020年),以识别精准扶贫政策的净影响。依据DID方法的基准回归模型设置如下:
式中:
2.3.2 倾向得分匹配(propensity score matching,PSM)
影响生计可持续性因素众多,DID能控制随时间变化的不可观测影响因素,PSM能分析可观测影响因素。PSM方法克服了DID方法使用需满足共同趋势假设的局限,消除不可测变量所带来的内生性问题,减少采用单差法或直接使用双重差分法的估计误差。因此,采用PSM-DID方法进行稳健性估计。当使用倾向得分匹配方法对实验组和对照组匹配后,使用DID,将精准扶贫政策实施前后脱贫户生计可持续性及其分维度值变化减去匹配后一般农户在精准扶贫实施前后的生计可持续性及其分维度值变化,即可得到精准扶贫政策对脱贫户生计可持续性及其分维度的平均效果(average treatement effect on the treated, ATT)。具体步骤参照文献[40]。
PSM-DID效应模型如下:
式中:
2.3.3 变量设置
被解释变量为生计可持续性水平及其子维度值。本文还控制了其他变量对农户生计可持续性的影响。参考已有研究成果[22],从农户和村庄层面选取控制变量(表3)。其中:1) 户主层面考虑从户主年龄、受教育程度、健康状况选取指标[24-25]。2) 家庭抚养比反映家庭人口结构,人口负担率越高的家庭越易陷入贫困[41];生计多样性是农户提高生计产出、增强生计稳定性的途径[35];非农经营性收入是山区农户收入重要来源,非农经营性收入比反映农户非农活动的强度。3) 村庄层面分别从村庄区位条件、经济发展水平和自然环境方面选取控制变量。农户所在村庄与最近集镇距离影响农户生产成本[42];经济发展水平表征村域经济基础;海拔高程等自定地貌因子直接影响农业生产潜力,进而影响农户生计活动和福利水平[43]。对上述控制变量进行相关性或共线性检验,剔除不符合的变量。
表3 变量说明及其统计性描述
Tab.3
变量 | 变量名称 | 指标描述及含义 | 全样本 | 实验组 | 对照组 | t检验 |
---|---|---|---|---|---|---|
户主特征 | 年龄X1 | 18~25岁=1,26~40岁=2,41~60岁=3,61岁以上=4 | 3.712 (2.147) | 3.790 (1.557) | 3.606 (1.859) | ** |
受教育程度X2 | 文盲=1,小学=2,初中或中专=3,高中或大专=4,本科及以上=5 | 2.441 (0.818) | 2.283 (0.715) | 2.575 (0.873) | ** | |
健康状况X3 | 无法自理=1,部分自理=2,基本健康=3,较健康=4,非常健康=5 | 4.055 (1.124) | 4.070 (1.156) | 4.588 (0.738) | *** | |
家庭结构与生计特征 | 家庭抚养比X4 | 非劳动力数量/劳动力数量 | 0.706 (0.755) | 0.727 (0.734) | 0.688 (0.773) | *** |
生计多样性X5 | 由生计多样性计算公式得出,见文献[37] | 0.454 (0.306) | 0.490 (0.286) | 0.422 (0.318) | ns | |
非农经营性收入比X6 | 非农经营性收入占总收入比重 | 0.121 (0.561) | 0.032 (0.161) | 0.199 (0.744) | ** | |
村域特征 | 区位条件X7 | 所在村庄与最近乡镇的距离:0~4 km=1,4~8 km=2,8~12 km=3,12~16 km=4,>16 km=5 | 4.457 (2.497) | 4.697 (3.147) | 4.367 (1.198) | ** |
经济发展水平X8 | 所在村庄人均收入水平(万元/人) | 0.912 (1.203) | 0.842 (1.420) | 1.112 (1.074) | ** | |
海拔高程X9 | ArcGIS提取所在村域的平均海拔高程:<450 m=1,450~750 m=2,750~1000 m=3,1000~1500 m=4,≥1500 m=5 | 3.789 (1.440) | 4.014 (1.369) | 3.647 (1.964) | ** |
注:均值和方差(括号中数据)仅列出2015年数据。差异性t检验:***、**分别表示通过1%、5%的显著性水平检验,ns表示不显著。采用独立样本t检验分析连续型数据的显著性水平,采用Pearson卡方检验分析离散型数据的显著性水平。
2.4 农户类型划分
表4 农户类型划分标准
Tab.4
按生计方式划分 | 户数/户 | 占比/% | 分类标准 | 特征 |
---|---|---|---|---|
L1:务农主导型 | 126 | 19.937 | 务农收入占比≥60% | 生计以务农为主,包括从事农林牧副渔业 |
L2:务工主导型 | 230 | 36.392 | 务工收入占比≥60% | 生计以务工为主,包括短期、长期务工,土地多流转或弃耕,农业经营或自主性经营活动较少 |
L3:兼业型 | 170 | 26.899 | 务农或务工收入占40%~60% | 从事2种及以上的生计活动,采取打工+务农、自主经营+务农/务工等组合方式 |
L4:补贴依赖型 | 106 | 16.772 | 政府补贴≥60% | 无务工或务农活动,以政府转移性收入为主 |
3 结果分析
3.1 脱贫户样本特征
精准扶贫实施前后脱贫群体出现以下变化(表5):1) 脱贫户主年龄趋于老化,家庭规模略有增长,但家庭劳动力数量略有萎缩,减少1.647%。脱贫户家庭抚养比较高且持续增加,2020年较2015年增长19.257%。经统计,2015、2020年脱贫户家庭抚养比比对照组分别高5.669%、5.990%,表明脱贫户人口负担较重且持续恶化,可能导致家庭照料成本增加。2) 与2015年相比,2020年劳动力受教育程度改善明显,增长16.488%。同期,家庭患病比增长20.518%,分别高于同期对照组97.445%、100.00%,脱贫户健康风险仍较突出,脱贫巩固时期预防因病返贫的任务仍较重,医疗扶贫应保持一定延续性。3) 人均收入水平显著提高,脱贫增收效果明显,但收入结构变化差异较大。从收入结构上看,脱贫户的人均务农收入呈现下降趋势,降低23.158%,而人均务工收入、人均经营性收入分别增长32.689%、81.250%,表明脱贫农户生计非农化趋势明显,非农经营活动增加带动人均收入水平提高。4) 脱贫户实际耕种土地面积呈现下降趋势,减少41.962%。同时,农户种植多样性明显降低,而非农就业人数增加,表明农户对土地等自然资源的依赖强度下降。
表5 脱贫农户描述统计
Tab.5
变量 | 2015年 | 2020年 | 变量 | 2015年 | 2020年 |
---|---|---|---|---|---|
户主平均年龄/岁 | 47.990(11.557) | 52.965(11.574) | 人均收入/万元 | 0.817(0.775) | 1.051(0.635) |
家庭规模/人 | 3.437(1.276) | 3.497(1.320) | 人均务农收入/万元 | 0.095(0.115) | 0.073(0.116) |
户均劳动力数量/人 | 2.246(1.247) | 2.209(1.406) | 人均务工收入/万元 | 0.517(0.740) | 0.686(0.571) |
患病比a | 0.541(0.726) | 0.652(0.804) | 人均经营性收入/万元 | 0.032(0.161) | 0.058(0.213) |
劳动力受教育程度b | 0.746(0.583) | 0.869(0.686) | 人均实际耕地面积/亩 | 2.681(2.560) | 1.556(2.461) |
家庭抚养比 | 0.727(0.734) | 0.867(0.922) | 非农就业人数/人 | 1.214(1.247) | 1.331(0.987) |
生计多样性水平c | 0.490(0.286) | 0.466(0.272) | 种植多样性 | 0.491(0.271) | 0.331(0.279) |
注:统计值为样本均值,括号内数值为标准差。a.患病比:患慢性病或大病的成员数占比;b.劳动力受教育程度赋值:文盲=0,小学=0.25,初中=0.5,高中及大专=0.75,本科及以上=1;c.生计多样性水平计算参考文献[
3.2 精准扶贫对农户生计可持续性的影响
利用DID方法评估精准扶贫政策对农户生计可持续性的影响(表6),模型1~4分别是以农户生计可持续性、生计资本、生计环境和代际发展能力为因变量的模型,且4个模型没有加入控制变量。模型5~8分别是以农户生计可持续性、生计资本、生计环境和代际发展能力为因变量的模型,且4个模型加入控制变量。以上8个模型计算精准扶贫对农户生计可持续性及其3个子维度的影响。
表6 精准扶贫政策对农户生计可持续性的影响
Tab.6
变量 | 模型1: | 模型2: | 模型3: | 模型4: | 模型5: | 模型6: | 模型7: | 模型8: |
---|---|---|---|---|---|---|---|---|
Y1 | Y2 | Y3 | Y4 | Y5 | Y6 | Y7 | Y8 | |
did | 0.231** | 0.224** | 0.260** | 0.175** | 0.195** | 0.201*** | 0.226*** | 0.162** |
(3.841) | (3.985) | (3.322) | (3.340) | (2.690) | (1.117) | (2.174) | (2.662) | |
时间效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
个体效应 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 | 控制 |
常数项 | 0.191*** | 0.402*** | -0.140** | -0.113** | -0.121*** | 0.173*** | 0.472*** | -0.276*** |
(5.180) | (9.500) | (-3.060) | (-2.480) | (-2.650) | (4.490) | (5.420) | (-4.050) | |
样本量 | 1264 | 1264 | 1264 | 1264 | 1264 | 1264 | 1264 | 1264 |
R2 | 0.510 | 0.516 | 0.411 | 0.436 | 0.564 | 0.630 | 0.659 | 0.546 |
注:括号内数值为标准差,**和***分别表示通过5%和1%的显著性水平检验。因篇幅限制,控制变量的估计结果略。
从表6看,无论是否加入控制变量,精准扶贫实施对农户生计可持续性及其构成维度均为显著的正向影响,即精准扶贫对农户生计可持续性水平具有明显的带动效应。据模型1~4估计结果,在没有控制其他影响农户生计可持续性因素时,精准扶贫政策实施后,实验组农户生计可持续性比对照组高约23.1%。据模型5~8估计结果,控制其他影响农户生计可持续性因素,精准扶贫政策实施后,脱贫户生计可持续性(Y5)提高约19.5%,生计资本、生计环境和代际发展能力分别提高了20.1%、22.6%、16.2%。可见,精准扶贫对农户生计可持续性具有带动效应,政策治理体系与贫困户匹配性较好,贫困治理效果远超“两不愁三保障”的基本目标。
3.3 基于双重差分倾向得分匹配法的检验
3.3.1 共同支撑域和PSM匹配结果
为克服脱贫户与非贫困户之间存在的系统性差异,降低DID估计的偏误,采用PSM-DID法进行稳健性检验。为保证匹配结果的稳健性,除使用核匹配外,还采用最近邻匹配、半径匹配(k=2,即一对二匹配)等匹配方式。对生计可持续性进行核匹配的结果显示,所有协变量在匹配后的标准化偏差绝对值均小于10%(表7),且均不拒绝匹配后结果与匹配前结果具有系统性偏差的原假设;在不同匹配方式中,最多的损失了10个样本后仍有622个匹配样本,初步证明匹配结果较好。最近邻匹配的结果显示,除生计多样性(X5)和区位条件(X7)变量之外,其余匹配后标准化偏差绝对值均≤10%。同时,只有“生计多样性”这一变量拒绝原假设,结果与核匹配结果相差不大。其余匹配方式的结果与核匹配相似,满足共同支撑假说,说明采用PSM-DID方法分析本文样本的合理性和可靠性。经核查,以子维度值为结果变量进行匹配,其匹配结果也满足共同支撑假说。
表7 协变量倾向得分匹配质量检验
Tab.7
变量 | 核匹配 | 最近邻匹配 | 半径匹配(k=2) | 局部线性回归匹配 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
标准化偏差/% | 匹配后差异检验P值 | 标准化偏差/% | 匹配后差异检验P值 | 标准化偏差/% | 匹配后差异检验P值 | 标准化偏差/% | 匹配后差异检验P值 | |||||||
X1 | 0.3 | 0.968 | 1.6 | 0.823 | 1.6 | 0.823 | -1.6 | 0.815 | ||||||
X2 | 2.0 | 0.768 | 1.9 | 0.791 | 1.9 | 0.791 | 0.0 | 1.000 | ||||||
X3 | -6.8 | 0.380 | -4.9 | 0.499 | -4.9 | 0.499 | -2.5 | 0.742 | ||||||
X4 | 2.8 | 0.700 | 1.5 | 0.834 | 1.5 | 0.834 | 6.0 | 0.410 | ||||||
X5 | 2.8 | 0.700 | -11.9 | 0.108 | -4.6 | 0.537 | -10.0 | 0.172 | ||||||
X6 | 0.3 | 0.970 | 0.4 | 0.954 | 0.4 | 0.954 | 8.7 | 0.220 | ||||||
X7 | -6.5 | 0.349 | -14.3 | 0.043 | -3.0 | 0.682 | -4.4 | 0.546 | ||||||
X8 | 1.5 | 0.824 | 3.7 | 0.593 | 3.7 | 0.593 | 3.0 | 0.660 | ||||||
X9 | 2.8 | 0.692 | 6.1 | 0.401 | 6.1 | 0.401 | 9.3 | 0.195 |
3.3.2 精准扶贫政策效应
表8 倾向得分匹配的平均处理效应(ATT)
Tab.8
匹配方法 | 生计可持续性 | 生计资本 | 生计环境 | 代际发展能力 |
---|---|---|---|---|
核匹配 | 0.204***(0.117) | 0.210***(0.037) | 0.236***(0.051) | 0.162**(0.058) |
最近邻匹配 | 0.206***(0.103) | 0.212***(0.134) | 0.235***(0.125) | 0.160**(0.014) |
半径匹配(k=2) | 0.207***(0.127) | 0.220**(0.165) | 0.243**(0.214) | 0.155**(0.012) |
局部线性回归匹配 | 0.203**(0.130) | 0.209***(0.019) | 0.242***(0.016) | 0.156**(0.001) |
平均值 | 0.205 | 0.213 | 0.239 | 0.158 |
注:***、**、*分别表示估计结果通过1%、5%、10%的显著性水平检验,括号内数值为标准误。下同。
可见,精准扶贫对农户生计可持续性具有显著促进作用,使脱贫户生计可持续性提高20.5%。精准扶贫对3个子维度均具有促进作用。其中:1) 精准扶贫使脱贫户生计环境提升23.9%,表明精准扶贫对生计环境改善实效性较强,即出现大幅提升态势。据调研,扶贫实践中对村容村貌改观较大,98.4%的脱贫户反映村内主干道经过硬化处理,99.1%的脱贫户实现饮水安全,98.5%的脱贫户通互联网,95.67%和87.98%的脱贫户认为村内的卫生、农业生产组织水平明显提高。2) 精准扶贫使脱贫户生计资本提高了21.3%。精准扶贫过程中通过因户因人施策,加快对生计资本投入,提高了生计资本存量。3) 精准扶贫使脱贫户代际发展能力提高15.8%,相比其他维度其政策效果较小,具有一定时滞效应。由于通过提高劳动力受教育水平或技能水平来激发贫困人口内生动力、改善人力资本状况具有一定延迟性和长期性,短时间内政策干预不易达到一劳永逸的减贫效果。
3.4 精准扶贫政策效应的群体异质性及分析
通过评估精准扶贫政策对不同类型和地区农户LSI及其子维度的ATT,厘清政策效应的分异性。核匹配方法的估计结果如表9所示。
表9 精准扶贫对农户生计可持续性影响效应(ATT)的群组和地区差异
Tab.9
变量 | 分类/地区 | LSI | 生计资本 | 生计环境 | 代际发展能力 |
---|---|---|---|---|---|
不同生计方式脱贫户 | L1:务农主导型 | 0.218***(1.635) | 0.216***(1.851) | 0.231**(0.114) | 0.155**(1.450) |
L2:务工主导型 | 0.214**(1.401) | 0.203***(0.030) | 0.240**(0.154) | 0.170***(2.249) | |
L3:兼业型 | 0.223***(1.510) | 0.224***(0.214) | 0.242**(0.166) | 0.167***(2.145) | |
L4:补贴依赖型 | 0.164*(1.410) | 0.156***(0.057) | 0.233**(0.130) | 0.101(0.254) | |
不同地形区脱贫户 | 王场镇 | 0.174**(2.170) | 0.187***(0.265) | 0.173**(0.893) | 0.151**(2.170) |
鱼池镇 | 0.206**(1.710) | 0.213***(0.687) | 0.247***(0.852) | 0.157**(0.421) | |
龙沙镇 | 0.234***(0.411) | 0.228***(0.136) | 0.241***(0.028) | 0.173***(2.074) | |
黄水镇 | 0.170** (0.125) | 0.172**(0.515) | 0.197***(0.423) | 0.146**(0.592) | |
中益乡 | 0.225**(1.023) | 0.225***(0.397) | 0.271***(1.284) | 0.165**(0.897) |
3.4.1 精准扶贫对各类脱贫户LSI效应分异性
(1) L3型脱贫户LSI提升22.3%(P<0.01),2020年其LSI均值为1.264(图3a),表明精准扶贫对L3型脱贫户LSI带动较大,扶贫资源与其生计资源禀赋匹配性较好。由于L3型脱贫户人均耕地面积和家庭人均收入比脱贫户样本均值分别高21.983%、10.750%,劳动力数量及教育水平则分别高12.147%、18.943%,多项生计资本禀赋优势易于与扶贫生产要素结合带动生计发展。其中,73.21%的男性户主参加就业转移、乡村产业或乡村旅游等新业态产业;40.123%的留守女性劳动力、老人等通过扶贫车间、手工作坊、公益性岗位等参与经营,“打工经济”“手工经济”“中农经济”等成为L3型家庭增收渠道。因此,在巩固脱贫攻坚时期应坚持拓宽收入渠道,增强脱贫稳定性。
图3
图3
2020年不同生计类型及乡镇下农户LSI及其维度均值
Fig.3
Mean values of LSI and its sub-dimensions of poverty-alleviation farming households of different livelihood types and towns in 2020
(2) L1型、L2型脱贫户LSI分别提升21.8%(P<0.01)、21.4%(P<0.05),2020年其LSI均值分别为1.111、1.253(图3a),其政策效应也较明显。首先,L1型脱贫户具有自然资本优势,扶贫中设备、技术、信息等投入带动L1型脱贫户农业生产的专业化。据统计,参加各类产业或资产收益类扶贫项目的L1型脱贫户占71.34%。其中37.87%的脱贫户发展辣椒、莼菜等特色种植业,11.12%、10.56%的农户参与养殖业、乡村旅游;65.31%的脱贫户加入合作社,稳定了农畜产品价格,降低了市场风险。因此,以乡村产业扶贫、技术帮扶等为主的扶贫靶向助力脱贫户生计专业化和生产经营环境改善,提高其生计可持续性。其次,L2型脱贫户具有劳动力资源优势,但教育和技术水平较低、专业务工经验缺乏,多从事劳动密集型产业。精准扶贫实施中通过“点对点”落实稳岗就业,务工技能培训等项目促进青壮年务工人员就业向专业化和新型化发展。同时,通过公益岗位、扶贫车间等带动留守劳动力就业,实现增收目的,对L2型农户生计发展带动明显。
(3) L4型脱贫户LSI提高16.4%,2020年其LSI均值为0.879(图3a),其政策效应明显低于其他类型农户,表明“输血式”帮扶对农户LSI带动较低。可能的原因是,该类型多是老弱病残或失能群体,人口负担较重,内生动力不足、发展能力弱,对政府的帮扶资源依赖性较强,“造血式”扶贫生产要素更多流向家庭禀赋要素较高的贫困户,补贴依赖型(L4)脱贫户处于被“边缘化”状态。
3.4.2 精准扶贫对各类脱贫户LSI不同维度的效应分异性
精准扶贫对不同类型脱贫户的分维度政策效应差异较大。具体而言:
(1) 对生计资本政策效应,L3型、L1型脱贫户分别提升22.4%、21.6%,表明精准扶贫对兼业型和务农主导型脱贫户带动较大。而L4型脱贫户生计资本提升约15.6%,表明“输血式”扶贫对改善脱贫户生计资本作用较弱。
(2) 从生计环境政策效应上看,4类农户的政策力度处于0.231~0.242,差异相对较小。这表明精准扶贫对农村外部环境改善具有一定普惠性,其贫困治理政策体系与农村环境融合度较高,这一经验在巩固脱贫攻坚成果时期应予以借鉴。
(3) 对代际发展能力的政策效应上,L2型、L3型脱贫户分别提升17.0%、16.7%,表明精准扶贫对务工主导型和兼业型脱贫户的代际发展能力带动效应突出。其原因可能是,这2类农户中青壮年劳动力数量较多,接受新知识、运用新技能的能力强,教育改善和技术提升效果明显。此外,L4型脱贫户虽然代际发展能力有所提升,但不显著。由于L4型脱贫户多处于家庭生命周期末端,老弱病残人口比重较高,精准扶贫难以逆转其代际发展能力弱势性。
综上所述,精准扶贫对兼业型(L3)脱贫户政策效应较大,其次是务农主导型(L1)和务工主导型(L2),而补贴依赖型(L4)政策效应较低。精准扶贫对兼业型(L3)和务农主导型(L1)脱贫户生计资本带动较大,对生计环境改善具有普惠性,对务工主导型(L2)和兼业型(L3)脱贫户代际发展能力带动明显。精准扶贫政策加剧了群体间生计可持续性分化,补贴依赖型(L4)脱贫户“双弱”性突出,是预防返贫的重点群体。其可能的原因是,精准扶贫政策群体分异性受农户生计资源禀赋影响,扶贫资源要素易被具有资本禀赋优势的贫困户捕获,从而获得较快的发展。同时,农户家庭生命周期所处阶段影响人力资本的投入回报,导致农户代际间发展潜力和持续性不同。此外,精准扶贫政策在对外部环境改善方面具有普惠性。精准扶贫政策群体分异性影响机制可归纳为图4。
图4
图4
精准扶贫政策效应群体分异性作用机制
Fig.4
Mechanism of group differentiation effect of the targeted poverty alleviation policy
3.5 精准扶贫政策效应的地域分异性及分析
3.5.1 精准扶贫对不同地区脱贫户LSI的政策效应分异性
(1) 精准扶贫使龙沙镇、中益乡脱贫户LSI分别提升23.4%、22.5%,2020年其LSI均值分别为1.160、1.094(图3b),表明具有资源禀赋和区位优势或贫困程度较深地区,精准扶贫政策效果较明显。首先,龙沙镇土地资源较多,当地政府以辣椒、脆李、草莓、油菜等特色种植业为重点,通过产业扶贫、科技扶贫等多种专项扶贫措施诱导农户生计分化,推动农业向专业化、新型化发展,进而带动农户生计发展。其次,中益乡是脱贫攻坚的重点乡,大量扶贫资源下沉至贫困户。一是通过引导农户参与黄精、黄连等现代山地特色高效农业体系增产增收。同时,依托中蜂形成“中华蜜蜂谷”等一批文旅项目,盘活农户闲置土地、房屋等资源,提高财产性收入。二是通过劳动力就业转移,带动留守农户参加农副产业生产、临时雇工等,扩大非农就业比例。2015—2020年脱贫户人均收入增长25.37%,其增速高出样本脱贫户14.247%,生计资本增速高出样本均值10.214%。可见,扶贫资源的倾斜对农户生计发展带动突出,发挥了“推进器”的作用。值得注意的是,中益乡农户LSI仍相对较低,仍是巩固脱贫攻坚成果重点地区,部分增收项目仍需保持一定的延续性。
(2) 精准扶贫使鱼池镇脱贫户LSI提升约20.6%,2020年其LSI均值为1.096,相对略低(图3b)。鱼池镇地貌较复杂、交通不便,扶贫资源可进入性较低。该镇大量贫困户外出务工,留守农户多依赖鱼池、柑橘、草场等丰富的特色农业资源,通过加工作坊、农家乐等就业,加快留守贫困户形成稳定收入来源。但其LSI仍较低,仍需进一步巩固脱贫户生计发展能力。相比而言,王场镇、黄水镇农户LSI分别提升17.4%、17.0%,2020年其LSI均值分别为1.104、1.141(图3b),表明其政策效果较小。由于这2个地区贫困户中老弱病残占比略高,对扶贫资源的把握和整合能力偏弱,帮扶手段以医疗扶贫、兜底保障为主。因此,精准扶贫对其生计可持续性提升较小。
3.5.2 精准扶贫对分维度政策效应的空间差异
从分维度上看,精准扶贫政策效应亦有较强的空间异质性。具体而言:
(1) 精准扶贫对龙沙镇和中益乡的脱贫户的生计资本具有显著的带动作用,分别提升22.8%、22.5%。首先,龙沙镇利用其区位优势,整合土地资源和劳动力等资源禀赋优势,以产业发展和就业扶贫等为主,对脱贫户生计资本提升较大。其次,中益乡获益于脱贫攻坚大量资源投入,对生计资本带动明显。值得注意的是,中益乡脱贫户生计资本仍略低,巩固脱贫中仍需延续产业扶贫、就业扶贫等以提高生计资本。
(2) 精准扶贫对贫困程度较深的中益乡、鱼池镇生计环境带动作用明显,分别提升27.1%、24.7%,政策效应较大。这表明精准扶贫对偏远和贫困地区的基础设施、公共服务等短板治理具有“立竿见影”的效果,一定程度上缓解了因地理环境劣势导致的贫困高发,客观上缩小了地区间生计可持续性的差异。因此,在巩固脱贫攻坚成果时期,仍需将改善外部环境作为预防返贫的重要方面。
(3) 对龙沙镇代际发展能力提升明显,约17.3%。龙沙镇留守青年劳动力较多,教育扶贫、技术培训等弥补了教育和技术劣势,人力资本水平和质量提高明显。这一发现的政策启示是未来仍需加大财政教育投入以形成可持续的人力资本红利。
综上所述,精准扶贫对龙沙镇、中益乡政策效应明显,对王场镇、黄水镇政策效应较小。精准扶贫显著提高龙沙镇、中益乡的生计资本,对中益乡、鱼池镇生计环境改善明显,对龙沙镇代际发展能力带动效果突出。其可能原因是,精准扶贫政策效应受地理区位、资源禀赋条件的影响,地理区位影响扶贫资源的可进入性;地区的资源禀赋条件影响扶贫手段的多元化及其与地方环境和农户的匹配性,进而影响精准扶贫政策效果。此外,贫困程度对扶贫资源和力量具有一定“吸引”或“排斥”的作用,贫困程度越深,获得的扶贫资源越多、干预力量越大,政策效果也较突出。贫困地区的地理环境和社会经济因素共同作用于精准扶贫政策效果,其地域分异性机制可归纳为图5。
图5
图5
精准扶贫对农户政策效应地域分异的作用机制
Fig.5
Mechanism of regional differentiation of impacts of the targeted poverty alleviation policy on rural households
4 结论与对策
4.1 结论
本文整合了精准扶贫对农户生计系统多层次影响,基于生计可持续性视角,构建以生计资本、生计环境和代际发展能力维度为核心的精准扶贫政策效应分析框架,利用双重差分法和倾向得分匹配法量化评估了精准扶贫政策效应,并讨论其分异性。主要结论如下:
(1) 本文构建的精准扶贫政策效应评估框架有效性较好,为定量评估精准扶贫政策效用提供了一种不同于生计资本或福利的评估路径,深化了精准扶贫政策效应的差异化认识,为国家精准扶贫治理成果检验提供了佐证。
(2) 精准扶贫对农户生计可持续性具有显著带动效应,使农户生计可持续性提升20.5%,生计资本、生计环境和代际发展能力分别提升21.3%、23.9%、15.8%,生计环境改善效果明显,而代际发展能力具有时滞效应。
(3) 精准扶贫对不同生计类型脱贫户政策效应具有差异。“造血式”帮扶手段对农户带动效果突出,尤其是对兼业型脱贫户发展带动明显,而“输血式”帮扶的政策效应较低。不同类型的农户生计可持续性分异明显,补贴依赖型脱贫户处于“边缘化”状态,是巩固脱贫时期预防返贫的重点对象。精准扶贫对脱贫户生计环境改善具有普惠性,明显提升了兼业型和务农主导型脱贫户生计资本以及务工主导型和兼业型脱贫户的代际发展能力。
(4) 精准扶贫的效应存在空间不均衡性。具有区位优势地区因扶贫资源可进入性和匹配度较高,其政策效果较突出;贫困程度较深的地区因扶贫资源投入倾斜力度较大,农户生计可持续性发展明显。精准扶贫对贫困程度深、地理位置偏远的山区生计环境改善较明显,但其生计资本和代际发展能力维度仍需进一步巩固提升。
4.2 对策与建议
巩固脱贫攻坚成果应聚焦易返贫群体,围绕脱贫薄弱环节,防止致贫返贫,持续推动现有减贫政策平稳转型,以实现巩固拓展脱贫攻坚成果续接乡村振兴。为此,提出政策建议如下:
(1) 延续与调整扶贫政策,将综合性“造血式”治理方式以常态化形式贯穿乡村振兴的始终。一是针对山区农户代际发展能力薄弱难题,需要进一步巩固既有的教育扶贫,坚持教育扶贫长时间推进,为增强脱贫可持续性提供关键支撑;持续强化青壮年劳动力的技能帮扶,通过赋权增能不断提高其市场参与能力、资本获取能力和风险应对能力。二是针对部分脱贫户生计资本积累缓慢的难题,需要巩固和拓展脱贫产业体系和就业体系,持续夯实各乡镇特色产业发展,完善特色山区现代产业体系,为巩固脱贫提供产业基础。三是针对兜底保障农户政策效果不佳的问题,应保持“输血式”帮扶不断流,持续改善特殊群体在就医、基本生活保障等方面的条件,尤其预防其因病致贫返贫。
(2) 针对地区间生计发展差异问题。一是坚持有重点将帮扶资金、技术、信息等生产要素向发展基础较差的深山和中山地区倾斜,侧重补齐养老、医疗和教育条件等短板,重视深山和中山区村域乡村治理、人才培养等软实力建设;二是扶持深山和中山区农户以就业扶贫、技能培训增强生计活动选择自主性,重点培养务工型和务农型脱贫户发展自主性,不断优化已脱贫户生产要素禀赋和生计资本结构,增强可持续性发展能力。
此外,注重预防新贫困发生,尤其是防范贫困边缘户致贫。针对有条件的贫困边缘户适度扩大乡村产业、就业帮扶和技术帮扶等覆盖面,通过政策性引导等方式使其参与经济效益较好的产业生产经营,提高贫困边缘群体收入,扩大脱贫攻坚成果受益范围。
参考文献
贫困地理学的基础理论与学科前沿
[J].
DOI:10.11821/dlxb202110006
[本文引用: 1]
中国的减贫实践证明,地理学在服务国民经济建设和支撑减贫瞄准与扶贫决策中发挥着重要学科价值。然而,由于基本概念模糊、基础理论滞后、学科体系不健全,“理论贫困”成为制约贫困地理学创新发展的最大短板。本文在解析贫困核心概念的基础上,系统剖析了贫困地理学作为一门分支学科的学科性质、基础理论、研究对象、研究内容与框架,提出了未来贫困地理研究中的前沿领域。结果表明:① 贫困是指与一定标准相比,人们所享受的各种福利处于劣势、缺少或不足的状态,具有多维性、区域性和动态性特征。在测量标准上,绝对贫困强调“极小值”,相对贫困强调“平均值”。在瞄准对象上,个体贫困关注个人福利或能力的缺失与不足,区域贫困则是从空间视角关注个体福利背后的“区域福利”。② 贫困地理学是一门研究贫困地区的形成、分布、地理特征及其与环境的关系和反贫困措施的学科,以贫困地域系统为研究对象,以“贫困—环境”关系为研究核心,具有综合性、交叉性和区域性特点。贫困地理学的基础性理论包括空间贫困理论、区域贫困理论和多维贫困理论,其研究内容与框架包括3个维度、2大要素、2类对象、2大标准。③ 贫困地理学需要进一步强化贫困地域系统演化、区域贫困测度、相对贫困瞄准、贫困监测模拟、减贫效应评估、区域可持续发展模式等方面的基础研究。
Basic theories and frontiers of poverty geography
DOI:10.11821/dlxb202110006
[本文引用: 1]
China's poverty alleviation practice has proved that geography has played an extremely important role in supporting anti-poverty targeting and poverty reduction decision-making. However, due to vague basic concepts, lagging basic theories, and an imperfect discipline system, "theoretical poverty" has become the biggest shortcoming restricting the innovation and development of poverty geography. Based on the analysis of the core concept of poverty, this paper systematically analyzed the nature, basic theory, research object, research content, and framework of poverty geography as a branch of the discipline, and put forward the frontier areas of future research on poverty geography. The results show that firstly, poverty refers to the state of inferiority, lack, or insufficiency of various welfares enjoyed by people compared to a certain standard, which has multidimensional, regional, and dynamic characteristics. In terms of measurement standards, absolute poverty emphasizes the minimum value, and relative poverty emphasizes the average value. In terms of target objects, poverty can be divided into individual poverty and regional poverty. The former focuses on the lack and deficiency of individual welfare or capability, while the latter focuses on the regional welfare behind individual welfare from the perspective of space. Secondly, poverty geography is a discipline that studies the formation, distribution, geographic characteristics of poverty-stricken areas, their relationship with the environment, and anti-poverty measures. It takes the impoverished areal system (IAS) as the research object and the poverty-environment nexus as the research core. It has comprehensive, cross-cutting, and regional characteristics, focusing on the study of regional poverty. The basic theories of poverty geography include spatial poverty theory, regional poverty theory, multidimensional poverty theory, and sustainable development theory. Its research content and framework include three dimensions (economic, social, and environmental poverty), two elements (nature and human), two types of objects (regional poverty and individual poverty), and two standards (absolute poverty and relative poverty). Thirdly, there is an urgent need to strengthen the basic research of poverty geography in terms of the evolution of IAS, regional poverty measurement, relative poverty targeting, poverty dynamic monitoring and simulation prediction, urban poverty and rural poverty, poverty alleviation effectiveness evaluation, transformation and development and revitalization path of poor areas. In the situation that we face new challenges of poverty reduction and development at home and abroad, there is an urgent need to constantly innovate and develop the fundamental theory of poverty geography, promote the globalization of China's poverty research, and contribute China's anti-poverty project to the eradication of global extreme poverty.
Spatio-temporal patterns of rural poverty in China and targeted poverty alleviation strategies
[J].DOI:10.1016/j.jrurstud.2017.04.002 URL [本文引用: 1]
世纪疫情冲击、全球规模性返贫与中国应对
[J].
Impact of epidemic situation in the 21st century, global return to poverty on a large scale and China's strategy
我国反贫困治理与农户生计转型: 历史回顾与改革前瞻
[J].
China's anti-poverty governance and rural households' livelihood transformation: Historical review and reform prospects
贫困山区脱贫农户的生计可持续性及生计干预: 以陇南山区为例
[J].
DOI:10.18306/dlkxjz.2020.06.009
[本文引用: 9]
增强贫困山区脱贫农户的生计可持续性不仅是新时期农村扶贫的现实需求,更是推动乡村振兴的客观要求。论文从生计资本、生计策略及生计环境出发,建立了脱贫农户的生计可持续性评价指标体系,利用陇南山区脱贫农户的入户调查资料,评估贫困山区脱贫农户的生计可持续性、识别脱贫农户的生计障碍。研究发现:① 从川坝河谷区、半山区到高山区,从早期脱贫到后期脱贫,脱贫农户的生计可持续性依次降低,且务工型与农工互补型脱贫农户的生计可持续性强于其他生计方式农户;② 陇南山区生计不可持续脱贫农户比重达28.83%,高山区、传统务农型及后期脱贫户中生计不可持续农户比重较高,而川坝河谷区、农工互补型与务工型及早期脱贫户中该比重较低;③ 生计不可持续脱贫户均面临着多元生计障碍,其中近2/3的农户面临多维资本—环境阻滞型与多重要素阻滞型障碍;④ 针对生计不可持续脱贫农户面临的多元生计障碍,需分类实施多维生计干预。
Livelihood sustainability and livelihood intervention of out-of-poverty farming households in poor mountainous areas: A case of Longnan mountainous area
DOI:10.18306/dlkxjz.2020.06.009
[本文引用: 9]
Enhancing the livelihood sustainability of out-of-poverty farming households in poor mountainous areas is not only the realistic demand for rural poverty alleviation in the new era, but also the urgent demand of rural revitalization. Taking into consideration livelihood capital, livelihood strategy and livelihood environment, this study established a livelihood sustainability evaluation index system of out-of-poverty farming households, and used the household survey data of the out-of-poverty households in the Longnan mountainous area to evaluate their livelihood sustainability and identify livelihood barriers. The results show that: 1) From river valley, the middle mountain to the high mountain area, and with the passage of time since a household was out of poverty, livelihood sustainability of the out-of-poverty households decreased in turn, and the livelihood sustainability of work-oriented type and agriculture-industry complementary type are higher than other farmers. 2) The proportion of farmers whose livelihood is unsustainable in Longnan mountain area is 28.83%, and the proportion of farming households with unsustainable livelihoods is higher in high-mountain area, traditional farming type, and late out-of-poverty households, while the proportion of farmers who have unsustainable livelihoods is lower in river valleys, agriculture-industry complementary type, work-oriented type, and early out-of-poverty households. 3) Out-of-poverty households with unsustainable livelihoods are all faced with multiple livelihood barriers, and nearly two-thirds of them are faced with multidimensional capital environment barriers and multi-factor barriers. 4) In view of the multiple livelihood barriers faced by the out-of-poverty households with unsustainable livelihoods, targeted multidimensional livelihood intervention should be implemented for different categories of households.
Tactics of land capture through claims of poverty reduction in Cambodia
[J].
The effectiveness of poverty reduction efforts in Kenya: An evaluation of Kenyan government's policy initiatives on poverty alleviation
[J].
Financial inclusion, gender dimension, and economic impact on poor households
[J].
Community-based development and poverty alleviation: An evaluation of China's poor village investment program
[J].DOI:10.1016/j.jpubeco.2010.06.005 URL [本文引用: 1]
Comparing and contrasting poverty reduction performance of social welfare programs across jurisdictions in Canada using Data Envelopment Analysis (DEA): An exploratory study of the era of devolution
[J].
DOI:10.1016/j.evalprogplan.2009.10.006
PMID:19939448
[本文引用: 2]
In the mid-1990s, the responsibilities to design, implement, and evaluate social welfare programs were transferred from federal to local jurisdictions in many countries of North America and Europe through devolution processes. Devolution has caused the need for a technique to measure and compare the performances of social welfare programs across multiple jurisdictions. This paper utilizes Data Envelopment Analysis (DEA) for a comparison of poverty reduction performances of jurisdictional social welfare programs across Canadian provinces. From the theoretical perspective, findings of this paper demonstrates that DEA is a promising method to evaluate, compare, and benchmark poverty reduction performance across multiple jurisdictions using multiple inputs and outputs. This paper demonstrates that DEA generates easy to comprehend composite rankings of provincial performances, identifies appropriate benchmarks for each inefficient province, and estimates sources and amounts of improvement needed to make the provinces efficient. From a practical perspective the empirical results presented in this paper indicate that Newfoundland, Prince Edwards Island, and Alberta achieve better efficiency in poverty reduction than other provinces. Policy makers and social administrators of the ineffective provinces across Canada may find benefit in selecting one of the effective provinces as a benchmark for improving their own performance based on similar size and structure of population, size of the budget for social programs, and traditions with administering particular types of social programs.Copyright (c) 2009 Elsevier Ltd. All rights reserved.
精准扶贫背景下移民生计空间再造与优化: 基于陕西S县的实地调查
[J].
Reconstruction and optimization of migrants' living space under the background of targeted poverty alleviation: Based on a field survey in S county, Shaanxi Province
多元精准扶贫政策实施与脱贫农户生计脆弱性: 基于湘鄂渝黔毗邻民族地区的经验分析
[J].
Implementation of diversified targeted poverty alleviation policies and livelihood vulnerability of out-of-poverty farming households: An empirical analysis based on the adjacent ethnic areas of Hunan, Hubei, Chongqing and Guizhou Provinces
精准扶贫可以提升农村贫困户可持续生计吗? 基于陕西省70个县(区)的调查
[J].
Can precise poverty alleviation improve the sustainable livelihoods of rural poor households? Based on the survey of 70 counties in Shaanxi Province
巩固拓展脱贫攻坚成果的理论逻辑与实现路径: 基于脱贫户可持续生计的实证研究
[J].
Theoretical logic and implementation path of consolidating and expanding poverty alleviation achievements: An empirical study based on sustainable livelihoods of poverty-alleviation households
国家精准扶贫政策对贫困农户脱贫增收的效果评价: 基于双重差分模型的检验
[J].
Evaluation on effect of national accurate poverty alleviation policy on rural poor households: Based on double difference mode
精准扶贫对黄河上游地区农牧民可持续生计的影响
[J].
Effects of targeted poverty alleviation on the sustainable livelihood of farmers and herdsmen in the upper reaches of the Yellow River
精准扶贫政策效果评估: 收入、消费、生活改善和外出务工
[J].
Policy evaluation of China's targeted poverty alleviation: Income, expenditure, life improvement and migrant work
精准扶贫对提升农户生计的效果评价
[J].
Effect evaluation and optimization of targeted poverty alleviation on improving farmers' livelihood
Does poverty-alleviation-based industry development improve farmers' livelihood capital?
[J].DOI:10.1016/S2095-3119(20)63449-9 URL [本文引用: 3]
易地扶贫搬迁对贫困户生计资本和生计策略的影响: 基于8省16县的3期微观数据分析
[J].
Impact of poverty alleviation relocation on livelihood capital and livelihood strategy of poor households: Analysis based on three waves of microdata from 16 counties in 8 provinces
The impact of rural land consolidation on household poverty alleviation: The moderating effects of human capital endowment
[J].
Targeted poverty alleviation through photovoltaic-based intervention: Rhetoric and reality in Qinghai, China
[J].
精准扶贫政策效果评估: 基于贫困人口微观追踪数据
[J].
Impact of targeted poverty alleviation: Micro tracking data of poor populations
易地扶贫搬迁对农户收入的影响机理及效应: 基于陕南3市8县1712个农户数据的实证分析
[J].
The impact of ex situ poverty alleviation relocation on the rural households' income: An empirical analysis based on 1712 households' data in 8 counties of 3 municipalities in southern Shaanxi Province
不同帮扶措施执行效果的差异分析: 基于可持续生计分析框架
[J].
Analysis on the difference of the implementation effect of different poverty alleviation measures: Based on the framework of sustainable livelihood approach
Farmland marginalization in the mountainous areas: Characteristics, influencing factors and policy implications
[J].
DOI:10.1007/s11442-015-1197-4
[本文引用: 2]
Based on SPOT-5 images, 1:1 million topographic maps, the maps of the returning farmland to forest project and the Chongqing forest project, social and economic statistics, etc., this paper identifies the features and factors influencing farmland marginalization. The results showed: (1) During 2002-2012, the rate of farmland marginalization was 16.18%, which was mainly found in the high areas of northern Qiyao mountains and the medium-altitude areas of southern Qiyao mountains. And this farmland marginalization will increase, associated with non-agriculturalization of rural labourers and aging of the remaining labourers. (2) Elevation, distance radius from villages and road connections had a great influence on farmland marginalization. Farmland marginalization rates showed an increasing trend with the increase of elevation, and 60.88% of the total farmland marginalization area is found at an altitude greater than 1000 m above sea level. The marginalization trend also increases with slope and distance from the distribution network. (3) Farmland area per labourer and the average age of farm labourers were major factors driving farmland marginalization. Farmland transfer and small agricultural machinery sets affect farmland marginalization with respect to management and productivity efficiency. (4) Farmland with “comparative- disadvantage-dominated marginalization” accounted for 55.32% of the total farmland marginalization area, followed by “location-dominated marginalization” (33.80%). (5) According to the specifics of each real situation, different policies are suggested to mitigate the marginalization. A “continuous marginalization” policy will encourage the return of farmland to forest in “terrain-dominated marginalization”. An “anti-marginalization” policy is suggested to create new rural accommodation and improve the rural road system to counteract “terrain-dominated marginalization”. And another “anti-marginalization” policy is planned to improve management and micro-mechanization for “comparative-disadvantage-dominated marginalization”. A new idea was developed to integrate high resolution remote sensing and statistical data with survey information to identify land marginalization and its driving forces in mountainous areas.
The code of targeted poverty alleviation in China: A geography perspective
[J].DOI:10.1016/j.geosus.2021.09.004 URL [本文引用: 1]
从区域扶贫开发到精准扶贫: 改革开放40年中国扶贫政策的演进及脱贫攻坚的难点和对策
[J].
From regional poverty alleviation and development to precision poverty alleviation: The evolution of poverty alleviation policies in China during the 40 years of reform and opening-up and the current difficulties and countermeasures for poverty alleviation
扶贫模式可持续减贫效应的分析框架及机理探析
[J].
DOI:10.18306/dlkxjz.2018.04.012
[本文引用: 1]
“精准扶贫”是近年中国全面推进建设小康社会的重大战略举措,精准识别扶贫对象、精准安排扶贫项目、精准监测脱贫成效是“精准扶贫”战略的核心内容,如何保障系列“精准”的实现亟需科学、系统的评估方法和评测手段作支撑。为从多维度、动态、一体化角度对扶贫项目的可持续减贫效果进行评估,本文针对中国目前已在执行的各种扶贫项目减贫效果评估多偏重经济维度、缺乏机理解析和可持续性评价等问题,借鉴DFID可持续生计分析的学术思想,提出了适用于扶贫模式可持续减贫效应评估的分析框架,进而对社会保障式、项目建设式、产业化、科学技术、移民与城镇化、易地搬迁与安置、信贷、参与式等8种扶贫模式可持续减贫的作用机理进行了探析。研究结果既能展示扶贫模式的减贫作用机理与贫困群体特征的契合程度,又能分析扶贫模式对贫困群体多维度及可持续的生计改善状况,同时也可为系统、综合、定量地评估可持续减贫效果的方法模型发展提供思路借鉴。
Analytical framework of sustainable poverty-reduction effect and mechanisms of anti-poverty models
DOI:10.18306/dlkxjz.2018.04.012
[本文引用: 1]
The "targeted poverty alleviation policy" is one of the most important strategies in recent years for China to build a well-off society in an all-round way. Among the many contents of this strategy, accurately identifying poor people and groups, arranging anti-poverty projects, and monitoring the effects of poverty reduction are the three core aspects. To ensure effective implementation of these policy objectives, a series of scientific and systematic methods for estimating and assessing the accuracy and efficiency of poverty reduction are necessary. However, related studies so far have focused mostly on the economic dimension, and very few of them have explored the underlying mechanisms or assessed the sustainability of poverty-reduction effects. From a multidimensional, dynamic, and systematic perspective, this article categorizes the anti-poverty models in rural China according to the main aspects each project works with, formulates a framework for analyzing the sustainable poverty-reduction effects of these models based on the sustainable livelihoods framework proposed by DFID, and then explores the working mechanism of each anti-poverty model. The result shows that the proposed framework can not only express whether the mechanism of an anti-poverty model matches the characteristics of the target poor people, but also assess the improvements it brings in multiple dimensions of people’s livelihoods and its sustainability. Thus the framework may help shine light on the development of systematic, comprehensive, and quantitative methods or models for estimating the sustainable poverty-reduction effects of anti-poverty projects.
内生动力、益贫市场与政策保障: 打好脱贫攻坚战实现“真脱贫”的路径框架
[J].
Endogenous power, pro-poor market and policy support: The framework for the path to "real poverty shake-off" in the fight against poverty
Determinants of livelihood choice and implications for targeted poverty reduction policies: A case study in the YNL River region, Tibetan Plateau
[J].DOI:10.1016/j.ecolind.2019.02.007 URL [本文引用: 2]
Do environmental conservation programs contribute to sustainable livelihoods? Evidence from China's grain-for-green program in northern Shaanxi Province
[J].
A conceptual framework for measuring livelihood resilience: Relocation experience from Aceh, Indonesia
[J].DOI:10.1016/j.worlddev.2019.01.003 URL [本文引用: 2]
基于可持续生计的精准扶贫分析方法及应用研究: 以四川凉山彝族自治州为例
[J].
DOI:10.18306/dlkxjz.2017.02.005
[本文引用: 3]
可持续生计框架是辩证思考贫困的影响因素及其形成过程的理论总结,有助于对精准扶贫进行规范化和系统化的研究。本文以可持续生计框架为蓝本,构建基于可持续生计的精准扶贫分析框架,并从影响农户生计的内因和外因视角,讨论精准扶贫的多维贫困识别指数(MPII)的基本构成。以四川省凉山州作为案例区域,建立具有本土特色的MPII指标体系;识别出420户贫困户,其中80.48%(338户)的建档立卡户与识别结果重叠;与建档立卡农户相比,所识别贫困农户在各单个维度和综合维度都几乎处于更劣势的水平,识别效果更加精准。根据贫困原因的相似性,可将贫困农户划分为人力资本贫困型、基础型资本贫困型、社会资本贫困型、多维资本贫困型、生计环境恶劣型等五种类型,并针对不同的贫困类型提出相应的帮扶措施。
Theoretical analysis and case study on targeted poverty alleviation based on sustainable livelihoods framework: A case study of Liangshan Yi Autonomous Prefecture, Sichuan Province
DOI:10.18306/dlkxjz.2017.02.005
[本文引用: 3]
Targeted poverty alleviation refers to focusing on the poor in anti-poverty programs and enhancing the ability of those who desire to fight against poverty. Sustainable livelihoods framework facilitates exploring the influencing factors and formation of poverty, which is useful in standardized and systematic research on precision poverty alleviation. Based on this framework, our study sets up an analytical framework to divide precision poverty alleviation into four stages and five links in order to assist the poor to reduce poverty; it also discusses the basic components of multidimensional poverty identification index (MPII) from the perspective of internal and external causes of difficulties in farmers' livelihood. Taking Liangshan Yi Autonomous Prefecture in Sichuan Province as the example, we establish a unique MPII index system. A total of 420 households are identified as impoverished families. About 80% of the designated poor households (who are registered at the government office) overlap with the identified families; and the identified poor households are the poorest among those who have been registered, both in individual dimensions and the integrated dimension, so the identification is more accurate. The poor households can be divided into five types: lack of human capitals, lack of primary capitals, lack of social capitals, lack of multidimensional capitals, and living in severe environmental condition. Corresponding measures have been proposed in accordance with the causes of poverty conditions.
基于乡村人口转移和农村道路建设的空间贫困破解机理及其对策研究: 以贵州省为例
[J].
DOI:10.11821/dlyj020181397
[本文引用: 1]
贫困与地理环境之间交互耦合形成了空间贫困陷阱,本文在对贵州50个国家级贫困县乡村人口转移减贫效应和松桃、威宁、望谟3个典型县域贫困村贫困发生率与农村道路可达性指数空间耦合关系进行实证研究基础上,阐释了破解空间贫困的作用机理,并构建相应政策体系。结果表明:① 贵州国家级贫困县乡村户籍人口向县内城镇转移和县外转移具有显著的减贫效应,但县内城镇转移比县外转移减贫效应的作用力更大。② 松桃县、望谟县极度贫困、可达性较差型和深度贫困、可达性较差型贫困村所占比例在15%左右,威宁为10%左右,对该类型贫困村实施整村易地搬迁和村庄撤并;对具有自然历史文化特色资源的深度贫困、可达性中等型和一般贫困、可达性中等型贫困村应进一步扩展道路宽度,打通断头路,形成网络,增强通行能力。③ 应坚持以县城为中心的就地城镇化和发达地区中心城市、省会城市等异地城镇化并重,加强对转移劳动人口的技能培训,提升其城镇生存能力。继续加大对具有自然历史文化特色资源的保护类村庄的“通村、通组、通户”道路拓宽、硬化等措施,逐步完善自来水、宽带等较为薄弱的基础设施投入力度,推进贫困村基本公共服务均等化;通过发展山区“绿水青山”内生性和外生性产业,引导贫困人口提升自我发展能力。
The mechanism and countermeasures of solving spatial poverty based on rural population transfer and rural road construction: A case study of Guizhou Province
DOI:10.11821/dlyj020181397
[本文引用: 1]
The interaction between poverty and geographical environment creates a spatial poverty trap. This paper makes an empirical study on the effect of rural population transfer on poverty reduction of 50 state-level poverty-stricken counties in Guizhou Province, and examines the spatial coupling relationship between incidence of poverty and rural road accessibility index in poverty-stricken villages in Songtao, Weining and Wangmo counties. Then this paper explains the mechanism of solving spatial poverty and constructs the corresponding policy system. Main conclusions are drawn as follows: (1) the transfer of rural household registration population in poverty-stricken counties to towns within the county and the transfer of counties outside the county have significant poverty alleviation effects. However, the poverty reduction effect of urban transfer in the county is greater than that outside the county. (2) The poverty-stricken villages of extreme poverty and poor accessibility types (EP) and deep poverty and poor accessibility types (DP) in Songtao and Wangmo countries account for about 15% and those of Weining take up about 10%, and these types of poverty-stricken villages should be relocated and merged. For the poverty-stricken villages with natural, historical and cultural characteristics, such as deep poverty and medium accessibility types (DM), general poverty and medium accessibility types (GM), the rural road width should be further expanded, the network should be formed, and the traffic capacity should be enhanced. (3) It is necessary to adhere to the local urbanization in the county and the urbanization of the central cities and provincial capitals in developed regions. We will strengthen skills training for the transfer of the working population and continue to promote equalization of basic public services in poverty-stricken areas. This paper believes that the endogenous and exogenous industries of “lucid waters and lush mountains” in hilly and mountainous areas should be developed to guide the poor to improve their self-development capabilities. In the current and future period, we should adhere to development of the green industry, and further mobilize the enthusiasm of poor people to increase production. At the same time, we should steadily improve the basic public service level in poverty-stricken areas, enhance the self-development ability of the relatively poor people, and gradually move toward common prosperity.
农户贫困脆弱性测度及其影响因素: 基于秦巴山区的实证分析
[J].
DOI:10.11821/dlyj020201156
[本文引用: 4]
防止致贫返贫、建立脱贫长效机制是巩固拓展脱贫攻坚成果的关键落脚点。探究农户贫困脆弱性及其机制可为建立预防致贫返贫机制提供思路和借鉴。通过构建贫困脆弱性分析框架和测度体系,以秦巴山区为例,测度农户贫困脆弱性水平,分析贫困脆弱性差异,采用分位数回归模型揭示农户贫困脆弱性的影响因素。结果表明:① 农户贫困脆弱性水平均值为0.046,贫困脆弱性等级呈现“纺锤形”分布。② 农户贫困脆弱性水平及不同维度间差异明显。补贴依赖型、务农主导型农户受健康冲击或教育压力大且适应力薄弱,贫困脆弱性较高。多元型和纯务工型农户具有低风险与低敏感性,适应力较高,贫困脆弱性较低。③ 农户的暴露风险、适应力具有地域分异性,中山区农户自然风险较高且高贫困脆弱性的农户比例大;河谷川塬区农户的适应力较高。④ 建档立卡贫困识别与贫困脆弱性评估结果具有一定差异。⑤ 农户贫困脆弱性受家庭层面的户主受教育程度、健康水平、职业类型、社会连接度、政策依赖性、非农就业人数、生计多样性以及村域层面的地形起伏度、道路可达性、与河流的距离以及教育可及性等因素的影响。
Poverty vulnerability measurement and its impact factors of farmers: Based on the empirical analysis in Qinba Mountains
DOI:10.11821/dlyj020201156
[本文引用: 4]
The prevention of poverty-returning and the building of a long-term mechanism for poverty alleviation are the keys to consolidating and expanding the achievements. Exploring the poverty vulnerability of rural households and its corresponding mechanism can provide ideas and examples for the establishment of a early warning mechanism. Taking Qinba Mountains as an example, this paper measured the poverty vulnerability level of rural households and explored their differentiation. The factors affecting poverty vulnerability were revealed by Quantile regression mode. (1) The analystical framework of poverty vulnerability was effective. In addition, the poverty vulnerability level of rural households was 0.046, showing a “spindle-shaped” distribution. (2) Poverty vulnerability and its different dimensions were characterized by differentiation. Subsidy-dependent and agricultural-dominated households showed high poverty vulnerability due to the high risks of health or education and weak adaptability. Diversified and pure-work farmers had low vulnerability to poverty because of their low risks and sensitivity and strong adaptability. (3) The exposure risks and adaptability of rural households were geographically differentiated. Rural households in the middle mountainous area exhibited high natural risks, with a large proportion of high-vulnerability households, while those in the river valley area displayed high adaptability. (4) A certain difference existed between the identification of poverty with archiving cards and the assessment of poverty vulnerability. (5) The poverty vulnerability of rural households was affected by the education level, health and occupation type of household heads, social connectivity, policy dependence, non-agricultural employment ratio and livelihood diversity at the household level, topographical fluctuations, road accessibility, as well as the distance from rivers, and schools at the village level.
中国农村贫困代际传递实证研究
[J].
Empirical study on the intergenerational transmission of poverty in rural China
Assessment of sustainable livelihoods of different farmers in hilly red soil erosion areas of southern China
[J].DOI:10.1016/j.ecolind.2015.12.036 URL [本文引用: 2]
智慧城市建设能否降低环境污染
[J].
Can smart city construction reduce environmental pollution
海南省农村多维贫困及影响因素的空间分异
[J].
DOI:10.18306/dlkxjz.2020.06.011
[本文引用: 1]
贫困具有多维属性,根据不同社会群体和背景从多维视角定义贫困已成为贫困问题研究的共识。依据Alkire-Foster多维贫困框架,拓展精准扶贫的“两不愁,三保障”识别标准,建立了涵盖教育、健康、居住、生活和收入指标的海南省农户多维贫困评估指标体系,基于海南省70个乡镇、134个贫困村3924户入户调查数据,采用双重临界值法评估了农户及村域多维贫困状况,进而运用地理加权回归(Geographically Weighted Regression,GWR)模型,分析了村域多维贫困影响因素的空间分异。结果显示,调查农户多维贫困率达18.22%,多维贫困程度严重的村多维贫困发生率不一定高,“两不愁、三保障”及收入指标对多维贫困指数的贡献率低。中、西部连片贫困地区多维贫困主要表现为较差的资产状况、不清洁的炊事燃料、较高的家庭成员患病率和较低的家庭成员最高学历。GWR模型分析表明,作为多维贫困最重要的影响因素,户主性别、户主受教育水平、女性劳动力占比和抚养比4个变量估计系数的空间分异明显。总体上,女性户主和低学历户主为主的地区倾向于更易发生多维贫困,二者的影响分别表现为从东到西、从北到南有所增强。女性劳动力占比为负向影响,抚养比为正向影响,呈现出自北向南增强的趋势,体现了海南贫困地区劳动力弱、女性相对更勤劳等典型地域特征。
Spatial difference of multidimensional poverty and its influencing factors in the rural areas of Hainan Province
DOI:10.18306/dlkxjz.2020.06.011
[本文引用: 1]
Poverty has multidimensional attributes, and it has become a consensus to study poverty from a multidimensional perspective according to different social groups and backgrounds. In order to measure the multidimensional poverty situation in the rural areas where the poor population is concentrated in Hainan Province, we expanded the index system based on the exit criteria for targeted poverty alleviation fulfilling the basic needs of food and clothing and guaranteeing compulsory education, basic medical care, and housing, and established a multidimensional poverty assessment conceptual model for rural households in Hainan Province that covers education, health, housing, livelihood, and income indicators. Then, based on household survey data from 3924 households in 70 towns and 134 poor villages of Hainan Province in 2018, we used the double threshold Alkire-Foster (A-F) method to evaluate the multidimensional poverty status of rural households and villages, and then used the geographically weighted regression (GWR) model to analyze the spatial heterogeneity of the influencing factors of multidimensional poverty in villages. The study results show that: 1) The incidence of multidimensional poverty of the surveyed households was 18.22%. But the incidence of multidimensional poverty in villages with severe multidimensional poverty is not necessarily high. 2) The four indicators of farming households' asset status, cooking fuels, family members' diseases, and family members’ highest academic qualifications contribute the most to multidimensional poverty, while the contribution ratio of indicators belonging to the standard of fulfilling basic needs of food and clothing and guaranteeing compulsory education, basic medical care, and housing, as well as income are generally not high. The multidimensional poverty in the contiguous poverty areas in the central and western regions of the province is mainly manifested by poor asset conditions, unclean cooking fuels, high prevalence of disease of family members, and lower education levels. 3) The GWR model analysis showed that as the most important influencing factors of multidimensional poverty, spatial heterogeneity of the estimated coefficients of the four variables, gender of the household head, education level of the household head, ratio of female labor force, and dependency ratio, have very obvious impacts. In general, areas with more female-headed and low-education attainment individual headed households tend to be more prone to multidimensional poverty, and their impacts increased from east to west and from north to south, separately. With an increasing trend from north to south, the effect of the proportion of female labor force is negative and that of the dependency ratio is positive, which reflects the typical regional characteristics of weak labor force and relatively more industrious women in Hainan poverty-stricken areas.
国外农村贫困地理研究进展
[J].
The research progress of foreign rural poverty geography
DOI:10.2307/142333 URL [本文引用: 1]
中国县域农村贫困化分异机制的地理探测与优化决策
[J].
DOI:10.11821/dlxb201701013
[本文引用: 1]
农村贫困化是长期以来备受世界各国关注的焦点问题,消除贫困,实现共同富裕是中国全面建设小康社会的重大任务,科学揭示农村贫困化地域分异机制,成为实施国家精准扶贫战略的重要课题。论文以河北省阜平县为典型案例,运用地理探测器、多元线性回归等模型方法,诊断出县域农村贫困化分异的主导因素,揭示了农村贫困化分异的动力机制,提出了不同贫困化地域类型的扶贫政策与模式。结果表明:① 影响农村贫困化分异的主导因素包括地面坡度、人均耕地资源、到主要干道距离、到县城中心距离等,各因素对贫困发生率分异的决定力分别为0.14、0.15、0.15、0.17;② 不同类型区域农村贫困化的分异机制存在明显差异,可归纳为自然环境约束型、资源丰度约束型、交通区位约束型、经济区位约束型等四大类型;③ 根据阜平县各乡镇核心主导因素,进一步划分出单因素、双因素和多因素影响区域,县域整体呈现出以横向中心为双因素影响区,两侧为单因素与多因素并存的多极核心主导因素影响的农村贫困发生分异区;④ 不同驱动机制下的县域扶贫开发亟需因地制宜、尊重科学、讲求实效,有序推进精准扶贫与城乡发展一体化战略。
Geographic detection and optimizing decision of the differentiation mechanism of rural poverty in China
DOI:10.11821/dlxb201701013
[本文引用: 1]
Rural poverty has long aroused attention from countries around the world, and eliminating poverty and achieving realize common prosperity is an important mission to build the well-off society in an all-round way. Scientifically revealing the regional differentiation mechanism of rural poverty has become an important issue of implementation of national poverty alleviation strategy. This paper, taking Fuping County of Hebei Province as a typical case, diagnoses the dominant factors of differentiation of rural poverty and reveals the dynamic mechanism of rural poverty differentiation by using the Geodetector model and multiple linear regressions, and puts forward the poverty alleviation policies and models for different poverty regions. The result shows that the dominant factors affecting rural poverty differentiation include slope, elevation, per capita arable land resources, distance to the main roads and distance to the center of county, and their power determinant value to poverty incidence differentiation are 0.14, 0.15, 0.15, and 0.17. These factors affect the occurrence of poverty from different aspects and their dynamic mechanism is also different. Among various factors, the slope and per capita arable land resources affect the structure and mode of agricultural production, while distance to the main roads and distance to the center of county have influence on the relationship between the interior and exterior of the region. There are significant differences in the four types identified of regional rural poverty, namely, environment constrained region mainly affected by slope (seven towns), resource oriented region mainly affected by per capita arable land (seven towns), area dominated by traffic location affected by distance to the main roads (three towns), and economic development leading area mainly affected by distance to the center of county (four towns). Then, Fuping County is divided into single core, dual core and multi-core area according to the number of core elements of the township. The county has shown a multi differentiation of rural poverty with a horizontal center of dual core area, and both sides have a single core and multi-core, which are affected by different dominant factors. Finally, this paper suggests that policy of targeted poverty alleviation should take science and technology as the foundation and form innovation of targeted poverty alleviation according to the core dominant factors of the differentiation mechanism of rural poverty. The county's poverty alleviation and development under different driving mechanisms need orderly promotion of poverty alleviation and integration of urban and rural development strategy with adjusting measures to local conditions, respecting for science, and stressing practical results.
宅基地制度改革减缓了农房闲置吗? 基于PSM和MA方法的实证分析
[J].
Did rural homestead institutional reform decrease the number of disused farmhouses? An empirical analysis based on the PSM and MA methods
/
〈 |
|
〉 |
