航空和高铁对中国城市创新能力的影响
The impacts of aviation and high-speed rail on urban innovation capacity in China
通讯作者:
收稿日期: 2022-05-12 修回日期: 2022-08-6
基金资助: |
|
Received: 2022-05-12 Revised: 2022-08-6
Fund supported: |
|
作者简介 About authors
罗雪(1998— ),四川达州人,硕士生,主要从事科技创新地理研究。E-mail:
交通运输是创新网络中人才流、资本流等知识与技术流动的物理空间承载,其对城市的创新能力影响已成为经济地理学的交叉前沿热点。论文基于2007—2018年中国城市尺度数据,以航空和高铁运输为例,构建交通运输对城市创新能力影响效应的理论框架,采用双向固定效应面板回归模型,实证检验航空和高铁对城市创新能力的多重异质性机制,并探讨了知识传播、资本积累、产业升级在交通运输与创新能力之间的中介效应。研究发现:① 航空和高铁建设均对城市创新能力有显著正向影响,高铁对城市的创新溢出效应约为航空的3倍。② 航空和高铁对不同类型城市的创新溢出效应存在显著异质性。城市等级异质性方面,航空和高铁对中心城市创新能力的正向影响强度高于非中心城市。人口规模异质性方面,航空对大、中城市创新能力提升有显著正向影响,对小城市有抑制作用;高铁运输则对不同人口规模城市的创新能力均有正向影响,呈现大城市>中等城市>小城市的态势。区域异质性方面,航空和高铁对东、中、西、东北地区的创新能力均有不同程度的提升作用,表现出显著的“马太效应”,东部地区优势地位凸显。③ 航空和高铁均可通过促进技术转移、风险资本配置、外商资本配置间接促使城市创新能力提升。此外,航空还能够通过促进产业升级间接促使城市创新能力提升。
关键词:
Transportation is the physical carrier of knowledge and technology spatial flows such as talent and capital flows in innovation networks, and its impacts on urban innovation capacity have become a cross-cutting frontier in economic geography. Based on the city-scale data of China from 2007 to 2018 and taking air and high-speed rail transportation as examples, this study constructed a theoretical framework for the effect of transportation on urban innovation capacity, adopted the two-way fixed-effects panel regression model to empirically test the multiple heterogeneity mechanisms of aviation and high-speed rail on urban innovation capacity, and explored the mediation effects of knowledge dissemination, capital accumulation, and industrial upgrading between transportation and innovation capacity. The results are as follows: 1) Both aviation and high-speed rail development have significant positive impacts on urban innovation capacity, and the spillover effect of high-speed rail on urban innovation is about three times that of aviation. 2) The innovation spillover effects of aviation and high-speed rail on different types of cities are significantly different. In terms of urban grade heterogeneity, the positive impact of aviation and high-speed rail on the innovation capacity of central cities is higher than that of other cities. In terms of population size heterogeneity, aviation has a significant positive impact on the innovation capacity of large and medium-sized cities and an inhibitory effect on small cities, while high-speed rail transportation has a positive impact on urban innovation capacity of cities of different population sizes, showing the trend of large cities > medium-sized cities > small cities. In terms of regional heterogeneity, aviation and high-speed rail have improved the innovation capacity of the eastern, central, western, and northeastern cities of China in varying degrees with a significant Matthew effect, and eastern China has a prominent dominant position. 3) Both aviation and high-speed rail can indirectly promote urban innovation capacity by stimulating technology transfer, venture capital allocation, and foreign capital allocation. Aviation can also indirectly promote urban innovation capacity by stimulating industrial upgrading.
Keywords:
本文引用格式
罗雪, 毛炜圣, 王帮娟, 刘承良.
LUO Xue, MAO Weisheng, WANG Bangjuan, LIU Chengliang.
知识经济时代,创新作为推动国家和区域经济增长的核心要素和关键支撑[1-2],正逐渐成为城市应对新一轮科技革命挑战、参与全球产业竞争、提高国际竞争力的共识。流空间(space of flows)视角下,城市可以在更大的空间尺度上通过知识流动、技术转移等来提高城市的创新绩效,城市的创新发展前景越来越多地依赖于其所处的物理与虚拟网络空间,而交通运输是城市克服地理距离对创新主体知识溢出约束作用[3]、提升全球创新网络中权力和地位的重要变量。从这个意义上说,交通运输的正外部性效应成为理解城市创新增长的重要基础。尽管交通运输与创新并无直接关联,但间接作用的存在强化了交通运输对科技创新的溢出效应。因此,研究交通运输对城市创新能力影响的作用机理,不仅是从创新地理学视角下对物理空间对创新空间影响的理论回应,而且也有助于强化对创新地理学基本规律及交通运输效应的再认识。
以航空和高铁为代表的高速交通运输产生的时空压缩效应打破了地理距离的桎梏[4-5],促进了城市间人员、资金、信息、贸易的要素流动、知识扩散和创新外溢,探讨交通运输与创新能力的关系逐步成为人文地理学研究的前沿和热点:① 机理探讨。航空和高铁开通会促进人才[6-7]、投资[8-9]等要素的集聚,并且带来创新要素与创新主体(如商务人士、高级技能人才、科学家、企业家等)之间交流频次的增加[10⇓-12],如增加商务会议、学术会议、国际博览会等参会出行意愿,降低创新过程的不确定性[13],显著提升城市的创新水平[14]。交通运输对创新能力存在“溢出效应”与“虹吸效应”的双重效应[15-16],不同地区、不同等级的城市中呈现出空间异质性特征[9,17]。高端制造业区位选址偏好一些通达性较高的交通枢纽城市[18],这些交通枢纽城市建立的高端产业又进一步帮助城市集聚各类创新资源,形成交通—产业—创新的循环累积因果机制。② 实证研究。研究对象论及公路[19-20]、铁路[20-21]、高铁[22]、航空[14],研究方法涉及倾向得分匹配—倍差法(PSM-DID)[22]、双重差分法(DID)[9,23]等定量方法,研究尺度涵盖国家[13-14]、区域[24]、城市[6,15,22]及企业[23,25]。
综上,学界针对交通运输对区域创新的影响进行了深入研究,但仍存在以下问题值得深入探索:① 研究对象主要集中在单一交通运输方式,集成航空和高铁通达性的交通运输系统对创新活动影响差异性的对比分析不足,对其空间异质性规律挖掘不够。② 研究机制仅简单揭示交通运输与创新能力间的线性关系,忽视了多重中介机制,可能导致模型结果的偏误,交通运输与创新能力间的多重中介路径仍然是一个“灰箱”。鉴于此,本文构建航空和高铁运输影响城市创新能力的理论框架,基于分组回归和中介效应对比分析二者对不同类型、不同区域城市创新能力影响的空间异质性,一方面有助于厘清交通运输与创新发展的复杂关系,丰富创新地理关于物理空间与创新空间关系研究,另一方面有助于为国家交通运输系统的合理配置、创新要素的有序流动、创新资源的高效配置提供参考。
1 理论框架与研究假设
图1
基于此,提出以下研究假设:
H1:航空和高铁运输均能有效促进城市创新能力提升。
交通运输对城市的创新溢出效应主要通过知识传播、资本积累和产业升级3条路径实现:
H2:航空和高铁运输通过促进城市间技术转移提高城市创新能力。
H3a:航空和高铁运输能够通过促进风险资本配置提高城市创新能力。
H3b:航空和高铁运输能够通过促进外商资本配置提高城市创新能力。
H4:航空和高铁运输能够通过促进产业升级提高城市创新能力。
H5:航空和高铁运输对于不同等级、不同人口规模、不同区域城市的创新溢出效应表现出一定的异质性特征。
2 方法与数据
2.1 研究方法
为筛选恰当的回归模型,本文依次进行F检验和Hausman检验,检验结果强烈拒绝原假设,因此选用固定效应模型。方差扩大因子(VIF)检验结果(7.72)均小于10,排除多重共线性对回归结果的影响。同时,为排除不可观测的个体异质性和时间异质性的影响,引入时间虚拟变量和个体虚拟变量,构建双向固定效应面板回归模型探究航空和高铁运输对城市创新能力的影响,模型如下:
式中:
为考察交通运输建设对城市创新能力的间接作用效应,参考温忠麟等[36]的研究方法,运用依次检验回归系数法和Sobel检验进行中介效应检验,在式(1)的基础上引入中介变量,进一步构建中介效应模型,如下所示:
式中:
2.2 变量说明
(1) 被解释变量
(2) 核心解释变量
本文的核心解释变量为2007—2018年城市的航空和高铁的周运行班次。2007年中国铁路第6次大提速标志着中国正式跨入高铁时代,故选取2007—2018年数据作为研究样本具有合理性。
(3) 控制变量
(4) 中介变量
依据前文分析,交通运输能够通过促进城市间技术转移、吸引风险投资和外商投资等物质资本积累、优化调整产业升级间接提升城市创新能力。本文以地级市之间专利转出与转入的总量衡量技术转移;选取风险投资事件数(VC)和外商直接投资数据(FDI)衡量投资水平;使用第三产业与第二产业的比重测度产业升级[40]。
各变量及其计算方法见表1。
表1 不同变量的定义及其解释说明
Tab.1
变量名称 | 含义 | 计算方法 |
---|---|---|
被解释变量 | ||
innovation | 创新能力 | 发明专利申请数量 |
核心解释变量 | ||
Air | 航空通达性 | 航空班次 |
HSR | 高铁通达性 | 高铁班次 |
控制变量 | ||
Population-S | 人口规模 | 年末人口总数取对数 |
Tech-spending | 创新投入水平 | 科学技术支出与教育支出之和占地方财政一般预算支出的比值 |
Population-Q | 人力资本质量 | 科学研究、技术服务和地质 勘查业人员数取对数 |
中介变量 | ||
tech | 技术转移 | 专利转出与转入的总量 |
VC | 风险投资 | 风险投资事件数 |
FDI | 外商直接投资 | 外商直接投资额 |
Industry-up | 产业升级 | 第三产业与第二产业的比值 |
2.3 数据来源
本文所用数据为2007—2018年中国地级市的数据。其中发明专利申请数据来源于国家知识产权局(
图2
图2
2007、2018年中国航空、高铁、专利数据
注:本图基于自然资源部标准地图服务网站下载的审图号为GS(2019)1823号标准地图制作,底图无修改。
Fig.2
Map of China's aviation, high-speed rail and patent data in 2007 and 2018
3 实证结果及分析
3.1 基准回归结果
表2为基准回归结果,模型1考虑时间固定效应与个体固定效应,将航空和高铁班次与发明专利申请数据进行回归,模型2在模型1的基础上加入了控制变量。结果显示,航空和高铁的通达性提升均可显著促进城市创新能力增强,加入控制变量后,有效控制了其他外生变量的干扰,回归系数虽有所降低但依然显著,假设H1成立。
表2 基准回归模型
Tab.2
变量 | 模型1 | 模型2 |
---|---|---|
Air | 0.0749*** | 0.0708*** |
(0.0193) | (0.0192) | |
HSR | 0.2330*** | 0.2192*** |
(0.0359) | (0.0329) | |
控制变量 | ||
Population-S | 6872.3180* | |
(3558.8330) | ||
Tech-spending | 8614.6720** | |
(4267.8250) | ||
Population-Q | 1267.1640** | |
(413.3714) | ||
个体固定效应 | Yes | Yes |
时间固定效应 | Yes | Yes |
R2 | 0.5123 | 0.5337 |
样本量 | 3466 | 3466 |
注:括号内为聚类稳健标准误;Yes表明模型已控制个体固定效应与时间固定效应;***、**、*分别表示在1%、5%和10%水平上显著,下同。
航空和高铁运输均能促进城市创新能力提升,高铁运输对城市的创新溢出效应约为航空运输的3倍。可能原因是,知识溢出具有地理邻近机制[43-44],其作用强度随距离增加而衰减[45],知识溢出易发生在邻近地理空间。不同的交通运输方式选择机制对知识交流形成不同的知识溢出强度,高铁与航空竞争态势凸显,2种运输方式80%的流量分别集中于200~1200 km和800~2600 km,在700 km范围内,高铁的运输频次的分配率占有绝对优势,700 km以上则以航空最高[46-47]。中国城市间距离普遍在200~1200 km范围内,高铁作为城市间交通出行的首位方式,与航空运输相比,高铁运输在提升跨城缄默知识流动的规模、频率、效率中竞争优势显著,高铁运输对城市创新溢出效应显著强于航空运输。
表3 因变量多阶滞后回归
Tab.3
变量 | 模型3: | 模型4: | 模型5: | 模型6: | 模型7: |
---|---|---|---|---|---|
滞后1年 | 滞后2年 | 滞后3年 | 滞后4年 | 滞后5年 | |
Air | 0.0750*** | 0.0869*** | 0.0930*** | 0.1014*** | 0.0966*** |
(0.0203) | (0.0241) | (0.0254) | (0.0277) | (0.0262) | |
HSR | 0.2866*** | 0.2950*** | 0.3784*** | 0.4206*** | 0.4250*** |
(0.0440) | (0.0436) | (0.0514) | (0.0547) | (0.0567) | |
控制变量 | Yes | Yes | Yes | Yes | Yes |
个体固定效应 | Yes | Yes | Yes | Yes | Yes |
时间固定效应 | Yes | Yes | Yes | Yes | Yes |
R2 | 0.5443 | 0.5465 | 0.5612 | 0.5489 | 0.5280 |
样本量 | 3176 | 2886 | 2596 | 2306 | 2017 |
3.2 异质性回归结果及分析
不同类型城市在经济水平、创新资源、发展阶段等方面差异显著,为考察不同等级、人口规模和地理区域城市的航空和高铁运输对城市创新能力的影响,根据等级将城市分为中心城市(36个)和非中心城市(254个),其中中心城市包括直辖市、省会城市及计划单列城市,其他为非中心城市;根据城区人口规模将城市分为大城市(>100万人)、中等城市(50~100万人)和小城市(<50万人);根据中国的经济区域将城市划分为东部、中部、西部和东北4大地区①(① 东部地区包括北京、天津、河北、上海、江苏、浙江、福建、山东、广东和海南;中部地区包括山西、安徽、江西、河南、湖北和湖南;西部地区包括内蒙古、广西、重庆、四川、贵州、云南、西藏。陕西、甘肃、青海、宁夏和新疆;东北地区包括:辽宁、吉林和黑龙江。)。由于分组回归会分散样本量,可能导致样本选择偏误,使得组间回归系数无法直接比较。本文参考连玉君等[50]的研究方法,应用Chow test(邹检验)比较组间系数差异,若系数差异显著,则分组回归系数可以进行比较,限于篇幅,文中未展示相应回归结果。
3.2.1 城市等级异质性:相比非中心城市,航空和高铁均对中心城市创新能力的正向影响更强;高铁影响强度大于航空
邹检验显示,核心变量的系数存在显著组间差异,可进行分组回归系数比较。航空和高铁对中心城市和非中心城市均有显著正向影响:二者均对中心城市的影响强度更大,高铁的影响强度大于航空(表4)。
表4 城市等级异质性回归结果
Tab.4
变量 | 模型8: | 模型9: |
---|---|---|
中心城市 | 非中心城市 | |
Air | 0.0629** | 0.0266** |
(0.0262) | (0.0206) | |
HSR | 0.2946*** | 0.1705*** |
(0.0545) | (0.0435) | |
控制变量 | Yes | Yes |
个体固定效应 | Yes | Yes |
时间固定效应 | Yes | Yes |
R2 | 0.6183 | 0.3994 |
样本量 | 432 | 3034 |
3.2.2 人口规模异质性:高铁对大、中、小城市创新能力均有正向影响,航空对小城市有抑制作用
邹检验显示,核心变量的系数存在显著组间差异,可进行分组回归系数比较。航空运输对大城市和中等城市具有正向影响,对小城市有抑制作用;高铁对大城市、中等城市和小城市均表现出正向影响(表5)。
表5 人口规模异质性回归结果
Tab.5
变量 | 模型10: | 模型11: | 模型12: |
---|---|---|---|
大城市 | 中等城市 | 小城市 | |
Air | 0.0626** | 0.0237** | -0.0071** |
(0.0214) | (0.0209) | (0.0031) | |
HSR | 0.2528*** | 0.0959*** | 0.0174** |
(0.0430) | (0.0396) | (0.0083) | |
控制变量 | Yes | Yes | Yes |
个体固定效应 | Yes | Yes | Yes |
时间固定效应 | Yes | Yes | Yes |
R2 | 0.5951 | 0.3984 | 0.3362 |
样本量 | 1248 | 1164 | 1054 |
3.2.3 区域异质性:“马太效应”显著,东部地区优势地位凸显
邹检验显示,东部、中部、东北地区的核心变量的系数存在显著组间差异,可实现分组回归系数的比较;而西部地区的核心变量的系数不存在显著组间差异,故系数不可直接参与组间比较。航空和高铁的促进效应均表现出显著的“马太效应”,其影响强度均为东部>中部>东北(表6)。
表6 区域异质性回归结果
Tab.6
变量 | 模型13: | 模型14: | 模型15: | 模型16: |
---|---|---|---|---|
东部地区 | 中部地区 | 西部地区 | 东北地区 | |
Air | 0.1034** | 0.0788*** | 0.0466** | 0.0508*** |
(0.0423) | (0.0162) | (0.0162) | (0.0029) | |
HSR | 0.2126*** | 0.1213** | 0.1486*** | 0.0503** |
(0.0534) | (0.0444) | (0.0370) | (0.0211) | |
控制变量 | Yes | Yes | Yes | Yes |
个体固定效应 | Yes | Yes | Yes | Yes |
时间固定效应 | Yes | Yes | Yes | Yes |
R2 | 0.5989 | 0.5792 | 0.4962 | 0.6999 |
样本量 | 1048 | 960 | 1050 | 408 |
(1) 航空和高铁对东部、中部、西部、东北地区的创新能力均有不同程度的提升作用,这表明交通通达性提高带来的时空压缩效应能够普遍促进地区创新能力的提升,对缩小地区创新发展水平差距有积极作用,同时也进一步验证了基准回归结果的稳健性。
(2) 航空和高铁的促进效应均表现出显著的“马太效应”,影响强度均为东部>中部>东北,东部地区优势地位凸显。这可能是以下3个方面原因导致的:一是东部地区航空和高铁的优势地位都极为突出,作为全国经济社会发展的重心,东部地区平坦的地势、完善的基础设施和优良的投资运营环境,使得其航空和高铁运输的网络密度和运输规模明显高于其他地区[53];二是交通运输的起始优势会进一步强化其创新优势,通过吸引创新要素流入,优化城市创新环境,间接增强城市创新能力。经过累计循环效应,不断扩大其发展优势,提升其创新能级;三是东北地区相比中部地区创新资源更加匮乏,高铁运输带来的区位可达性提升、区际交易成本降低、地理约束衰减等边际效应高于中部地区。
(3) 西部地区航空的影响强度较小,约为高铁的1/3。这可能是以下3个方面原因导致的:第一,西部地区以旅游城市支线航空为主,运量不足。虽然西部地区机场数量较多,但以距离短、运量小、频率低的支线航空为主,航空网络化程度差、可达能力较低[53]。第二,西部地区航空运输以旅游流为主,商务流不足。西部地区航空节点城市覆盖大量旅游城市:如昆明、乌鲁木齐、西双版纳、丽江、敦煌、吐鲁番等,促进知识转移的商务出行不足。第三,西部地区本地创新水平普遍落后,技术吸收转化的能力较弱,因而航空运输对其创新能力的带动作用相对较小,对其创新能力的影响不显著。
3.3 中介效应回归结果及分析
中介效应检验参考温忠麟等[36]经典中介检验三步法和Sobel检验法:第一步,检验航空和高铁建设能否显著提升城市创新能力(
表7 中介效应检验
Tab.7
Air | HSR | ||||||||
---|---|---|---|---|---|---|---|---|---|
变量 | 模型17: tech | 模型18: VC | 模型19: FDI | 模型20:Industry-up | 变量 | 模型21: tech | 模型22: VC | 模型23: FDI | 模型24:Industry-up |
0.0708*** | 0.0708*** | 0.0708*** | 0.0708*** | 0.2192*** | 0.2192*** | 0.2192*** | 0.2192*** | ||
(0.0028) | (0.0028) | (0.0028) | (0.0028) | (0.0087) | (0.0087) | (0.0087) | (0.0087) | ||
0.0031*** | 0.0022*** | 1.5534** | <0.0001*** | 0.0202*** | 0.0037*** | 1.1175** | <-0.0001 | ||
(0.0024) | (0.0001) | (0.1311) | (0.0000) | (0.0008) | (0.0004) | (0.4144) | (<0.0001) | ||
7.2373*** | 14.2107*** | 0.0050*** | 899.4700*** | 7.2373*** | 14.2107*** | 0.0050*** | 899.4700** | ||
(0.1608) | (0.3198) | (0.0004) | (284.792) | (0.1608) | (0.3198) | (0.0004) | (284.792) | ||
Sobel检验 | 0.0222*** | 0.0314*** | 0.0078*** | 0.0020*** | Sobel检验 | 0.1461*** | 0.0520*** | 0.0056** | -0.00012 |
(0.0018) | (0.0019) | (0.0009) | (0.0007) | (0.0064) | (0.0055) | (0.0021) | (0.0006) | ||
Goodman-1 | 0.0222*** | 0.0314*** | 0.0078*** | 0.0020*** | Goodman-1 | 0.1461*** | 0.0520*** | 0.0056** | -0.00012 |
(0.0018) | (0.0019) | (0.0009) | (0.0007) | (0.0064) | (0.0055) | (0.0021) | (0.0006) | ||
中介效应大小 | 0.0222*** | 0.0314*** | 0.0078*** | 0.0020*** | 中介效应大小 | 0.1461*** | 0.0520*** | 0.0056** | -0.00012 |
(0.0018) | (0.0019) | (0.0009) | (0.0007) | (0.0064) | (0.0055) | (0.0021) | (0.0006) | ||
中介效应占 总效应比重 | 31.39% | 44.32% | 11.02% | 2.82% | 中介效应占 总效应比重 | 66.64% | 23.71% | 2.56% | — |
图3
航空和高铁均能通过吸引风险投资提升城市创新能力,假设H3a成立。其中,航空中介效应大小约为0.0314,占总效应的44.32%;高铁中介效应大小为0.0520,占总效应的23.71%。由于交易和监督成本及信息壁垒的存在,为提高信息获取的准确性和降低所选项目的不确定性,风险投资具有明显的地理邻近效应,风险投资机构在考量投资行为中存在本地偏好现象[57],因而风险投资受航空运输影响不显著。而航空和高铁带来的人员流动有助于企业信息的流通和传播,提高公司信息的透明度,显著降低投资机构“软信息”的获取成本,减少与创业者之间的信息不对称,同时压缩监督监管成本[58]。这使得航空和高铁城市会吸引更多的风险投资资源,从而推动地方经济的转型和创新。
航空和高铁均能通过促进外商直接投资提升城市创新能力,假设H3b成立。其中,航空中介效应大小约为0.0078,占总效应的11.02%,高铁中介效应大小为0.0560,占总效应的2.56%。航空和高铁的发展均能促进中国FDI的增长,这与管驰明等[29]和韦朕韬等[59]的研究结论一致:FDI广泛依赖国际贸易,需要发达的国际物流网络为支撑,航空运输作为国际贸易运输的主要方式,成为吸引FDI的重要因素;高铁开通对FDI的流入存在明显的溢出效应,高铁沿线城市可达性提升能够显著减低运输成本,将扩大市场潜能,加快生产要素流通,进而改善区域经济运营环境,吸引FDI流入。FDI能够带来资本供给和知识、技术的溢出,通过示范与竞争效应、技术扩散与吸收效应促使东道国产业结构高级化、高效化发展,实现技术进步,提升其创新能力[30]。
航空运输能够通过促进产业升级间接提升城市创新能力,中介效应大小约为0.0020,占总效应的2.82%,而高铁运输对城市产业升级的影响效应不显著,假设H4部分成立。这可以从以下2个方面对其解释:一是中国高铁设施建设时间相对较短,虽已全面建成“四纵四横”的高铁网,但高铁因其技术特性具有明显的“廊道效应”[47],因而对整体城市的产业结构升级带动效应并不显著;二是航空运输网络主要由各区域经济中心城市连接组成,一方面通过时空压缩效应降低运输成本,吸引高附加值产业以促进产业结构升级,另一方面通过促进国际贸易、吸引外商投资间接推动产业结构升级。产业升级对创新能力的带动作用主要体现在以下2个方面:一是带动国内、国际市场的扩大与细分,为企业接受新思想、开发新技术创造契机,进而扩大市场需求,以需求拉动企业创新;二是通过打破贸易壁垒,融入全球价值链,以提升创新能力[33]。
3.4 稳健性检验
本文采用双向固定效应回归模型,消除了不随时间变化的不可观测的个体异质性,以及不随个体变化的时间异质性的影响,同时引入因变量的多阶滞后项以消除滞后性,解决了部分内生性问题。此外,由于不同的样本对于所得的结果具有不同的敏感性,采用分样本回归方法,按照城市等级、人口规模、地理区域分别进行回归,初步验证了研究结论的可靠性。为进一步验证研究结果的稳健性,本文采用变量替换法和工具变量法对回归结果进行稳健性检验,检验结果如表8所示。
表8 稳健性检验
Tab.8
变量 | 模型25 | 模型26 | 模型27 | 模型28 |
---|---|---|---|---|
Air | 0.0255** | 0.0488** | 0.0507** | 0.0515** |
(0.0089) | (0.0155) | (0.0166) | (0.0179) | |
HSR | 0.0514*** | 0.2880*** | 0.2953 | 0.3265*** |
(0.0092) | (0.0584) | (0.0596) | (0.0666) | |
控制变量 | Yes | Yes | Yes | Yes |
个体固定效应 | Yes | Yes | Yes | Yes |
时间固定效应 | Yes | Yes | Yes | Yes |
R2 | 0.4146 | 0.6119 | 0.6096 | 0.0630 |
F(Air) | 8248.09 | 1604.86 | 629.08 | |
Air-IV | 1.0452*** | 1.0964*** | 1.1504*** | |
(0.0090) | (0.0207) | (0.0333) | ||
F(HSR) | 4039.81 | 763.76 | 412.60 | |
HSR-IV | 1.1843*** | 1.3294*** | 1.6310*** | |
(0.0116) | (0.0225) | (0.0520) | ||
LM统计量 | 189.14 | 156.09 | 155.41 | |
样本量 | 2886 | 3178 | 2890 | 2602 |
注:F(Air)和F(HSR)分别为工具变量法一阶段回归对内生变量Air及HSR拟合模型的F检验统计量。
(1) 变量替换法
(2) 工具变量法
机场、高铁站点的选址可能与政策、区位条件等因素相关,而城市的发展条件也会直接影响到城市的创新能力。为解决潜在的内生性问题,在模型26~28中,采用工具变量法,分别将滞后一期、二期和三期的核心解释量作为工具变量进行两阶段回归,实现动态效应检验。滞后的解释变量与解释变量当期有相关性,但与当期扰动项不相关,可被选作工具变量以缓解内生性问题。由表8工具变量法两阶段回归结果可知,克服内生性后,航空和高铁基础设施对城市创新能力水平依然具有正向影响,进一步验证了回归结果的稳健性。
4 结论与政策启示
4.1 结论与讨论
本文基于大数据挖掘、清洗、提取获得2007—2018年的航空和高铁班次数据以及城市发明专利申请数据,利用双向固定效应面板回归和中介效应检验模型,分析解释了交通对城市创新能力的影响机制。主要结论如下:
(1) 航空和高铁均可有效促进城市创新能力提升。高速交通带来的时空压缩效应可显著提升城市区位可达性,降低信息交互成本,营造良好的创新环境,从而提升城市创新能力。此外,受航空和高铁运输的竞争替代效应及知识溢出的地理邻近性影响,以近距离为主导的高铁运输对城市的创新溢出效应约为航空运输的3倍。
(2) 航空和高铁对不同类型城市的创新溢出效应存在显著异质性。城市等级异质性方面,航空和高铁对中心城市创新能力的正向影响强度高于非中心城市;人口规模异质性方面,航空对大、中城市创新能力提升有显著正向影响,对小城市有抑制作用,高铁运输对不同人口规模的城市创新能力均有正向影响,呈现大城市>中等城市>小城市的态势;区域异质性方面,航空和高铁对东部、中部、西部、东北地区的创新能力均有不同程度的提升作用,表现出显著的“马太效应”,东部地区优势地位凸显。
(3) 航空和高铁均可通过促进技术转移、风险资本配置、外商资本配置间接提升城市创新能力。此外,航空还能够通过促进产业升级间接促进城市创新能力提升。
本文研究也存在一些局限与不足。首先,以城市节点为研究对象,一定程度上忽略了多维邻近性对其创新能力的影响;不同服务范围区间内航空和高铁建设对城市创新能力影响机制有待探讨。此外,交通运输对城市创新能力影响路径仍需深入挖掘,除专利交易、风险投资、外商投资、产业升级数据外,有待建立人才引进、专利合作、论文合作和项目合作等多维指标进行综合刻画。未来将进一步对以上问题开展研究。
4.2 政策启示
(1) 建设交通强国,赋能创新发展。交通建设作为经济社会发展的重要支撑,对中国深入实施创新发展战略有着重要支撑引领作用。新时代高质量发展背景下,应当特别重视交通建设的重要经济效应,以高铁和航空为纽带和依托,深度赋能创新发展:一是交通运输的发展应该更加侧重于高铁建设。单位建设成本下,高铁的创新溢出效应显著高于航空,因此应通过加密运营班次、循环发车、高铁提速、规划高铁新线等手段提升高铁运输效益,条件允许情况下可打造第二通道,如京沪高铁第二通道、沪深沿海第二通道、武广第二通道。二是要重视高铁新城、空港新城建设。参照上海虹桥、上海浦东和北京大兴的综合交通枢纽建设经验,推进高铁、航空“双枢纽”协同配套,加快畅通交通运输主动脉。三是要依托交通规划,出台相应政策,鼓励加大技术转移成果转化、聚力打造招商引资“强磁场”,从而充分发挥其对科技创新体系建设的作用,更快更好地融入“双循环”新发展格局。
(2) 兼顾效率与公平,注重区域协同发展。通运输对城市创新能力的影响存在“溢出效应”与“虹吸效应”的双重效应,因此,交通建设应在兼顾经济发展效益的同时着重区域发展公平,促进区域创新协同发展:一是要持续完善大城市交通设施的建设,发挥对中小城市的辐射带动作用;二是要加大投资倾斜力度,扶持中小城市的交通基础设施建设,打造同大城市互联互通的大通道,加速融入高铁“创新圈”;三是统筹规划全国交通综合运输网络的建设,全面推动航空、高铁网络的互联互通,推动人员、资金、信息、贸易等创新要素的流动,促进知识扩散和创新外溢,从而完善区域创新网络,助力创新协同发展。
(3) 谨防虹吸效应,让小城市“活”起来。便利的交通一方面有利于小城市受到来自发达地区的知识、经验、资本和技术的辐射,另一方面也加剧了其创新资源流失的可能,故小城市应当时刻谨防“虹吸效应”。一是由于航空对小城市的创新能力提升有抑制作用,人口在50万以下的小城市不宜盲目进行机场建设;二是要把握以都市圈为主体的区域协同发展机遇,依托城际铁路、市域铁路规划建设,主动融入都市圈一体化发展,增加城市活力;三是要合理利用低廉地价等优势吸引高新技术企业落地,吸纳高素质人才落户;四是要出台一系列优惠保障措施,除交通建设以外,还应着力优化公共服务供给,提升自身城市吸引力,避免创新资本的流失。
参考文献
A contribution to the empirics of economic growth
[J].DOI:10.2307/2118477 URL [本文引用: 1]
Technological interdependence and regional growth in Europe: Proximity and synergy in knowledge spillovers
[J].DOI:10.1111/j.1435-5957.2012.00438.x URL [本文引用: 1]
从航空运输看中国城市体系的空间网络结构
[J].
Looking into the network structure of Chinese urban system from the perspective of air transportation
DOI:10.11821/yj2002030002
[本文引用: 1]
Air transportation is a unique and increasingly important perspective in studying spatial structure of urban system This paper illustrates the framework of urban system by analyzing structural features of air transportation network based on the data of the amount of airport passenger transportation and the number of weekly flights (1)Since open to the outside world, the nodes in China's air transportation network increased quickly accompanied with the expansion of air transportation network scale which presents positive correlation with the scale rank of urban system (2) On the whole, dispersion dominates the evolution of airport's spatial structure But in the variant periods and zones, the newly built airports and the increase of transportation capacity of the existing airports exert different influences on the expansion of air transportation network (3) Network linkage intensity differs in various provinces But the eastern coastal zone is still the core region of domestic and international airline linkage in which the international hub function of Beijing Tianjin Hebei and Jiangsu Shanghai is distinctive while Guangdong mainly acts as home hub (4) The capital city of a province is still of vital essence to this province's outward connection, but more and more developed cities of some provinces have partly substituted the capital cities (5) The spatial distribution of intensity and tightness of air network linkage separate from each other, which manifest that the spatial network structure of China's urban system is still in the process of dynamic evolution (6) The factors such as the change of airline structure, the airline linkage with foreign countries and the cooperation and competition of domestic airport cities will all influence urban system structure in future
高速铁路对中国省际可达性的影响
[J].
DOI:10.11820/dlkxjz.2013.08.002
[本文引用: 2]
中国高速铁路网“四纵四横”客运专线规划至2015 年建成,将覆盖所有省会及90%的50 万以上人口城市,高速铁路可达性因此成为近年可达性研究的热点。本文在总结前人研究方法的基础上,运用加权平均旅行时间研究高铁时代中国省际可达性及空间格局。研究结果表明:① 采用传统客运最短旅行时间(含中转及停留)数据得到的省际可达性呈中心—外围模式,以郑州—武汉为中心,其他省份按“距离衰减规律”成为圈层式阶梯状空间格局;② 高速铁路建设带来省际联系时间缩短、可达性最优区域大幅增加等“高铁效应”,空间结构仍以武汉—郑州为中心呈现中心—外围模式;③ 高铁运营使省际可达性均衡化,可达性变化幅度在空间上呈中间凹四周高的“碗形”特点,位于客运铁路网络中心附近的省份变化幅度较小,外围地区如云南、福建等省可达性变化幅度较大。
Effects of high speed railway network on the inter-provincial accessibilities in China
DOI:10.11820/dlkxjz.2013.08.002
[本文引用: 2]
National High-Speed Rail Grid (4+4) Passenger Dedicated Lines (PDL) Railway Planning, covering all provincial capital cities and more than 90% cities with populations of more than 500,000, will be up and running in 2015. Accessibility by high speed railway network has become a hot topic in the accessibility research field. In this paper, based on review of the methods used by other researchers, the shortest time distance matrix between provincial capital cities was chosen to analyze inter-provincial accessibility by conventional railway network and by high-speed railway network, and weighted average travel time was used to analyze inter-provincial accessibility and spatial pattern in the high-speed railway time. Results are shown as fellows: (1) Inter-provincial accessibility by conventional railway network obtained with shortest time distance (including transfer and short-stay) has a "center-periphery" spatial pattern, with Zhengzhou-Wuhan as the center and other provinces as peripheries. The accessibility decreases from center to peripheries in circular gradients. The dominant factors affecting the accessibility are network pattern, node location and train organization, as Beijing has higher accessibility with radial rail network. (2) Inter-provincial accessibility by high-speed railway network also has a "center-periphery" pattern, whileWuhan is more convenient than Zhengzhou. Passenger Dedicated Lines have shortened inter- provincial travel time and doubled the 2% areas of best accessibility (from 5.3×10<sup>4</sup> km<sup>2</sup> to 10.8×10<sup>4</sup> km<sup>2</sup>), showing the effects of high-speed railway network. The average travel distance of each capital city is 60,000 kilometers by both conventional network and high-speed railway network, but the latter only costs half of total travel time as the former, while the area of the best accessibility is 108,000 square kilometers. (3) High-speed railway network will equalize inter-province accessibility, as standard deviation of accessibility coefficient is less than conventional railway network. Remote regions such as Yunnan and Fujian had the biggest improvement in accessibility while the center provinces had littles change.
高速铁路、知识溢出与城市创新发展: 来自278个城市的证据
[J].
High-speed rail, knowledge spillover and urban innovation development: Evidence from 278 cities
高铁建设、人力资本迁移与区域创新
[J].
High-speed rail construction, human capital migration and regional innovation
时空压缩下的风险投资: 高铁通车与风险投资区域变化
[J].
High-speed railway and venture capital investment
高铁通车对中国城市创业投资网络的影响: 基于跨城市创业投资事件的实证研究
[J].
DOI:10.18306/dlkxjz.2021.10.002
[本文引用: 5]
为探究高铁通车对中国城市创业投资网络的影响,论文以2001—2017年间投资于中国大陆的41692件跨城市创业投资事件为样本,研究高铁通车对城市创业投资网络集聚力、辐射力和联系中介力的影响,并进一步探讨其作用机制。渐进双重差分模型(渐进DID模型)分析表明,高铁通车可以提高城市可达性,降低创业投资活动主体的综合交易成本,促进创新创业要素资源跨区流动,对创业投资网络集聚力、辐射力和联系中介力产生正向影响。中心城市的创业投资网络受高铁通车带来的正向影响更强。同时,高铁通车对创业投资网络最优作用范围依投资中心呈环形分布,投资中心辐射半径100~200 km的地区,创业投资网络集聚力、辐射力和联系中介力受高铁通车正向影响要明显强于100 km以内和200 km以外地区。此外,风险性低、回报稳定和市场化程度更高的扩张期和成熟期阶段的创业投资网络集聚力、辐射力和联系中介力受高铁通车影响较种子期和初创期阶段更为显著。
Impact of high-speed railway on Chinese urban venture capital network: Empirical study based on cross-city venture capital events
DOI:10.18306/dlkxjz.2021.10.002
[本文引用: 5]
Based on the 41692 venture capital investment events in China's mainland from 2001 to 2017, the impact of high-speed railway on the agglomeration, radiation, and intermediary powers of Chinese venture capital network was studied by using the social network analysis model, as well as the heterogeneity of the effect of different city types, radiation radius of the central cities, and four investment stages, in order to research the impact of high-speed railway on Chinese urban venture capital network. The analysis of the time-varying Difference-in-Differences (DID) model shows that high-speed railway can improve the accessibility of cities, reduce the transaction cost of venture capital activities, promote the cross-regional flow of innovation resources, and enhance the abundance of urban innovation elements, thus having a positive impact on the venture capital network development. High-speed railways have a significant promoting effect on the city network of venture capital in both non-central cities and central cities, and the positive effect is stronger in central cities. The impact of high-speed railway on venture capital network is different under different distance scales: the influence is significantly weaker in areas within a radius of 100 km and beyond 200 km than that between 100 km and 200 km. The impact of high-speed railway on the agglomeration power, radiation power, and intermediary power of venture capital network in the expansion and maturity stages (with lower risk, stable return, and higher marketization degree) is clearly more significant than in the seed stage and initial stage.
Flows of people, flows of ideas, and the inequality of nations
[J].DOI:10.1007/s10887-011-9060-7 URL [本文引用: 1]
Did cheaper flights change the geography of scientific collaboration?
[R].
地理距离影响高校专利知识溢出吗: 来自中国高铁开通的经验证据
[J].
Does distance affect university knowledge spillover: Empirical evidence from the opening of Chinese high-speed rail
Knowledge spillovers and reasons for the concentration of innovative SMEs
[J].DOI:10.1080/00420980220128363 URL [本文引用: 2]
International business travel: An engine of innovation?
[J].DOI:10.1007/s10887-014-9107-7 URL [本文引用: 4]
高铁开通对区域创新格局的影响及其作用机制
[J].
Evolution of regional innovation patterns and their functional mechanisms under space-time compression
距离、可达性与创新: 高铁开通影响城市创新的最优作用半径研究
[J].
Distance, accessibility and innovation: A study on the optimal working radius of high-speed railway opening for urban innovation
高铁开通会促进企业高级人才的流动吗?
[J].
Do high-speed trains motivate the flow of corporate highly educated talents?
Getting there fast: Globalization, intercontinental flights and location of headquarters
[J].DOI:10.1093/jeg/lbn017 URL [本文引用: 1]
中国交通基础设施促进了区域经济增长吗: 兼论交通基础设施的空间溢出效应
[J].
Does China's transportation infrastructure promote regional economic growth: The spatial spillover effect of transportation infrastructure
交通基础设施与中国全要素生产率增长: 基于省域数据的空间面板计量分析
[J].
Transportation infrastructure and the increase in TFP in China: Spatial econometric analysis on provincial panel data
交通运输、经济增长及溢出效应: 基于中国省际数据空间经济计量的结果
[J].
Transportation, economic growth and spillover: Conclusion based on spatial econometrics
高铁开通是否加速了技术创新外溢? 来自中国230个地级市的证据
[J].
Does the opening of high-speed rail accelerate the spillover of technological innovation? Evidence from 230 prefecture-level cities in China
交通基础设施改善促进了企业创新吗?基于高铁开通的准自然实验
[J].
Does traffic infrastructure promote innovation? A quasi-natural experiment based on the expansion of the high-speed railway network in China
高铁网络对湖南区域经济协同发展影响
[J].
DOI:10.13249/j.cnki.sgs.2020.09.005
[本文引用: 2]
基于2009—2017年湖南省13个地级市面板数据,运用耦合协调度测度湖南区域经济协同发展水平,采用社会网络分析(SNA)分析高铁网络演化特征,结合利用空间杜宾模型(SDM)检验湖南省高铁网络发展对区域经济协同发展的影响机理,结果表明:① 高铁时代湖南省区域经济空间关联性升高,协同发展水平稳步上升;② 湖南省高铁网络的逐渐优化对本地协同发展水平产生显著的正向直接效应,但对其他地区却存在负向的间接溢出效应;③ 高铁网络对区域间产业、市场、交通和创新等功能结构协同产生双重影响,形成了对区域经济协同发展的“双刃剑”特征,即高铁网络对本地的市场、产业、交通和创新等功能结构协同既存在显著正向促进作用,也存在负向溢出的马太效应,在促进网络中心度较高的城市发展的同时,也可能阻碍相对弱势的边缘城市发展。
Impact of high-speed rail network on regional economic coordinated development in Hunan Province based on empirical analysis
DOI:10.13249/j.cnki.sgs.2020.09.005
[本文引用: 2]
Significant changes have taken place in the regional development pattern in the era of high-speed rail. Based on the panel data of 13 prefecture-level cities in Hunan Province from 2009 to 2017, this paper uses the coupling coordination degree to measure the level of regional economic synergy, social network analysis (SNA) to analyze the evolution characteristics of the high-speed rail network, and Spatial Dubin Model (SDM) to test the influence mechanism of the development of Hunan's high-speed rail network to regional economic synergy. The results show: 1) In the era of high-speed rail, the spatial correlation of regional development increases in Hunan province, and the level of regional economic synergy rises steadily; 2) The gradual optimization of the high-speed rail network has a significantly direct positive effect on its own regional economic synergy, but an indirect negative spillover effect on other regions; 3) A “double-edged sword” feature of regional economic synergistic development has been produced due to the dual influences that the high-speed rail networks put on the structural coordination among interregional functions such as industry, market, transportation and innovation. In other words, we can say the high-speed rail networks has both positive and negative effects on those interregional functions which can also be explained by the Matthew effect. With the development of cities with high network centrality, the relatively disadvantaged ones on the edge may get the opposite result.
高铁开通能否促进企业创新:基于准自然实验的研究
[J].
Can the high-speed rail service promote enterprise innovation? A study based on quasi-natural experiments
高铁开通是否促进了区域创新?
[J].
Does high-speed rail improve regional innovation in China?
中国城际技术转移网络的空间格局及影响因素
[J].
DOI:10.11821/dlxb201808006
[本文引用: 1]
基于2015年专利交易数据,融合数据挖掘、社会网络、空间分析等方法,从节点、关联、模块及影响因素4个方面揭示中国城际技术转移的空间格局及其影响因素:① 技术转移整体强度偏低,空间极化严重,长三角、珠三角、京津冀城市群成为技术转移的活跃地带。② 北京、深圳、上海、广州是全国技术转移网络的“集线器”,发挥城际技术流的集散枢纽和中转桥梁作用,中西部大部分城市处于网络边缘,整个网络发育典型的核心—边缘式和枢纽—网络式结构。③ 技术关联的空间层级和马太效应凸显,形成以北京、上海、广深为顶点的“三角形”技术关联骨架结构,技术流集聚在东部地带经济发达的城市之间和具有高技术能级的城市之间,中西部技术结网不足,呈现碎片化。④ 技术转移网络形成明显的四类板块(子群),具明显自反性和溢出效应,其空间聚类既有“近水楼台先得月”式块状集聚,也有“舍近求远”式点状“飞地”镶嵌。⑤ 城际技术流呈现等级扩散、接触扩散、跳跃扩散等多种空间扩散模式,其流向表现出经济指向性和行政等级指向性特征。⑥ 城市经济发展水平、对外开放程度、政策支持等主体属性和地理、技术、社会、产业邻近性的城市主体关系均会影响其技术转移强度。
Spatial pattern and influential mechanism of interurban technology transfer network in China
DOI:10.11821/dlxb201808006
[本文引用: 1]
On the basis of patent transaction data in 2015, spatial pattern of interurban technology transfer network in China was portrayed by integrating big data mining, social network, and GIS, from the perspectives of nodal strength and centrality, linkage intensity, and modular divisions. Then, its key influencing factors were identified as well using the Negative Binominal Regression Analysis. Some findings were ontained as follows. First of all, the intensity of interurban technology transfers in China is not well distributed with obvious polarization. Those cities with higher-level technology transfers are concentrated in the three urban clusters, namely, the Yangtze River Delta, the Pearl River Delta and Beijing-Tianjin-Hebei urban agglomeration. Secondly, a typical core-periphery structure with hub-and-spoke organization is evidently observed, which consists of several hubs and the majority of cities with far lower technology transfers. Beijing, Shenzhen, Shanghai and Guangzhou are acting as the pivot of the technology transfer network and playing a critical role in aggregating and dispersing technology flows. Thirdly, technology linkage intensities of urban pairs appear to be significantly uneven with hierarchies, centralizing in the three edges from Beijing to Shanghai, from Shanghai to Guangzhou and Shenzhen, and from Beijing to Guangzhou and Shenzhen, which shapes a triangle pattern. Fourthly, the technology transfer network is divided into four communities or plates, with prominent reflexivity and spillover effects, which is resulted from geographical proximity and technological complementary. Last but not least, spatial flows of technology are co-organized by a variety of spatial diffusion modes such as hierarchical diffusion, contact diffusion and leapfrog diffusion, owing to economic and administrative powers. They are greatly influenced by urban economic scale, foreign linkage, policy making, as well as multiple proximity factors related to geographical, technological, social and industrial proximities.
风险投资与技术创新关系研究现状探析与未来展望
[J].
Research status analysis of the relationship between venture capital and technological innovation and future prospects
航空运输投资对经济增长的影响及其机制的实证研究
[J].
Empirical analysis of dynamic effect on economic growth and its mechanism due to China's air transport investment
FDI对中国创新能力的溢出效应
[J].
The spill-over effect of FDI on China's innovation capacity
Are airports engines of economic development? A dynamic panel data approach
[J].DOI:10.1177/0042098015576869 URL [本文引用: 1]
Airport activity and local development: Evidence from Italy
[J].DOI:10.1177/0042098009357966 URL [本文引用: 1]
产业升级与自主创新能力构建: 基于中国省际面板数据的实证研究
[J].
Industrial upgrading and independent innovation ability construction: Empirical research based on China's provincial panel data
中国区域科技创新资源分布及其与经济发展水平协同测度
[J].
DOI:10.11820/dlkxjz.2012.02.003
[本文引用: 1]
21 世纪是知识经济时代,为了提高中国的科技创新能力以促进经济快速发展,各区域进行了大量科技创新资源的建设投入。但科技投入只有真正转化为创新能力、产出创新成果,才能促进经济的发展。本文分别从国立、地方、企业三方面综合评价了各省的科技创新资源,分析其空间分布格局,并结合经济发展水平,分析了区域科技创新资源与经济发展水平之间的相关性。研究表明,中国各省科技创新资源与经济发展水平总体上呈正相关趋势,但具体到各省份,随着科技创新资源的增加,其经济发展水平却有升有降。为充分发挥区域科技创新资源的作用,提高科研成果产出,区域科技创新资源与经济发展水平的配置关系仍需优化调整。探索中国科技创新资源与经济发展水平间的驱动与响应机制,建立科学合理的决策模型,实现国家用于宏观调控的国立科技创新资源、各地区自主决策的地方科技创新资源、市场驱动的企业科技创新资源三者有机结合、高效配置,以更大程度地实现科技产出,促进经济发展,对于转型期的中国,实现由依靠传统资源要素进入到依靠科技资源支撑和推动社会经济发展的新阶段,具有重要意义。
Relationships between scientific & technological resources and regional economic development in China
DOI:10.11820/dlkxjz.2012.02.003
[本文引用: 1]
The 21st century is an era of knowledge. In China, to increase the innovation capacity and accelerate the economic development, every province is now injecting a great deal of investment in scientific & technological resources (STR). But only when STR produces outputs can it increase the economic progress. Classifying the regional STR into three groups: national, regional, and enterprise scales, we quantify regional STR, and analyze its spatial distribution. Based on the evaluation of regional economic development, we study the relationship between regional economy and STR. As a whole, the STR has a positive correlation with the economy level. It is not the same in different provinces. So it remains to be solved on how to deploy scientific & technological resources according to economy level and how to make full use of investment to boost economy. There is a need for further research on the driving mechanism between STR and economy to make relevant policies.
交通基础设施如何促进资本流动: 基于高铁开通和上市公司异地投资的研究
[J].
How does transportation infrastructure affect capital flows: A study from high-speed rail and cross-region investment of listed companies
全球—地方互动与中国城市产业创新
[J].
Global-local interactions and urban industrial innovation in China
中国地级区域创新产出的时空模式研究: 基于ESDA的实证
[J].
DOI:10.13249/j.cnki.sgs.2014.013.1438
[本文引用: 1]
以341个地级层面区域作为空间观测单元,以专利申请受理数作为衡量指标,对中国1997~2009年期间地级区域创新产出的时空特征进行了ESDA分析。结果表明:中国地级区域创新产出的地域性特征显著,首先表现为全局上的地理集聚和地带间的巨大差异;但不同于省级空间尺度下地带内部区域创新显著的极化特征,地级空间尺度区域创新却呈现多样化的局部空间依赖模式。整体上,创新产出在地级空间尺度上自然形成2个显著的空间集群,即东部沿海的H-H集群和西部内陆的L-L集群。东部H-H集群在考察期内由东北和华北地区逐渐向山东半岛、长三角和珠三角地区转移,西部L-L集群的空间发展则相对稳定;H-L型集群和L-H型集群主要分布在中部地区和东中西邻接地区,创新的空间过渡特征明显。最后在实证分析的基础上,提出了政策建议和未来研究的方向。
Spatial-temporal pattern of prefecture-level innovation outputs in China: An investigation using the ESDA
DOI:10.13249/j.cnki.sgs.2014.013.1438
[本文引用: 1]
With the development of the new economic geography, spatial structure study of regional innovation becomes more and more important. Using the methods of exploratory spatial data analysis(ESDA)and spatial analysis software Geoda, the article analyzes the spatial distribution of innovation outputs in China, measured by the number of patent applications examined, throughout 341 prefecture-level cities from 1997 to 2009 of China. A significantly high level of spatial concentration and regional difference of innovation outputs among Chinese cities has been captured by the exploratory spatial data analysis, and the concentration level has increased steadily over the past years. Different from the significant polarization characteristics of innovation within the provincial spatial scale regions, prefecture level regional innovation showing a diversity local spatial dependent model. On the whole, the output of innovation in the prefecture level spatial scales naturally formed two distinct spatial clusters, named the eastern H-H cluster and the western L-L cluster. The eastern H-H cluster gradually transferred to the Shandong Peninsula, the Huanghe River Delta and the Zhujiang River Delta from the northeast and North China in the study period, while the western L-L cluster spatial development maintains relatively stable. The H-L clusters and L-H clusters are mainly distributed in the middle and join area, which shows an obvious characteristic of transition. This study can provide a scientific basis for the spatial correlation of innovation outputs among prefecture-level cities, and reflects the knowledge spillover and its spatial limitations of regional innovation which make a significant contribution to the evolution of Spatial-temporal pattern of innovation in China. Finally, on the basis of empirical analysis, policy suggestions and future research direction are proposed.
东北三省城际技术转移网络的空间演化及影响因素
[J].
DOI:10.11821/dlxb201910010
[本文引用: 4]
从全国—本地视角,以东北三省为研究区,基于2005-2015年的专利权转移数据,融合社会网络、GIS空间分析和计量方法,定量刻画东北三省技术转移网络的空间演化规律。结果显示:① 全国视角下东北三省城际技术转移网络呈现“核心—边缘”等级层次性结构,形成了专利技术由东北辐散向全国沿海辐合的空间格局。② 本地视角下东北三省技术转移网络呈现出向心收缩结网态势,“哈长沈大”四大核心城市在本地网络中扮演“技术守门者”角色。技术转移表现出“强全国化,弱本地化”特征。③ 东北三省城际技术流动既存在路径依赖,也不断涌现路径创造。全国视角下,技术转移以东北三省核心城市为流源,基本流向以北京、上海和深圳分别为枢纽的京津冀、长三角和珠三角城市群。本地城际技术转移以哈尔滨、长春、沈阳、大连为集散中心,集中于省内转移,呈现等级、接触和跳跃式混合扩散空间模式。④ 地理距离接近度、产业结构相似度、经济水平差异度、创新能力相似度、技术吸收能力、外商直接投资对东北三省城际技术转移存在一定影响。
Spatial evolution and factors of interurban technology transfer network in Northeast China from national to local perspectives
DOI:10.11821/dlxb201910010
[本文引用: 4]
Interurban technology transfer becomes an essential channel for regions or cities to obtain external knowledge. Based on patent transaction data among cities during 2005-2015, this study investigates the interurban technology transfer network of Northeast China, aiming to explore spatial evolution of technology transfer network in this region from national to local perspectives based on social network analysis (SNA). A negative binomial regression analysis further reveals the factors of interurban technology transfer network. The results of the study are as follows: (1) From the national perspective, the interurban technology transfer network of Northeast China presents a core-periphery structure. The spatial pattern of "divergence in the northeast region" and "convergence in the coastal areas" has been formed. (2) From the local perspective, the technology transfer network of Northeast China shows a centripetal contraction situation, and its four hubs, namely, Harbin, Changchun, Shenyang and Dalian, play the role of technology gatekeeper. The interurban technology transfer flows present the characteristic of strengthening nationalization and weakening localization, which are more likely to emerge between the Northeast-Southeast China rather than among the Northeast China. (3) Both path-dependence and path-creation exist in the spatial dynamics of intercity technology flows in Northeast China. From the national perspective, technology flows from Northeast China to the Beijing-Tianjin-Hebei, Yangtze River Delta and Pearl River Delta urban agglomerations with Beijing, Shanghai and Shenzhen as the core respectively, while the local intercity technology transfer in Northeast China presents a mixed diffusing mode including hierarchical, contagious and jump diffusions. In addition, the local network mainly focuses on intra-provincial technology flows which centered on Haibin, Changchun, Shenyang and Dalian. (4) Some drivers, such as geographical proximity, the similarity of industrial structure, economic differences, the similarity of innovation capability, technology absorptive capacity, foreign direct investment, are evidenced to play a significant or determining role in interurban technology transfer of Northeast China.
中国产业结构变迁对经济增长和波动的影响
[J].
An empirical study on the effects of industrial structure on economic growth and fluctuations in China
Related variety, trade linkages, and regional growth in Italy
[J].DOI:10.1111/j.1944-8287.2009.01034.x URL [本文引用: 1]
Related variety, unrelated variety and regional economic growth
[J].DOI:10.1080/00343400601120296 URL [本文引用: 1]
Spatial knowledge spillovers and university research: Evidence from Austria
[J].DOI:10.1007/s001680200115 URL [本文引用: 1]
The geography of knowledge spillovers between high-technology firms in Europe: Evidence from a spatial interaction modeling perspective
[J].DOI:10.1111/j.1538-4632.2006.00687.x URL [本文引用: 1]
Knowledge spillovers and economic growth: An analysis using data of dutch regions in the period 1987-1995
[J].DOI:10.1080/03434002000213914 URL [本文引用: 1]
高铁与民航的竞争博弈及其空间效应: 以京沪高铁为例
[J].
Competition game of high-speed rail and civil aviation and its spatial effect: A case study of Beijing-Shanghai high-speed rail
多元交通流视角下的空间级联系统比较与地理空间约束
[J].
DOI:10.11821/dlxb201912005
[本文引用: 3]
交通运输联系是区域空间级联系统与城市体系结构研究的重要视角之一,而不同交通运输方式表达的级联体系结构亦存在一定的差异。为综合研究交通运输体系刻画的空间级联系统及克服单一交通方式的局限性,基于长途汽车、高铁和航班时刻表数据,比较分析了多元交通网络的空间级联体系结构及其表达的城市网络组织体系,并进一步揭示了地理空间的约束作用。研究发现:① 每种交通运输方式适合在一定的空间尺度和行政范围内刻画和表达城市网络体系结构与城市联系,公路客运受省域行政范围约束,高铁联系具有廊道影响效应,航空运输体现全国和区域尺度较高层次的社会经济联系。② 从旅客直达视角分析,长途汽车与高铁的城际运输市场重叠最大,近年来长途汽车的运输市场受高铁影响明显。③ 地理空间是影响陆路交通运输和组织的重要约束因子,距离衰减效应明显;结合设施空间、行政空间和管理体制的作用,长途汽车和高铁运输在空间上形成分异的社区结构;航空运输由于具有超空间连接特性,既不遵循距离衰减规律,社区结构也并不明显。
Comparison of spatial structure and linkage systems and geographic constraints: A perspective of multiple traffic flows
DOI:10.11821/dlxb201912005
[本文引用: 3]
Transportation connection has always been one of the important perspectives of studying spatial cascading systems and urban systems. Based on the timetable data in 2018 of inter-city coach, high-speed train and aviation, this paper builds networks of the three modes of transportation in China. Through the methods of the city-pair connectivity and community detection, this paper compares the spatial structure and linkage systems of multi-traffic flow network and reveals the geospatial constraints. The research results show that: (1) Different modes of transportation are suitable for portraying urban systems on different spatial and administrative scales. Inter-city coaches are constrained by the provincial administrative boundaries. High-speed train network shows the effect of corridors especially along the main trunks. The aviation network reflects the spatial relationship at the national scale. (2) From the perspective of the direct accessibility, there is a large spatial overlap between inter-city coaches and high-speed trains, and the market of inter-city coaches is obviously squeezed in recent years. For air transport, its frequency advantage mainly concentrates on the city-pairs with a long distance. The competition and complementarity of the three modes of transportation have a great impact on the urban system and are useful for the understanding of the spatial cascading system. (3) Geographical space, infrastructure space and administrative space constraint and management system are important factors affecting the transportation networks. Inter-city coach network and high-speed train network are obviously affected by distance attenuation effects, and they present significant community structures in the two networks, but their communities have different spatial characteristics. However, air transport does not follow the constraint of distance attenuation, and there is not an obvious community structure in the network. Factors related to the passenger transport market, such as social and economic links and tourism resources, play the important roles in the aviation network structure.
中国地级以上城市创新产出的时空格局演变及影响因素分析
[J].
DOI:10.13249/j.cnki.sgs.2017.07.006
[本文引用: 2]
基于中国287个地级以上城市的专利、论文数据测度中国城市创新能力,揭示2001~2014年中国创新格局的时空演变特征,并分析城市创新能力的影响因素。研究表明:① 中国创新格局刻有明显的经济地带性差异的烙印,呈“东–中–西”逐渐衰减的态势,且随着时间推移,东部的压倒性地位进一步强化。② 基尼系数呈现先增后降的倒U型变化趋势,反映了整体由极化增长向优化均衡发展的空间过程。东部地区基尼系数维持相对稳定;创新能力较弱的中西部地区,城市间的创新能力差异却在不断缩小。③ 高水平和较高水平的创新城市分布具有很强的经济依赖性,广泛分布于发达城市,而中等水平以上的城市呈集聚分布态势,表现出明显的“集群化”特征,与中国主要城市群的分布高度吻合。④ Moran’s I值均为正,并呈不断上升之势,反映了城市间显著的空间相关性。高高集聚区主要分布于京津冀、长三角和珠三角地区,而中部和西部省会城市作为区域性的创新极,对周围城市的创新带动效应并不明显,辐射作用有限。⑤ 经济基础、人力资本、教育水平、FDI规模、制度因素、基础设施6方面因素不同程度地影响城市创新能力的形成。其中经济基础和人力资本因素影响较大,教育水平和制度因素次之,而FDI规模和基础设施水平对区域的创新能力影响相对较小,但仍表现为正向影响。
Spatial-temporal characteristics of urban innovation capability and impact factors analysis in China
DOI:10.13249/j.cnki.sgs.2017.07.006
[本文引用: 2]
Based on patent and dissertation database of China’s 287 cities, the evaluation system of urban innovation capability was established in the perspective of innovation output, which is concerning the temporal-spatial evolution of innovation in China during 2001-2014. Then the article constructed the spatial econometric model to analyze influencing factors. The results are as follows: from 2001 to 2014, there are great differences of regional innovation output in China, and the output weakened from east to west, which showed an obvious trend of strengthen of western. The Gini Index of regional innovation capability in China raised at first, then decreased, which indicated that the innovation spatial patterns has evolved from polarized development to balanced development. The Gini Index of eastern where innovation output mainly concentrated in showed little change, in contract, the Gini Index of western showed declined. High level innovation hotspots widely distributed in developed cities, and the cities in the innovation secondary level are distributed in the form of agglomeration. Spatial dependence characteristic of city innovation level was significant, and further strengthen over time. H-H cluster areas are mainly distributed in Beijing-Tianjin-Hebei, the Yangtze River Delta and the Pearl River Delta, and the central and western provincial capital cities as regional innovation, didn’t have obvious driven effect to neighboring city and had limited radiation effect. Economic base, human capital, education level, FDI scale, institutional factors and infrastructure could promote the development of regional innovation. Especially, economic base and human capital were the most important factors, followed by education level and institutional factors.
科研人才集聚对中国区域创新能力的影响
[J].
The relationship between geographical concentration of researchers and regional innovation in China
如何检验分组回归后的组间系数差异?
[J].
How to test the coefficient difference between groups after grouping regression?
中国城市创新网络演化特征及多维邻近性机制
[J].
Characteristics, evolution and mechanism of inter-city innovation network in China: From a perspective of multi-dimensional proximity
DOI:10.2307/141854 URL [本文引用: 1]
高铁对不同规模城市发展的影响
[J].
The impacts of high speed railways for different scale cities
中国航空联系的网络结构与区域差异
[J].
DOI:10.13249/j.cnki.sgs.2015.010.1220
[本文引用: 2]
区域空间联系是不同客体之间基于空间法则下的相互作用现象,航空联系是诸多空间联系的一种。依据中国国内航班运营信息数据,运用基于O-D联系网络的GIS空间分析法,通过在大尺度数据空间内刻画每一条运营航线,深入解析全国通航中心城市间(不含港澳台)航空联系的网络结构,并与按重力模型计算的空间联系进行对比,分运距区段绘制中国城市空间相互作用联系与航空联系网络结构图谱,深入揭示航空联系的空间相互作用本质。进而分析东、中、西部及东北4区域间航空联系的网络结构差异,揭示中国航空联系的网络结构及区域结构特征。研究发现,城市航空联系网络与人口、经济之间的空间相互作用高度吻合,大城市集聚特征显著,空间分布较不平衡。依据进出港航班数量,可将通航中心城市划分为全国性、区域性、省域及地方性中心4个等级,其中北京、上海、广州为全国性中心。城市航空联系主要集中在600~2 000 km空间距离范围内,总体上服从空间距离衰减规律。全国航空客流的区域分布极不平衡,东部航空运输地位极其突出,西部相对较强,中部与东北相对较弱。
Network structure and regional difference of aviation links in China
DOI:10.13249/j.cnki.sgs.2015.010.1220
[本文引用: 2]
Regional spatial links is based on the interactivity phenomenon between different objects space, the aviation links is one kinds of space relationship. According to the national domestic flights information data(data of Hongkong, Macau and Tiwan excluding), using GIS spatial analysis method base on O-D network, by means of carve every aviation links within the large dimension data space, this article analyses the network structures of the aviation links between national center cities which open to air traffic, compares with special links in the abstract, and display airline network structure and its spatial atlases by different transport distance in China. Research shows, aviation network distribution highly coincide with population and economic space in China, large city agglomeration characteristics is significantly, the whole spatial distribution is not balanced. Based on the flights data, central cities can be divided into 4 grades as national, regional, provincial and local center, including Beijing, Shanghai, and Guangzhou as the national center. The study also found, national airlines mainly concentrated in the 600-2 000 km space distance range, and the aviation links network with the spatial links shows strong correlation during this range, indicates China’s domestic flights suitable travel during this spatial distance range, aviation links on the whole subject to spatial distance attenuating tendency. The regional distribution of the air passenger flows is extremely out-off-balance, the eastern air transport status is extremely prominent, the west is relatively strong, the central and northeast relatively weak. Air passenger flows interflows mainly concentrate on the eastern coastal to western, central and northeast regional, and extremely less between western, central and northeast regional.
高速铁路对中心城市航空客运市场的空间影响: 基于人均时间价值视角
[J].
DOI:10.18306/dlkxjz.2019.11.002
[本文引用: 1]
揭示高铁对中国航空客运市场影响的空间分异特征,对于针对性协调2种交通方式的发展具有重要参考价值。运用标准差椭圆和交通综合效用分析方法,对中国中心城市高铁、航空客运市场实际发展现状及空间竞合分异特征进行分析。结果发现:① 高铁、航空客运市场均形成以武汉为重心点的空间发展格局;与高铁客运市场相比,航空客运市场区域发展更加均衡;与东西部中心城市相比,中部中心城市旅客出行选乘高铁的概率更高。② 人均时间价值与高铁优势距呈反比,优势距的不同使各中心城市高铁、航空客运市场范围存在明显的空间分异特征;基于交通出行综合效用视角,中国大多数中心城市间的交往,航空出行依旧是最好的选择。③ 高铁对航空客运市场的影响存在明显的空间分异特征。中部大部分中心城市受影响最大,是协调高铁、航空发展的关键区域;西部地区受交通区位条件及高铁发展滞后的影响,中心城市间交往时飞机仍是旅客主要的出行方式,在航空主导优势区依旧存在一定的市场空白。
Spatial differentiation of the impact of high-speed rail on aviation passenger market in central cities of China
DOI:10.18306/dlkxjz.2019.11.002
[本文引用: 1]
The spatial differentiation characteristics of the impact of high-speed rail on China's air passenger market is of important reference value for the coordinated development of the two modes of transportation. Using the standard deviation ellipse and traffic comprehensive utility analysis methods, this study analyzed the development status and spatial competition of the high-speed rail and air passenger transport market. The results show that: 1) The high-speed rail and aviation passenger markets have all formed a spatial pattern with Wuhan as the center. Compared with the high-speed rail, the development of the air passenger market area is more balanced; compared with the central cities of the eastern and western regions, the probability of passengers traveling with high-speed rail in the central cities of central China is higher. 2) The per capita time value is inversely proportional to the superiority distance of high-speed rail. The difference in superiority distance makes the high-speed rail and aviation passenger markets in central cities clearly different spatially. Based on the comprehensive utility perspective of traffic, for travels between most central cities in China, air travel is still the best choice. 3) The impact of high-speed rail on the air passenger transport market shows clear spatial differentiation. Most of the central cities in central China are the most affected, which is a key area for coordinating the development of high-speed railways and aviation. In the western region, due to the location conditions of transportation and the lagging development of high-speed rail, air transportation is dominant, and there is still a market gap in the aviation-dominated areas.
东北地区的创新能力演化及其经济带动作用分析
[J].
DOI:10.13249/j.cnki.sgs.2016.09.012
[本文引用: 1]
通过建立创新能力指标体系和计算模型,并采用相关分析、回归分析、变异系数等方法,从不同空间层级剖析了东北三省的创新能力发展格局及其对经济发展的带动作用,并根据研究结果提出了相关政策建议。研究发现:① 从创新能力分析,吉林、辽宁的创新能力增长较快而黑龙江相对较慢,省际差异呈扩大态势;地级市之间的创新能力相差悬殊,呈现明显的省会城市及门户城市集聚效应,但市级差异呈缩小态势。② 从创新贡献率分析,辽宁的科技创新转化能力及其对经济发展的带动相对较强,而吉林、黑龙江相对较弱;地级市差异较大,沈阳、大连、长春、大庆的创新贡献率比较突出,而锦州、吉林、盘锦、铁岭上升较快。③ 大部分地级市的创新发展对经济带动模式为“低创新能力-弱经济带动”和“高创新能力-强经济带动”,说明各地级市的创新发展及其对经济带动的两极分化较严重。
The spatio-temporal analysis of regional innovation capacity and its economic contribution in northeast China
DOI:10.13249/j.cnki.sgs.2016.09.012
[本文引用: 1]
In the globalization and information era, with the development of knowledge economy, regional innovation capacity is increasingly becoming the determinant of competitive advantage. Especially for Northeastern Old Industrial Base, the innovation of science and technology has become the key support for improving comprehensive regional strength, and the strong lead for changing the mode of regional industrial structure and production. It is against such a background that this article takes a close examination on the spatio-temporal evolution of innovation capacity and its economic contribution in Northeast China. Based on literature review, principal components analysis and fuzzy analytic hierarchy process, we establish innovation capacityindex(ICI), in order to provide a more comprehensive explanation of innovation development trends. We also try to gauge and justify the economic impacts of innovation development, by regression analysis and modeling economic contribution of innovation(ECI). The findings of this article are salutary. In general, in 2003-2014, Northeast China has achieved a great development in regional innovation capacity, and has improved the economic contribution of innovation. But its rank in China has declined, as the development of ICI in Western China and Central China are much faster. Firstly, the development of ICI in Jilin and Liaoning Province are much faster than Heilongjiang, while provincial gap is becoming bigger. At local scale, there are significant regional differences in ICI, while regional digital gap is becoming smaller. Secondly, the spatial distribution of ICI has obviously positive correlation with local GDP development. At provincial scale, innovation in Liaoning Province has strongly promoted economic development, while Jilin and Heilongjiang Province are much weakly. At local scale, the difference of ECI among cities is also very remarkable, while Shenyang, Dalian, Changchun and Daqing share much higher ECI. Thirdly, the development model of most cities are ‘low ICI-low ECI’ and ‘high ICI-high ECI’, which illustrate that there are critical spatial difference between cities’innovation capacity and its economic contribution.
CEO复合型职业经历、企业风险承担与企业价值
[J].
CEOs with rich career experience, corporate risk-taking and the value of enterprises
Local bias in venture capital investments
[J].DOI:10.1016/j.jempfin.2009.11.001 URL [本文引用: 1]
风险投资应该舍近求远吗: 基于我国风险投资区域退出率的实证研究
[J].
Should venture capitalists seek far? A comparative study of regional exit rate of venture capital investments in China
/
〈 |
|
〉 |
