地理科学进展, 2022, 41(12): 2203-2217 doi: 10.18306/dlkxjz.2022.12.002

研究论文

航空和高铁对中国城市创新能力的影响

罗雪,1, 毛炜圣1, 王帮娟1, 刘承良,1,2,*

1.华东师范大学城市与区域科学学院,上海 200241

2.华东师范大学全球创新与发展研究院,上海 200062

The impacts of aviation and high-speed rail on urban innovation capacity in China

LUO Xue,1, MAO Weisheng1, WANG Bangjuan1, LIU Chengliang,1,2,*

1. School of Urban & Regional Science, East China Normal University, Shanghai 200241, China

2. Institute for Global Innovation and Development, East China Normal University, Shanghai 200062, China

通讯作者: 刘承良(1979— ),男,湖北武汉人,教授,博士生导师,主要从事科技创新地理研究。E-mail: clliu@re.ecnu.edu.cn

收稿日期: 2022-05-12   修回日期: 2022-08-6  

基金资助: 国家社会科学基金重大项目(21ZDA011)
上海市“曙光人才计划”项目(19SG22)

Received: 2022-05-12   Revised: 2022-08-6  

Fund supported: National Social Science Fund of China(21ZDA011)
The Shuguang Talent Plan Fund of Shanghai(19SG22)

作者简介 About authors

罗雪(1998— ),四川达州人,硕士生,主要从事科技创新地理研究。E-mail: 51203902016@stu.ecnu.edu.cn

摘要

交通运输是创新网络中人才流、资本流等知识与技术流动的物理空间承载,其对城市的创新能力影响已成为经济地理学的交叉前沿热点。论文基于2007—2018年中国城市尺度数据,以航空和高铁运输为例,构建交通运输对城市创新能力影响效应的理论框架,采用双向固定效应面板回归模型,实证检验航空和高铁对城市创新能力的多重异质性机制,并探讨了知识传播、资本积累、产业升级在交通运输与创新能力之间的中介效应。研究发现:① 航空和高铁建设均对城市创新能力有显著正向影响,高铁对城市的创新溢出效应约为航空的3倍。② 航空和高铁对不同类型城市的创新溢出效应存在显著异质性。城市等级异质性方面,航空和高铁对中心城市创新能力的正向影响强度高于非中心城市。人口规模异质性方面,航空对大、中城市创新能力提升有显著正向影响,对小城市有抑制作用;高铁运输则对不同人口规模城市的创新能力均有正向影响,呈现大城市>中等城市>小城市的态势。区域异质性方面,航空和高铁对东、中、西、东北地区的创新能力均有不同程度的提升作用,表现出显著的“马太效应”,东部地区优势地位凸显。③ 航空和高铁均可通过促进技术转移、风险资本配置、外商资本配置间接促使城市创新能力提升。此外,航空还能够通过促进产业升级间接促使城市创新能力提升。

关键词: 航空运输; 高铁运输; 城市创新能力; 双向固定效应面板回归; 中介效应

Abstract

Transportation is the physical carrier of knowledge and technology spatial flows such as talent and capital flows in innovation networks, and its impacts on urban innovation capacity have become a cross-cutting frontier in economic geography. Based on the city-scale data of China from 2007 to 2018 and taking air and high-speed rail transportation as examples, this study constructed a theoretical framework for the effect of transportation on urban innovation capacity, adopted the two-way fixed-effects panel regression model to empirically test the multiple heterogeneity mechanisms of aviation and high-speed rail on urban innovation capacity, and explored the mediation effects of knowledge dissemination, capital accumulation, and industrial upgrading between transportation and innovation capacity. The results are as follows: 1) Both aviation and high-speed rail development have significant positive impacts on urban innovation capacity, and the spillover effect of high-speed rail on urban innovation is about three times that of aviation. 2) The innovation spillover effects of aviation and high-speed rail on different types of cities are significantly different. In terms of urban grade heterogeneity, the positive impact of aviation and high-speed rail on the innovation capacity of central cities is higher than that of other cities. In terms of population size heterogeneity, aviation has a significant positive impact on the innovation capacity of large and medium-sized cities and an inhibitory effect on small cities, while high-speed rail transportation has a positive impact on urban innovation capacity of cities of different population sizes, showing the trend of large cities > medium-sized cities > small cities. In terms of regional heterogeneity, aviation and high-speed rail have improved the innovation capacity of the eastern, central, western, and northeastern cities of China in varying degrees with a significant Matthew effect, and eastern China has a prominent dominant position. 3) Both aviation and high-speed rail can indirectly promote urban innovation capacity by stimulating technology transfer, venture capital allocation, and foreign capital allocation. Aviation can also indirectly promote urban innovation capacity by stimulating industrial upgrading.

Keywords: air transport; high-speed rail transport; urban innovation capacity; two-way fixed effects panel regression; mediation effects

PDF (6504KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

罗雪, 毛炜圣, 王帮娟, 刘承良. 航空和高铁对中国城市创新能力的影响[J]. 地理科学进展, 2022, 41(12): 2203-2217 doi:10.18306/dlkxjz.2022.12.002

LUO Xue, MAO Weisheng, WANG Bangjuan, LIU Chengliang. The impacts of aviation and high-speed rail on urban innovation capacity in China[J]. Progress in Geography, 2022, 41(12): 2203-2217 doi:10.18306/dlkxjz.2022.12.002

知识经济时代,创新作为推动国家和区域经济增长的核心要素和关键支撑[1-2],正逐渐成为城市应对新一轮科技革命挑战、参与全球产业竞争、提高国际竞争力的共识。流空间(space of flows)视角下,城市可以在更大的空间尺度上通过知识流动、技术转移等来提高城市的创新绩效,城市的创新发展前景越来越多地依赖于其所处的物理与虚拟网络空间,而交通运输是城市克服地理距离对创新主体知识溢出约束作用[3]、提升全球创新网络中权力和地位的重要变量。从这个意义上说,交通运输的正外部性效应成为理解城市创新增长的重要基础。尽管交通运输与创新并无直接关联,但间接作用的存在强化了交通运输对科技创新的溢出效应。因此,研究交通运输对城市创新能力影响的作用机理,不仅是从创新地理学视角下对物理空间对创新空间影响的理论回应,而且也有助于强化对创新地理学基本规律及交通运输效应的再认识。

以航空和高铁为代表的高速交通运输产生的时空压缩效应打破了地理距离的桎梏[4-5],促进了城市间人员、资金、信息、贸易的要素流动、知识扩散和创新外溢,探讨交通运输与创新能力的关系逐步成为人文地理学研究的前沿和热点:① 机理探讨。航空和高铁开通会促进人才[6-7]、投资[8-9]等要素的集聚,并且带来创新要素与创新主体(如商务人士、高级技能人才、科学家、企业家等)之间交流频次的增加[10-12],如增加商务会议、学术会议、国际博览会等参会出行意愿,降低创新过程的不确定性[13],显著提升城市的创新水平[14]。交通运输对创新能力存在“溢出效应”与“虹吸效应”的双重效应[15-16],不同地区、不同等级的城市中呈现出空间异质性特征[9,17]。高端制造业区位选址偏好一些通达性较高的交通枢纽城市[18],这些交通枢纽城市建立的高端产业又进一步帮助城市集聚各类创新资源,形成交通—产业—创新的循环累积因果机制。② 实证研究。研究对象论及公路[19-20]、铁路[20-21]、高铁[22]、航空[14],研究方法涉及倾向得分匹配—倍差法(PSM-DID)[22]、双重差分法(DID)[9,23]等定量方法,研究尺度涵盖国家[13-14]、区域[24]、城市[6,15,22]及企业[23,25]

综上,学界针对交通运输对区域创新的影响进行了深入研究,但仍存在以下问题值得深入探索:① 研究对象主要集中在单一交通运输方式,集成航空和高铁通达性的交通运输系统对创新活动影响差异性的对比分析不足,对其空间异质性规律挖掘不够。② 研究机制仅简单揭示交通运输与创新能力间的线性关系,忽视了多重中介机制,可能导致模型结果的偏误,交通运输与创新能力间的多重中介路径仍然是一个“灰箱”。鉴于此,本文构建航空和高铁运输影响城市创新能力的理论框架,基于分组回归和中介效应对比分析二者对不同类型、不同区域城市创新能力影响的空间异质性,一方面有助于厘清交通运输与创新发展的复杂关系,丰富创新地理关于物理空间与创新空间关系研究,另一方面有助于为国家交通运输系统的合理配置、创新要素的有序流动、创新资源的高效配置提供参考。

1 理论框架与研究假设

交通运输作为创新要素的流动媒介,对城市创新能力的提升发挥着重要作用[26],交通运输对城市的创新能力影响是直接效应与间接效应的协同耦合过程(图1)。

图1

图1   理论框架

Fig.1   Theoretical framework of the research


(1) 直接效应。交通运输升级提高了区域可达性[5],使创新主体间知识流、信息流的交互成本降低,引发以高技术人才、技术密集型产品为载体的创新主体间知识、技术的共享与学习,推动缄默知识的跨区域扩散,加快城市知识积累、技术更新与发明创造,从而提升城市的创新能力[26]

(2) 间接效应。交通运输升级能够极大地改善沿线城市的创新环境,吸引人才、投资等资源的集聚[7-8],为城市创新的提升以及优质创新公司的培育创造必要条件[9]。此外,完善的交通运输能扩大城市的市场规模,快速增长的市场需求将催生更多创新行为[23],进而充分发挥交通的乘数效应,推动创新型城市的建设。

基于此,提出以下研究假设:

H1:航空和高铁运输均能有效促进城市创新能力提升。

交通运输对城市的创新溢出效应主要通过知识传播、资本积累和产业升级3条路径实现:

第一,航空和高铁运输通过促进知识传播促使城市创新能力提升。从外部通道获取并吸收改进技术是提升区域创新水平的重要渠道。专利权交易作为一种市场行为,是衡量技术转移最为直接有效的方式[27]。航空和高铁的建设增加了技术转让方和技术需求方之间面对面交流的机会,让技术的传播和扩散变得更为容易[22]

第二,航空和高铁运输通过促进资本积累促使城市创新能力提升。航空和高铁的建设能提高区域可达性,地理可达性的提升有利于“软信息”的传播,使风险投资机构与创业企业之间直接交流互动的成本降低,促进风险投资资源的有效配置,风险投资对企业价值再造、研发创新等有着重要作用[8],在分担技术创新风险和促进技术创新成果转化等方面发挥着至关重要的作用[28]。此外,航空和高铁的建设能够改善外商直接投资(FDI)环境,吸引外商直接投资的流入[29],外商直接投资通过示范与竞争效应、技术扩散与吸收效应提升国家的自主创新能力[30]

第三,航空和高铁运输通过促进产业升级促使城市创新能力提升。交通运输的进步带来的时空压缩效应带动要素资源的交流与整合,有利于实现贸易自由化、促进高科技产业增长,创造更多的就业岗位与新兴企业[31],有利于改善服务业就业,刺激新经济产业发展[32],从而吸引社会资本、外商投资、风险资本等不断涌入,加快知识和技术的空间溢出与传播,进而推动产业的升级优化。产业升级可以扩大市场需求,为企业接受新思想、开发新技术创造契机,通过微观需求拉动效应、中观地区协同效应、宏观国际贸易效应带动企业、地区、国家3个层面的自主创新[33]。因此,提出以下研究假设:

H2:航空和高铁运输通过促进城市间技术转移提高城市创新能力。

H3a:航空和高铁运输能够通过促进风险资本配置提高城市创新能力。

H3b:航空和高铁运输能够通过促进外商资本配置提高城市创新能力。

H4:航空和高铁运输能够通过促进产业升级提高城市创新能力。

作为一个技术后发型大国,中国科技资源分布和区域经济发展不均衡问题尤为突出[34]。经济发达城市由于具有创新资源禀赋、区位、市场规模等本地优势,促使资金、人才、知识等创新要素不断向其集聚[35]。同时,航空和高铁更倾向于优先在经济发达的城市建设,因此交通运输较为薄弱的偏远地区可能会进一步加剧优质资源的流失,导致创新环境恶化,创新能力活跃度降低[24]。因此,交通运输对于不同等级、不同人口规模、不同区域城市的创新溢出效应可能会表现出一定的异质性特征。故而,提出以下研究假设:

H5:航空和高铁运输对于不同等级、不同人口规模、不同区域城市的创新溢出效应表现出一定的异质性特征。

2 方法与数据

2.1 研究方法

为筛选恰当的回归模型,本文依次进行F检验和Hausman检验,检验结果强烈拒绝原假设,因此选用固定效应模型。方差扩大因子(VIF)检验结果(7.72)均小于10,排除多重共线性对回归结果的影响。同时,为排除不可观测的个体异质性和时间异质性的影响,引入时间虚拟变量和个体虚拟变量,构建双向固定效应面板回归模型探究航空和高铁运输对城市创新能力的影响,模型如下:

Innovationit=β0+β1Airit+β2HSRit+                          j=1nδjZit+λt+μi+εit

式中:Innovationiti城市在t时期的发明专利申请数量,AiritHSRit分别为i城市在t时期的航空和高铁客流班次,Zit为控制变量,β0为模型截距项,β1β2分别为航空变量系数和高铁变量系数,δj为各控制变量的影响系数,系数的大小和正负表征其对城市创新能力的影响强度和方向;λt为时间固定效应,μi为个体固定效应,εit为随机扰动项

为考察交通运输建设对城市创新能力的间接作用效应,参考温忠麟等[36]的研究方法,运用依次检验回归系数法和Sobel检验进行中介效应检验,在式(1)的基础上引入中介变量,进一步构建中介效应模型,如下所示:

Mediatorit=α0+α1Airit+α2HSRit+                       j=1nδjZit+λt+μi+εit
Innovationit=γ0+γ1Airit+γ2HSRit+                          γ3Mediatorit+j=1nδjZit+                          λt+μi+εit

式中:Mediatorit为中介变量,为i城市在t时期的中介变量属性(即专利转移总量、风险投资事件数、外商直接投资额、产业升级);α1α2分别为航空和高铁对中介变量的影响系数;γ1γ2γ3分别表示在控制中介变量的情况下,航空、高铁和中介变量的影响系数;α0γ0分别为模型的截距项。式(1)为依次检验的第一步,用于验证航空和高铁运输能否对创新能力产生正向影响;式(2)为第二步,用于验证航空和高铁运输能否对中介变量产生显著影响,用α1α2表示;式(3)为第三步,将中介变量加入式(1)中,通过控制中介变量,验证航空和高铁运输对创新能力的直接影响,用γ1γ2表示。

2.2 变量说明

(1) 被解释变量

本文的被解释变量为城市创新能力,使用发明专利申请数据来衡量[37]。相比其他指标,专利申请数据在衡量城市创新能力方面有以下优势:一是专利数据具有较强的时效性和可获得性[38],且与技术创新之间具有较强的相关性[39];二是发明专利代表核心技术成果,相比实用新型和外观设计专利具有较高的技术水平。

(2) 核心解释变量

本文的核心解释变量为2007—2018年城市的航空和高铁的周运行班次。2007年中国铁路第6次大提速标志着中国正式跨入高铁时代,故选取2007—2018年数据作为研究样本具有合理性。

(3) 控制变量

已有研究表明,城市的人口规模、创新投入、人力资本质量等均会对城市的创新能力产生重要影响[23,39],故选取相应控制变量以排除无关变量的干扰。

(4) 中介变量

依据前文分析,交通运输能够通过促进城市间技术转移、吸引风险投资和外商投资等物质资本积累、优化调整产业升级间接提升城市创新能力。本文以地级市之间专利转出与转入的总量衡量技术转移;选取风险投资事件数(VC)和外商直接投资数据(FDI)衡量投资水平;使用第三产业与第二产业的比重测度产业升级[40]

各变量及其计算方法见表1

表1   不同变量的定义及其解释说明

Tab.1  Definition and description of variables

变量名称含义计算方法
被解释变量
innovation创新能力发明专利申请数量
核心解释变量
Air航空通达性航空班次
HSR高铁通达性高铁班次
控制变量
Population-S人口规模年末人口总数取对数
Tech-spending创新投入水平科学技术支出与教育支出之和占地方财政一般预算支出的比值
Population-Q人力资本质量科学研究、技术服务和地质
勘查业人员数取对数
中介变量
tech技术转移专利转出与转入的总量
VC风险投资风险投资事件数
FDI外商直接投资外商直接投资额
Industry-up产业升级第三产业与第二产业的比值

新窗口打开| 下载CSV


2.3 数据来源

本文所用数据为2007—2018年中国地级市的数据。其中发明专利申请数据来源于国家知识产权局(https://www.cnipa.gov.cn/);航空班次数据来自OAG(Official Aviation Guide)数据库(http://www.oag.cn/);高铁班次数据来源于中国铁道出版社出版的《全国铁路旅客列车时刻表》,通过手动整理,获得290个地级市历年高铁经停车次频率数据;专利转移数据来源于国家知识产权局下的中国专利信息服务平台(http://search.cnipr.com/);风险投资事件数来源于CVSource投中数据库(https://data.cvsource.com.cn);发明专利授权量数据来源于incoPat专利数据库(http://www.cnipa.gov.cn/);宏观经济数据来源于相应年份的《中国城市统计年鉴》《中国城市建设统计年鉴》及各地级市国民经济和社会发展统计公报。本文研究的基础地理单元为地级及以上行政单位(不含内蒙古的阿拉善盟、锡林郭勒盟、兴安盟,黑龙江的大兴安岭地区,吉林的延边朝鲜族自治州,湖北的恩施土家族苗族自治州,湖南的湘西土家族苗族自治州,四川的阿坝藏族羌族自治州、甘孜藏族自治州、凉山彝族自治州,贵州的黔东南苗族侗族自治州、黔南布依族苗族自治州、黔西南布依族苗族自治州,云南的德宏傣族景颇族自治州、怒江傈僳族自治州、迪庆藏族自治州、大理白族自治州、楚雄彝族自治州、红河哈尼族彝族自治州、文山壮族苗族自治州、西双版纳傣族自治州,西藏的阿里地区,甘肃的临夏回族自治州、甘南藏族自治州,青海的海南藏族自治州、海北藏族自治州、海西蒙古族藏族自治州、黄南藏族自治州、果洛藏族自治州、玉树藏族自治州,新疆的伊犁哈萨克自治州、博尔塔拉蒙古自治州、昌吉回族自治州、巴音郭楞蒙古自治州、克孜勒苏柯尔克孜自治州、阿克苏地区、喀什地区、和田地区、塔城地区、阿勒泰地区);其次,由于2011年安徽省地级巢湖市已撤销,为统一口径,本文不包含巢湖市;此外,由于统计数据缺失,亦不包含港澳台地区,西藏的昌都市、林芝市、那曲市、山南市、日喀则市,新疆的哈密市、吐鲁番市,海南的三沙市。2007、2018年中国航空班次、高铁班次及专利申请量如图2所示。

图2

图2   2007、2018年中国航空、高铁、专利数据

注:本图基于自然资源部标准地图服务网站下载的审图号为GS(2019)1823号标准地图制作,底图无修改。

Fig.2   Map of China's aviation, high-speed rail and patent data in 2007 and 2018


3 实证结果及分析

3.1 基准回归结果

表2为基准回归结果,模型1考虑时间固定效应与个体固定效应,将航空和高铁班次与发明专利申请数据进行回归,模型2在模型1的基础上加入了控制变量。结果显示,航空和高铁的通达性提升均可显著促进城市创新能力增强,加入控制变量后,有效控制了其他外生变量的干扰,回归系数虽有所降低但依然显著,假设H1成立。

表2   基准回归模型

Tab.2  Benchmark regression model

变量模型1模型2
Air0.0749***0.0708***
(0.0193)(0.0192)
HSR0.2330***0.2192***
(0.0359)(0.0329)
控制变量
Population-S6872.3180*
(3558.8330)
Tech-spending8614.6720**
(4267.8250)
Population-Q1267.1640**
(413.3714)
个体固定效应YesYes
时间固定效应YesYes
R20.51230.5337
样本量34663466

注:括号内为聚类稳健标准误;Yes表明模型已控制个体固定效应与时间固定效应;***、**、*分别表示在1%、5%和10%水平上显著,下同。

新窗口打开| 下载CSV


回归结果与Hovhannisyan等[14]和卞元超等[26]的研究结论一致,区域创新很大程度上取决于创新主体对嵌入在创新网络中的资源和知识的获取,航空和高铁的时空压缩效应剧烈降低了创新网络资源流动的距离摩擦系数,显著促进科技创新人才等创新主体的跨城流动,形成跨区域编码知识与缄默知识集聚与扩散机制。在此过程中,创新主体通过学习、模仿、竞争实现知识传递、积累、吸收、再创新,进而促进发明创造、技术提升、制度革新[41-42]

航空和高铁运输均能促进城市创新能力提升,高铁运输对城市的创新溢出效应约为航空运输的3倍。可能原因是,知识溢出具有地理邻近机制[43-44],其作用强度随距离增加而衰减[45],知识溢出易发生在邻近地理空间。不同的交通运输方式选择机制对知识交流形成不同的知识溢出强度,高铁与航空竞争态势凸显,2种运输方式80%的流量分别集中于200~1200 km和800~2600 km,在700 km范围内,高铁的运输频次的分配率占有绝对优势,700 km以上则以航空最高[46-47]。中国城市间距离普遍在200~1200 km范围内,高铁作为城市间交通出行的首位方式,与航空运输相比,高铁运输在提升跨城缄默知识流动的规模、频率、效率中竞争优势显著,高铁运输对城市创新溢出效应显著强于航空运输。

由于从创新要素投入到创新主体着手发明创造并申报专利需要较长时间,创新要素投入对创新能力的影响具有一定的时间滞后效应[48-49]。参考贺灿飞等[37]的研究,在基准回归的基础上,引入变量的多阶滞后项将因变量分别滞后1~5年构建模型进行回归(表3),以消除滞后性并缓解内生性问题。结果表明:航空和高铁运输对城市创新能力影响的估计系数在滞后5年内始终显著为正并呈现逐年增长趋势,航空估计系数到第4年滞后期达到最大值,高铁估计系数到第5年滞后期达到最大值,这与卞元超等 [26]的研究结论一致,交通运输对城市创新能力的影响存在一定的滞后效应,也初步验证了回归结果的稳健性。

表3   因变量多阶滞后回归

Tab.3  Multi-order lagged regression of the dependent variable

变量模型3:模型4:模型5:模型6:模型7:
滞后1年滞后2年滞后3年滞后4年滞后5年
Air0.0750***0.0869***0.0930***0.1014***0.0966***
(0.0203)(0.0241)(0.0254)(0.0277)(0.0262)
HSR0.2866***0.2950***0.3784***0.4206***0.4250***
(0.0440)(0.0436)(0.0514)(0.0547)(0.0567)
控制变量YesYesYesYesYes
个体固定效应YesYesYesYesYes
时间固定效应YesYesYesYesYes
R20.54430.54650.56120.54890.5280
样本量31762886259623062017

新窗口打开| 下载CSV


3.2 异质性回归结果及分析

不同类型城市在经济水平、创新资源、发展阶段等方面差异显著,为考察不同等级、人口规模和地理区域城市的航空和高铁运输对城市创新能力的影响,根据等级将城市分为中心城市(36个)和非中心城市(254个),其中中心城市包括直辖市、省会城市及计划单列城市,其他为非中心城市;根据城区人口规模将城市分为大城市(>100万人)、中等城市(50~100万人)和小城市(<50万人);根据中国的经济区域将城市划分为东部、中部、西部和东北4大地区(① 东部地区包括北京、天津、河北、上海、江苏、浙江、福建、山东、广东和海南;中部地区包括山西、安徽、江西、河南、湖北和湖南;西部地区包括内蒙古、广西、重庆、四川、贵州、云南、西藏。陕西、甘肃、青海、宁夏和新疆;东北地区包括:辽宁、吉林和黑龙江。)。由于分组回归会分散样本量,可能导致样本选择偏误,使得组间回归系数无法直接比较。本文参考连玉君等[50]的研究方法,应用Chow test(邹检验)比较组间系数差异,若系数差异显著,则分组回归系数可以进行比较,限于篇幅,文中未展示相应回归结果。

3.2.1 城市等级异质性:相比非中心城市,航空和高铁均对中心城市创新能力的正向影响更强;高铁影响强度大于航空

邹检验显示,核心变量的系数存在显著组间差异,可进行分组回归系数比较。航空和高铁对中心城市和非中心城市均有显著正向影响:二者均对中心城市的影响强度更大,高铁的影响强度大于航空(表4)。

表4   城市等级异质性回归结果

Tab.4  Regression results of urban grade heterogeneity

变量模型8:模型9:
中心城市非中心城市
Air0.0629**0.0266**
(0.0262)(0.0206)
HSR0.2946***0.1705***
(0.0545)(0.0435)
控制变量YesYes
个体固定效应YesYes
时间固定效应YesYes
R20.61830.3994
样本量4323034

新窗口打开| 下载CSV


(1) 航空和高铁对中心城市创新能力的正向影响强度高于非中心城市。主要原因可能为:一是中心城市作为高铁建设的优先选择对象,往往拥有更密集的高铁线路和更大的高铁辐射区域[9]。因此创新资源禀赋更为丰裕的中心城市从高铁建设中获益更多;二是中心城市的发展基础优于非中心城市,航空和高铁通达性提升加速了资金、人才、知识等创新要素的集聚,更大的本地市场规模所带来的规模报酬递增效应、产业集聚和技术溢出使其创新能力不断增强[35]。通过上述累计循环效应,中心城市的发展优势不断扩大,创新能级不断提升。

(2) 高铁的影响强度大于航空。主要原因可能是:一是受地理邻近效应影响,城市更倾向于联络周边城市进行技术的传播与交流[51],与周边城市的技术、知识交流往来更为频繁,高铁作为近距离城市间交通出行的主要方式,更能促进创新主体间知识技术的交互往来,对城市的创新溢出效应更强;二是中心城市日益便捷密集的高铁网络对航空产生了替代作用,高铁的快速发展削弱了航空对中心城市创新能力的影响强度。近年来高铁的开通对航空运输产生了强烈的冲击作用,高铁开通后,部分短途飞机航线被迫停运,航空公司不得不转向边远地区,发展支线航空,竞争高铁服务盲区[46-47]

3.2.2 人口规模异质性:高铁对大、中、小城市创新能力均有正向影响,航空对小城市有抑制作用

邹检验显示,核心变量的系数存在显著组间差异,可进行分组回归系数比较。航空运输对大城市和中等城市具有正向影响,对小城市有抑制作用;高铁对大城市、中等城市和小城市均表现出正向影响(表5)。

表5   人口规模异质性回归结果

Tab.5  Regression results of population size heterogeneity

变量模型10:模型11:模型12:
大城市中等城市小城市
Air0.0626**0.0237**-0.0071**
(0.0214)(0.0209)(0.0031)
HSR0.2528***0.0959***0.0174**
(0.0430)(0.0396)(0.0083)
控制变量YesYesYes
个体固定效应YesYesYes
时间固定效应YesYesYes
R20.59510.39840.3362
样本量124811641054

新窗口打开| 下载CSV


(1) 对于大城市和中等城市,航空对其创新能力提升呈现显著正向影响,这表明大、中城市能够通过航空运输加强对外联系,以便更好地获得外部知识和技术的溢出,通过学习、模仿、竞争实现知识的传递、积累、吸收,进而促进其技术提升与发明创造。同时,航空对大城市创新能力的正向影响强度高于中等城市,这与前文等级异质性检验的回归结果相似。对于小城市,航空运输对其创新能力提升有抑制作用,这可能是交通运输的虹吸效应导致的。航空在促进小城市与其他城市技术、知识交流的同时,也加剧了其高素质人才与创新资本流失的可能性,使得更多优质的创新资源不断向发达地区集聚,进一步恶化本地创新环境,抑制创新能力提升[16,35]

(2) 高铁运输对不同人口规模的城市创新能力均有正向影响,呈现明显的“马太效应”,估计系数呈现出大城市>中等城市>小城市的特征,这与前文高铁运输对中心城市创新能力的提升强度高于非中心城市结果相似。高铁的开通优化了区域创新环境,使大城市获得更好的“相对可达性”[52],从而增强与其他城市的联系和交流,加剧人才、资本集聚,加快技术革新与发明创造。而对于中小城市,高铁建设一方面有利于其学习、引进创新发达地区的知识、经验、资本和技术,另一方面也加剧了大城市的“虹吸效应”,导致高素质人才与创新资本的流失[16,35]。因而高铁运输对中小城市的创新能力影响相对较小。

3.2.3 区域异质性:“马太效应”显著,东部地区优势地位凸显

邹检验显示,东部、中部、东北地区的核心变量的系数存在显著组间差异,可实现分组回归系数的比较;而西部地区的核心变量的系数不存在显著组间差异,故系数不可直接参与组间比较。航空和高铁的促进效应均表现出显著的“马太效应”,其影响强度均为东部>中部>东北(表6)。

表6   区域异质性回归结果

Tab.6  Regression results of regional heterogeneity

变量模型13:模型14:模型15:模型16:
东部地区中部地区西部地区东北地区
Air0.1034**0.0788***0.0466**0.0508***
(0.0423)(0.0162)(0.0162)(0.0029)
HSR0.2126***0.1213**0.1486***0.0503**
(0.0534)(0.0444)(0.0370)(0.0211)
控制变量YesYesYesYes
个体固定效应YesYesYesYes
时间固定效应YesYesYesYes
R20.59890.57920.49620.6999
样本量10489601050408

新窗口打开| 下载CSV


(1) 航空和高铁对东部、中部、西部、东北地区的创新能力均有不同程度的提升作用,这表明交通通达性提高带来的时空压缩效应能够普遍促进地区创新能力的提升,对缩小地区创新发展水平差距有积极作用,同时也进一步验证了基准回归结果的稳健性。

(2) 航空和高铁的促进效应均表现出显著的“马太效应”,影响强度均为东部>中部>东北,东部地区优势地位凸显。这可能是以下3个方面原因导致的:一是东部地区航空和高铁的优势地位都极为突出,作为全国经济社会发展的重心,东部地区平坦的地势、完善的基础设施和优良的投资运营环境,使得其航空和高铁运输的网络密度和运输规模明显高于其他地区[53];二是交通运输的起始优势会进一步强化其创新优势,通过吸引创新要素流入,优化城市创新环境,间接增强城市创新能力。经过累计循环效应,不断扩大其发展优势,提升其创新能级;三是东北地区相比中部地区创新资源更加匮乏,高铁运输带来的区位可达性提升、区际交易成本降低、地理约束衰减等边际效应高于中部地区。

(3) 西部地区航空的影响强度较小,约为高铁的1/3。这可能是以下3个方面原因导致的:第一,西部地区以旅游城市支线航空为主,运量不足。虽然西部地区机场数量较多,但以距离短、运量小、频率低的支线航空为主,航空网络化程度差、可达能力较低[53]。第二,西部地区航空运输以旅游流为主,商务流不足。西部地区航空节点城市覆盖大量旅游城市:如昆明、乌鲁木齐、西双版纳、丽江、敦煌、吐鲁番等,促进知识转移的商务出行不足。第三,西部地区本地创新水平普遍落后,技术吸收转化的能力较弱,因而航空运输对其创新能力的带动作用相对较小,对其创新能力的影响不显著。

(4) 东北地区航空的影响强度略大于高铁,与其他地区呈现相反态势,这可能与东北三省的地理区位及其本地创新水平有关。一方面,高铁出行主要局限于周边城市[54],东北三省偏居一隅,相对偏远的区位条件使得其对航空出行的需求相对较高;另一方面,东北三省的区域创新能力综合效用指标在全国均处于靠后水平[55],技术就地转让转化并吸收创造的能力不足[39],地区内部技术交流带来的知识溢出有限,城市倾向于从较远地区搜寻知识、技术和资本。

3.3 中介效应回归结果及分析

中介效应检验参考温忠麟等[36]经典中介检验三步法和Sobel检验法:第一步,检验航空和高铁建设能否显著提升城市创新能力(β1β2),此结果已在前文中进行验证;第二步,分别检验航空和高铁建设能否显著促进各城市的技术转移、风险投资、外商投资、产业升级(α1α2);第三步,在控制航空和高铁变量的情况下,分别检验各中介变量能否显著提升城市创新能力(γ3)。参考何瑛等[56]的相关研究,本文利用Stata 16软件中的sgmediation命令进行中介效应检验,同时在模型中加入时间虚拟变量和个体虚拟变量,以排除不可观测的个体异质性和时间异质性的影响,并采用滞后一期的因变量构建模型,以缓解中介变量与因变量互为因果的内生性问题,中介效应检验结果如表7图3所示。

表7   中介效应检验

Tab.7  Mediation effect test

AirHSR
变量模型17:
tech
模型18:
VC
模型19:
FDI
模型20:Industry-up变量模型21:
tech
模型22:
VC
模型23:
FDI
模型24:Industry-up
β10.0708***0.0708***0.0708***0.0708***β20.2192***0.2192***0.2192***0.2192***
(0.0028)(0.0028)(0.0028)(0.0028)(0.0087)(0.0087)(0.0087)(0.0087)
α10.0031***0.0022***1.5534**<0.0001***α20.0202***0.0037***1.1175**<-0.0001
(0.0024)(0.0001)(0.1311)(0.0000)(0.0008)(0.0004)(0.4144)(<0.0001)
γ37.2373***14.2107***0.0050***899.4700***γ37.2373***14.2107***0.0050***899.4700**
(0.1608)(0.3198)(0.0004)(284.792)(0.1608)(0.3198)(0.0004)(284.792)
Sobel检验0.0222***0.0314***0.0078***0.0020***Sobel检验0.1461***0.0520***0.0056**-0.00012
(0.0018)(0.0019)(0.0009)(0.0007)(0.0064)(0.0055)(0.0021)(0.0006)
Goodman-10.0222***0.0314***0.0078***0.0020***Goodman-10.1461***0.0520***0.0056**-0.00012
(0.0018)(0.0019)(0.0009)(0.0007)(0.0064)(0.0055)(0.0021)(0.0006)
中介效应大小0.0222***0.0314***0.0078***0.0020***中介效应大小0.1461***0.0520***0.0056**-0.00012
(0.0018)(0.0019)(0.0009)(0.0007)(0.0064)(0.0055)(0.0021)(0.0006)
中介效应占
总效应比重
31.39%44.32%11.02%2.82%中介效应占
总效应比重
66.64%23.71%2.56%

新窗口打开| 下载CSV


图3

图3   中介效应检验

注:图中数据为中介效应或总效应值,括号中百分数为中介效应占总效应比重。

Fig.3   Mediation effect test


表7可知,航空和高铁均能通过促进技术转移提升城市创新能力,假设H2成立。其中,航空中介效应大小为0.0222,占总效应的31.39%,高铁中介效应大小为0.1461,占总效应的66.64%。主要归因于专利转让主要通过转让人和接收人双方进行线下洽谈、签订合约、合同履约等途经实现[39],航空和高铁通达性提升极大地缩减了会面的时间成本,为专利交易的面对面交流谈判提供更多的机会,对城市间的技术转移促进作用显著。城市通过从外部获取技术,并经过吸收和改进,实现区域自主创新能力的提升。

航空和高铁均能通过吸引风险投资提升城市创新能力,假设H3a成立。其中,航空中介效应大小约为0.0314,占总效应的44.32%;高铁中介效应大小为0.0520,占总效应的23.71%。由于交易和监督成本及信息壁垒的存在,为提高信息获取的准确性和降低所选项目的不确定性,风险投资具有明显的地理邻近效应,风险投资机构在考量投资行为中存在本地偏好现象[57],因而风险投资受航空运输影响不显著。而航空和高铁带来的人员流动有助于企业信息的流通和传播,提高公司信息的透明度,显著降低投资机构“软信息”的获取成本,减少与创业者之间的信息不对称,同时压缩监督监管成本[58]。这使得航空和高铁城市会吸引更多的风险投资资源,从而推动地方经济的转型和创新。

航空和高铁均能通过促进外商直接投资提升城市创新能力,假设H3b成立。其中,航空中介效应大小约为0.0078,占总效应的11.02%,高铁中介效应大小为0.0560,占总效应的2.56%。航空和高铁的发展均能促进中国FDI的增长,这与管驰明等[29]和韦朕韬等[59]的研究结论一致:FDI广泛依赖国际贸易,需要发达的国际物流网络为支撑,航空运输作为国际贸易运输的主要方式,成为吸引FDI的重要因素;高铁开通对FDI的流入存在明显的溢出效应,高铁沿线城市可达性提升能够显著减低运输成本,将扩大市场潜能,加快生产要素流通,进而改善区域经济运营环境,吸引FDI流入。FDI能够带来资本供给和知识、技术的溢出,通过示范与竞争效应、技术扩散与吸收效应促使东道国产业结构高级化、高效化发展,实现技术进步,提升其创新能力[30]

航空运输能够通过促进产业升级间接提升城市创新能力,中介效应大小约为0.0020,占总效应的2.82%,而高铁运输对城市产业升级的影响效应不显著,假设H4部分成立。这可以从以下2个方面对其解释:一是中国高铁设施建设时间相对较短,虽已全面建成“四纵四横”的高铁网,但高铁因其技术特性具有明显的“廊道效应”[47],因而对整体城市的产业结构升级带动效应并不显著;二是航空运输网络主要由各区域经济中心城市连接组成,一方面通过时空压缩效应降低运输成本,吸引高附加值产业以促进产业结构升级,另一方面通过促进国际贸易、吸引外商投资间接推动产业结构升级。产业升级对创新能力的带动作用主要体现在以下2个方面:一是带动国内、国际市场的扩大与细分,为企业接受新思想、开发新技术创造契机,进而扩大市场需求,以需求拉动企业创新;二是通过打破贸易壁垒,融入全球价值链,以提升创新能力[33]

3.4 稳健性检验

本文采用双向固定效应回归模型,消除了不随时间变化的不可观测的个体异质性,以及不随个体变化的时间异质性的影响,同时引入因变量的多阶滞后项以消除滞后性,解决了部分内生性问题。此外,由于不同的样本对于所得的结果具有不同的敏感性,采用分样本回归方法,按照城市等级、人口规模、地理区域分别进行回归,初步验证了研究结论的可靠性。为进一步验证研究结果的稳健性,本文采用变量替换法和工具变量法对回归结果进行稳健性检验,检验结果如表8所示。

表8   稳健性检验

Tab.8  Robustness tests

变量模型25模型26模型27模型28
Air0.0255**0.0488**0.0507**0.0515**
(0.0089)(0.0155)(0.0166)(0.0179)
HSR0.0514***0.2880***0.29530.3265***
(0.0092)(0.0584)(0.0596)(0.0666)
控制变量YesYesYesYes
个体固定效应YesYesYesYes
时间固定效应YesYesYesYes
R20.41460.61190.60960.0630
F(Air)8248.091604.86629.08
Air-IV1.0452***1.0964***1.1504***
(0.0090)(0.0207)(0.0333)
F(HSR)4039.81763.76412.60
HSR-IV1.1843***1.3294***1.6310***
(0.0116)(0.0225)(0.0520)
LM统计量189.14156.09155.41
样本量2886317828902602

注:F(Air)和F(HSR)分别为工具变量法一阶段回归对内生变量Air及HSR拟合模型的F检验统计量。

新窗口打开| 下载CSV


(1) 变量替换法

本文以发明专利授权量替代专利申请量,进行稳健性检验,据国家知识产权局统计,2020年中国发明专利授权率不到1/2 (47.3%),远低于实用新型和外观设计专利(授权率均超过90%)。故选用发明专利授权量作为城市创新能力的替代变量。由于发明专利从申请到授权需经过33~42个月的审查周期,因此对因变量做滞后2年处理[48-49]。由表8模型25的回归结果可知,替换因变量后,航空和高铁运输对城市创新能力水平依然具有正向影响,验证了回归结果的稳健性。

(2) 工具变量法

机场、高铁站点的选址可能与政策、区位条件等因素相关,而城市的发展条件也会直接影响到城市的创新能力。为解决潜在的内生性问题,在模型26~28中,采用工具变量法,分别将滞后一期、二期和三期的核心解释量作为工具变量进行两阶段回归,实现动态效应检验。滞后的解释变量与解释变量当期有相关性,但与当期扰动项不相关,可被选作工具变量以缓解内生性问题。由表8工具变量法两阶段回归结果可知,克服内生性后,航空和高铁基础设施对城市创新能力水平依然具有正向影响,进一步验证了回归结果的稳健性。

4 结论与政策启示

4.1 结论与讨论

本文基于大数据挖掘、清洗、提取获得2007—2018年的航空和高铁班次数据以及城市发明专利申请数据,利用双向固定效应面板回归和中介效应检验模型,分析解释了交通对城市创新能力的影响机制。主要结论如下:

(1) 航空和高铁均可有效促进城市创新能力提升。高速交通带来的时空压缩效应可显著提升城市区位可达性,降低信息交互成本,营造良好的创新环境,从而提升城市创新能力。此外,受航空和高铁运输的竞争替代效应及知识溢出的地理邻近性影响,以近距离为主导的高铁运输对城市的创新溢出效应约为航空运输的3倍。

(2) 航空和高铁对不同类型城市的创新溢出效应存在显著异质性。城市等级异质性方面,航空和高铁对中心城市创新能力的正向影响强度高于非中心城市;人口规模异质性方面,航空对大、中城市创新能力提升有显著正向影响,对小城市有抑制作用,高铁运输对不同人口规模的城市创新能力均有正向影响,呈现大城市>中等城市>小城市的态势;区域异质性方面,航空和高铁对东部、中部、西部、东北地区的创新能力均有不同程度的提升作用,表现出显著的“马太效应”,东部地区优势地位凸显。

(3) 航空和高铁均可通过促进技术转移、风险资本配置、外商资本配置间接提升城市创新能力。此外,航空还能够通过促进产业升级间接促进城市创新能力提升。

本文研究也存在一些局限与不足。首先,以城市节点为研究对象,一定程度上忽略了多维邻近性对其创新能力的影响;不同服务范围区间内航空和高铁建设对城市创新能力影响机制有待探讨。此外,交通运输对城市创新能力影响路径仍需深入挖掘,除专利交易、风险投资、外商投资、产业升级数据外,有待建立人才引进、专利合作、论文合作和项目合作等多维指标进行综合刻画。未来将进一步对以上问题开展研究。

4.2 政策启示

(1) 建设交通强国,赋能创新发展。交通建设作为经济社会发展的重要支撑,对中国深入实施创新发展战略有着重要支撑引领作用。新时代高质量发展背景下,应当特别重视交通建设的重要经济效应,以高铁和航空为纽带和依托,深度赋能创新发展:一是交通运输的发展应该更加侧重于高铁建设。单位建设成本下,高铁的创新溢出效应显著高于航空,因此应通过加密运营班次、循环发车、高铁提速、规划高铁新线等手段提升高铁运输效益,条件允许情况下可打造第二通道,如京沪高铁第二通道、沪深沿海第二通道、武广第二通道。二是要重视高铁新城、空港新城建设。参照上海虹桥、上海浦东和北京大兴的综合交通枢纽建设经验,推进高铁、航空“双枢纽”协同配套,加快畅通交通运输主动脉。三是要依托交通规划,出台相应政策,鼓励加大技术转移成果转化、聚力打造招商引资“强磁场”,从而充分发挥其对科技创新体系建设的作用,更快更好地融入“双循环”新发展格局。

(2) 兼顾效率与公平,注重区域协同发展。通运输对城市创新能力的影响存在“溢出效应”与“虹吸效应”的双重效应,因此,交通建设应在兼顾经济发展效益的同时着重区域发展公平,促进区域创新协同发展:一是要持续完善大城市交通设施的建设,发挥对中小城市的辐射带动作用;二是要加大投资倾斜力度,扶持中小城市的交通基础设施建设,打造同大城市互联互通的大通道,加速融入高铁“创新圈”;三是统筹规划全国交通综合运输网络的建设,全面推动航空、高铁网络的互联互通,推动人员、资金、信息、贸易等创新要素的流动,促进知识扩散和创新外溢,从而完善区域创新网络,助力创新协同发展。

(3) 谨防虹吸效应,让小城市“活”起来。便利的交通一方面有利于小城市受到来自发达地区的知识、经验、资本和技术的辐射,另一方面也加剧了其创新资源流失的可能,故小城市应当时刻谨防“虹吸效应”。一是由于航空对小城市的创新能力提升有抑制作用,人口在50万以下的小城市不宜盲目进行机场建设;二是要把握以都市圈为主体的区域协同发展机遇,依托城际铁路、市域铁路规划建设,主动融入都市圈一体化发展,增加城市活力;三是要合理利用低廉地价等优势吸引高新技术企业落地,吸纳高素质人才落户;四是要出台一系列优惠保障措施,除交通建设以外,还应着力优化公共服务供给,提升自身城市吸引力,避免创新资本的流失。

参考文献

Mankiw N G, Romer D, Weil D N.

A contribution to the empirics of economic growth

[J]. The Quarterly Journal of Economics, 1992, 107(2): 407-437.

DOI:10.2307/2118477      URL     [本文引用: 1]

Dunning J H. Regions, globalization, and the knowledge-based economy[M]. Oxford, UK: Oxford University Press, 2000.

[本文引用: 1]

Basile R, Capello R, Caragliu A.

Technological interdependence and regional growth in Europe: Proximity and synergy in knowledge spillovers

[J]. Papers in Regional Science, 2012, 91(4): 697-722.

DOI:10.1111/j.1435-5957.2012.00438.x      URL     [本文引用: 1]

周一星, 胡智勇.

从航空运输看中国城市体系的空间网络结构

[J]. 地理研究, 2002, 21(3): 276-286.

[本文引用: 1]

[ Zhou Yi-xing, Hu Zhiyong.

Looking into the network structure of Chinese urban system from the perspective of air transportation

Geographical Research, 2002, 21(3): 276-286. ]

DOI:10.11821/yj2002030002      [本文引用: 1]

Air transportation is a unique and increasingly important perspective in studying spatial structure of urban system This paper illustrates the framework of urban system by analyzing structural features of air transportation network based on the data of the amount of airport passenger transportation and the number of weekly flights (1)Since open to the outside world, the nodes in China's air transportation network increased quickly accompanied with the expansion of air transportation network scale which presents positive correlation with the scale rank of urban system (2) On the whole, dispersion dominates the evolution of airport's spatial structure But in the variant periods and zones, the newly built airports and the increase of transportation capacity of the existing airports exert different influences on the expansion of air transportation network (3) Network linkage intensity differs in various provinces But the eastern coastal zone is still the core region of domestic and international airline linkage in which the international hub function of Beijing Tianjin Hebei and Jiangsu Shanghai is distinctive while Guangdong mainly acts as home hub (4) The capital city of a province is still of vital essence to this province's outward connection, but more and more developed cities of some provinces have partly substituted the capital cities (5) The spatial distribution of intensity and tightness of air network linkage separate from each other, which manifest that the spatial network structure of China's urban system is still in the process of dynamic evolution (6) The factors such as the change of airline structure, the airline linkage with foreign countries and the cooperation and competition of domestic airport cities will all influence urban system structure in future

冯长春, 丰学兵, 刘思君.

高速铁路对中国省际可达性的影响

[J]. 地理科学进展, 2013, 32(8): 1187-1194.

DOI:10.11820/dlkxjz.2013.08.002      [本文引用: 2]

中国高速铁路网“四纵四横”客运专线规划至2015 年建成,将覆盖所有省会及90%的50 万以上人口城市,高速铁路可达性因此成为近年可达性研究的热点。本文在总结前人研究方法的基础上,运用加权平均旅行时间研究高铁时代中国省际可达性及空间格局。研究结果表明:① 采用传统客运最短旅行时间(含中转及停留)数据得到的省际可达性呈中心—外围模式,以郑州—武汉为中心,其他省份按“距离衰减规律”成为圈层式阶梯状空间格局;② 高速铁路建设带来省际联系时间缩短、可达性最优区域大幅增加等“高铁效应”,空间结构仍以武汉—郑州为中心呈现中心—外围模式;③ 高铁运营使省际可达性均衡化,可达性变化幅度在空间上呈中间凹四周高的“碗形”特点,位于客运铁路网络中心附近的省份变化幅度较小,外围地区如云南、福建等省可达性变化幅度较大。

[ Feng Changchun, Feng Xuebing, Liu Sijun.

Effects of high speed railway network on the inter-provincial accessibilities in China

Progress in Geography, 2013, 32(8): 1187-1194. ]

DOI:10.11820/dlkxjz.2013.08.002      [本文引用: 2]

National High-Speed Rail Grid (4+4) Passenger Dedicated Lines (PDL) Railway Planning, covering all provincial capital cities and more than 90% cities with populations of more than 500,000, will be up and running in 2015. Accessibility by high speed railway network has become a hot topic in the accessibility research field. In this paper, based on review of the methods used by other researchers, the shortest time distance matrix between provincial capital cities was chosen to analyze inter-provincial accessibility by conventional railway network and by high-speed railway network, and weighted average travel time was used to analyze inter-provincial accessibility and spatial pattern in the high-speed railway time. Results are shown as fellows: (1) Inter-provincial accessibility by conventional railway network obtained with shortest time distance (including transfer and short-stay) has a "center-periphery" spatial pattern, with Zhengzhou-Wuhan as the center and other provinces as peripheries. The accessibility decreases from center to peripheries in circular gradients. The dominant factors affecting the accessibility are network pattern, node location and train organization, as Beijing has higher accessibility with radial rail network. (2) Inter-provincial accessibility by high-speed railway network also has a "center-periphery" pattern, whileWuhan is more convenient than Zhengzhou. Passenger Dedicated Lines have shortened inter- provincial travel time and doubled the 2% areas of best accessibility (from 5.3&#215;10<sup>4</sup> km<sup>2</sup> to 10.8&#215;10<sup>4</sup> km<sup>2</sup>), showing the effects of high-speed railway network. The average travel distance of each capital city is 60,000 kilometers by both conventional network and high-speed railway network, but the latter only costs half of total travel time as the former, while the area of the best accessibility is 108,000 square kilometers. (3) High-speed railway network will equalize inter-province accessibility, as standard deviation of accessibility coefficient is less than conventional railway network. Remote regions such as Yunnan and Fujian had the biggest improvement in accessibility while the center provinces had littles change.

刘芳.

高速铁路、知识溢出与城市创新发展: 来自278个城市的证据

[J]. 财贸研究, 2019, 30(4): 14-29.

[本文引用: 2]

[ Liu fang.

High-speed rail, knowledge spillover and urban innovation development: Evidence from 278 cities

Finance and Trade Research, 2019, 30(4): 14-29. ]

[本文引用: 2]

王春杨, 兰宗敏, 张超, .

高铁建设、人力资本迁移与区域创新

[J]. 中国工业经济, 2020, 37(12): 102-120.

[本文引用: 2]

[ Wang Chunyang, Lan Zongmin, Zhang Chao, et al.

High-speed rail construction, human capital migration and regional innovation

China Industrial Economics, 2020, 37(12): 102-120. ]

[本文引用: 2]

龙玉, 赵海龙, 张新德, .

时空压缩下的风险投资: 高铁通车与风险投资区域变化

[J]. 经济研究, 2017, 52(4): 195-208.

[本文引用: 3]

[ Long Yu, Zhao Hailong, Zhang Xinde, et al.

High-speed railway and venture capital investment

Economic Research Journal, 2017, 52(4): 195-208. ]

[本文引用: 3]

庄德林, 刘雨晨, 王帅.

高铁通车对中国城市创业投资网络的影响: 基于跨城市创业投资事件的实证研究

[J]. 地理科学进展, 2021, 40(10): 1626-1638.

DOI:10.18306/dlkxjz.2021.10.002      [本文引用: 5]

为探究高铁通车对中国城市创业投资网络的影响,论文以2001&#x02014;2017年间投资于中国大陆的41692件跨城市创业投资事件为样本,研究高铁通车对城市创业投资网络集聚力、辐射力和联系中介力的影响,并进一步探讨其作用机制。渐进双重差分模型(渐进DID模型)分析表明,高铁通车可以提高城市可达性,降低创业投资活动主体的综合交易成本,促进创新创业要素资源跨区流动,对创业投资网络集聚力、辐射力和联系中介力产生正向影响。中心城市的创业投资网络受高铁通车带来的正向影响更强。同时,高铁通车对创业投资网络最优作用范围依投资中心呈环形分布,投资中心辐射半径100~200 km的地区,创业投资网络集聚力、辐射力和联系中介力受高铁通车正向影响要明显强于100 km以内和200 km以外地区。此外,风险性低、回报稳定和市场化程度更高的扩张期和成熟期阶段的创业投资网络集聚力、辐射力和联系中介力受高铁通车影响较种子期和初创期阶段更为显著。

[ Zhuang Delin, Liu Yuchen, Wang Shuai.

Impact of high-speed railway on Chinese urban venture capital network: Empirical study based on cross-city venture capital events

Progress in Geography, 2021, 40(10): 1626-1638. ]

DOI:10.18306/dlkxjz.2021.10.002      [本文引用: 5]

Based on the 41692 venture capital investment events in China's mainland from 2001 to 2017, the impact of high-speed railway on the agglomeration, radiation, and intermediary powers of Chinese venture capital network was studied by using the social network analysis model, as well as the heterogeneity of the effect of different city types, radiation radius of the central cities, and four investment stages, in order to research the impact of high-speed railway on Chinese urban venture capital network. The analysis of the time-varying Difference-in-Differences (DID) model shows that high-speed railway can improve the accessibility of cities, reduce the transaction cost of venture capital activities, promote the cross-regional flow of innovation resources, and enhance the abundance of urban innovation elements, thus having a positive impact on the venture capital network development. High-speed railways have a significant promoting effect on the city network of venture capital in both non-central cities and central cities, and the positive effect is stronger in central cities. The impact of high-speed railway on venture capital network is different under different distance scales: the influence is significantly weaker in areas within a radius of 100 km and beyond 200 km than that between 100 km and 200 km. The impact of high-speed railway on the agglomeration power, radiation power, and intermediary power of venture capital network in the expansion and maturity stages (with lower risk, stable return, and higher marketization degree) is clearly more significant than in the seed stage and initial stage.

Andersen T B, Dalgaard C J.

Flows of people, flows of ideas, and the inequality of nations

[J]. Journal of Economic Growth, 2011, 16(1): 1-32.

DOI:10.1007/s10887-011-9060-7      URL     [本文引用: 1]

Catalini C, Fons-Rosen C, Gaule P.

Did cheaper flights change the geography of scientific collaboration?

[R]. Sloan Working Papers. Cambridge, USA: MIT Sloan School of Management, 2016.

[本文引用: 1]

易巍, 龙小宁, 林志帆.

地理距离影响高校专利知识溢出吗: 来自中国高铁开通的经验证据

[J]. 中国工业经济, 2021, 38(9): 99-117.

[本文引用: 1]

[ Yi Wei, Long Xiaoning, Lin Zhifan.

Does distance affect university knowledge spillover: Empirical evidence from the opening of Chinese high-speed rail

China Industrial Economics, 2021, 38(9): 99-117. ]

[本文引用: 1]

Simmie J.

Knowledge spillovers and reasons for the concentration of innovative SMEs

[J]. Urban Studies, 2002, 39(5/6): 885-902.

DOI:10.1080/00420980220128363      URL     [本文引用: 2]

Hovhannisyan N, Keller W.

International business travel: An engine of innovation?

[J]. Journal of Economic Growth, 2015, 20(1): 75-104.

DOI:10.1007/s10887-014-9107-7      URL     [本文引用: 4]

杨思莹, 李政.

高铁开通对区域创新格局的影响及其作用机制

[J]. 南方经济, 2020, 38(5): 49-64.

[本文引用: 2]

[ Yang Siying, Li Zheng.

Evolution of regional innovation patterns and their functional mechanisms under space-time compression

South China Journal of Economics, 2020, 38(5): 49-64. ]

[本文引用: 2]

叶德珠, 潘爽, 武文杰, .

距离、可达性与创新: 高铁开通影响城市创新的最优作用半径研究

[J]. 财贸经济, 2020, 41(2): 146-161.

[本文引用: 3]

[ Ye Dezhu, Pan Shuang, Wu Wenjie, et al.

Distance, accessibility and innovation: A study on the optimal working radius of high-speed railway opening for urban innovation

Finance & Trade Economics, 2020, 41(2): 146-161. ]

[本文引用: 3]

杜兴强, 彭妙薇.

高铁开通会促进企业高级人才的流动吗?

[J]. 经济管理, 2017, 39(12): 89-107.

[本文引用: 1]

[ Du Xing-qiang, Peng Miaowei.

Do high-speed trains motivate the flow of corporate highly educated talents?

Business and Management Journal, 2017, 39(12): 89-107. ]

[本文引用: 1]

Bel G, Fageda X.

Getting there fast: Globalization, intercontinental flights and location of headquarters

[J]. Journal of Economic Geography, 2008, 8(4): 471-495.

DOI:10.1093/jeg/lbn017      URL     [本文引用: 1]

张学良.

中国交通基础设施促进了区域经济增长吗: 兼论交通基础设施的空间溢出效应

[J]. 中国社会科学, 2012(3): 60-77, 206.

[本文引用: 1]

[ Zhang Xueliang.

Does China's transportation infrastructure promote regional economic growth: The spatial spillover effect of transportation infrastructure

Social Sciences in China, 2012(3): 60-77, 206. ]

[本文引用: 1]

刘秉镰, 武鹏, 刘玉海.

交通基础设施与中国全要素生产率增长: 基于省域数据的空间面板计量分析

[J]. 中国工业经济, 2010(3): 54-64.

[本文引用: 2]

[ Liu Binglian, Wu Peng, Liu Yuhai.

Transportation infrastructure and the increase in TFP in China: Spatial econometric analysis on provincial panel data

China Industrial Economics, 2010(3): 54-64. ]

[本文引用: 2]

胡鞍钢, 刘生龙.

交通运输、经济增长及溢出效应: 基于中国省际数据空间经济计量的结果

[J]. 中国工业经济, 2009, 26(5): 5-14.

[本文引用: 1]

[ Hu Angang, Liu Shenglong.

Transportation, economic growth and spillover: Conclusion based on spatial econometrics

China Industrial Economics, 2009, 26(5): 5-14. ]

[本文引用: 1]

余泳泽, 庄海涛, 刘大勇, .

高铁开通是否加速了技术创新外溢? 来自中国230个地级市的证据

[J]. 财经研究, 2019, 45(11): 20-31, 111.

[本文引用: 4]

[ Yu Yongze, Zhuang Haitao, Liu Dayong, et al.

Does the opening of high-speed rail accelerate the spillover of technological innovation? Evidence from 230 prefecture-level cities in China

Journal of Finance and Economics, 2019, 45(11): 20-31, 111. ]

[本文引用: 4]

诸竹君, 黄先海, 王煌.

交通基础设施改善促进了企业创新吗?基于高铁开通的准自然实验

[J]. 金融研究, 2019(11): 153-169.

[本文引用: 4]

[ Zhu Zhujun, Huang Xianhai, Wang Huang.

Does traffic infrastructure promote innovation? A quasi-natural experiment based on the expansion of the high-speed railway network in China

Journal of Financial Research, 2019(11): 153-169. ]

[本文引用: 4]

何天祥, 黄琳雅.

高铁网络对湖南区域经济协同发展影响

[J]. 地理科学, 2020, 40(9): 1439-1449.

DOI:10.13249/j.cnki.sgs.2020.09.005      [本文引用: 2]

基于2009—2017年湖南省13个地级市面板数据,运用耦合协调度测度湖南区域经济协同发展水平,采用社会网络分析(SNA)分析高铁网络演化特征,结合利用空间杜宾模型(SDM)检验湖南省高铁网络发展对区域经济协同发展的影响机理,结果表明:① 高铁时代湖南省区域经济空间关联性升高,协同发展水平稳步上升;② 湖南省高铁网络的逐渐优化对本地协同发展水平产生显著的正向直接效应,但对其他地区却存在负向的间接溢出效应;③ 高铁网络对区域间产业、市场、交通和创新等功能结构协同产生双重影响,形成了对区域经济协同发展的“双刃剑”特征,即高铁网络对本地的市场、产业、交通和创新等功能结构协同既存在显著正向促进作用,也存在负向溢出的马太效应,在促进网络中心度较高的城市发展的同时,也可能阻碍相对弱势的边缘城市发展。

[ He Tian-xiang, Huang Linya.

Impact of high-speed rail network on regional economic coordinated development in Hunan Province based on empirical analysis

Scientia Geographica Sinica, 2020, 40(9): 1439-1449. ]

DOI:10.13249/j.cnki.sgs.2020.09.005      [本文引用: 2]

Significant changes have taken place in the regional development pattern in the era of high-speed rail. Based on the panel data of 13 prefecture-level cities in Hunan Province from 2009 to 2017, this paper uses the coupling coordination degree to measure the level of regional economic synergy, social network analysis (SNA) to analyze the evolution characteristics of the high-speed rail network, and Spatial Dubin Model (SDM) to test the influence mechanism of the development of Hunan's high-speed rail network to regional economic synergy. The results show: 1) In the era of high-speed rail, the spatial correlation of regional development increases in Hunan province, and the level of regional economic synergy rises steadily; 2) The gradual optimization of the high-speed rail network has a significantly direct positive effect on its own regional economic synergy, but an indirect negative spillover effect on other regions; 3) A “double-edged sword” feature of regional economic synergistic development has been produced due to the dual influences that the high-speed rail networks put on the structural coordination among interregional functions such as industry, market, transportation and innovation. In other words, we can say the high-speed rail networks has both positive and negative effects on those interregional functions which can also be explained by the Matthew effect. With the development of cities with high network centrality, the relatively disadvantaged ones on the edge may get the opposite result.

吉赟, 杨青.

高铁开通能否促进企业创新:基于准自然实验的研究

[J]. 世界经济, 2020, 43(2): 147-166.

[本文引用: 1]

[ Ji Yun, Yang Qing.

Can the high-speed rail service promote enterprise innovation? A study based on quasi-natural experiments

The Journal of World Economy, 2020, 43(2): 147-166. ]

[本文引用: 1]

卞元超, 吴利华, 白俊红.

高铁开通是否促进了区域创新?

[J]. 金融研究, 2019, 62(6): 132-149.

[本文引用: 4]

[ Bian Yuanchao, Wu Lihua, Bai Junhong.

Does high-speed rail improve regional innovation in China?

Journal of Financial Research, 2019, 62(6): 132-149. ]

[本文引用: 4]

刘承良, 管明明, 段德忠.

中国城际技术转移网络的空间格局及影响因素

[J]. 地理学报, 2018, 73(8): 1462-1477.

DOI:10.11821/dlxb201808006      [本文引用: 1]

基于2015年专利交易数据,融合数据挖掘、社会网络、空间分析等方法,从节点、关联、模块及影响因素4个方面揭示中国城际技术转移的空间格局及其影响因素:① 技术转移整体强度偏低,空间极化严重,长三角、珠三角、京津冀城市群成为技术转移的活跃地带。② 北京、深圳、上海、广州是全国技术转移网络的“集线器”,发挥城际技术流的集散枢纽和中转桥梁作用,中西部大部分城市处于网络边缘,整个网络发育典型的核心—边缘式和枢纽—网络式结构。③ 技术关联的空间层级和马太效应凸显,形成以北京、上海、广深为顶点的“三角形”技术关联骨架结构,技术流集聚在东部地带经济发达的城市之间和具有高技术能级的城市之间,中西部技术结网不足,呈现碎片化。④ 技术转移网络形成明显的四类板块(子群),具明显自反性和溢出效应,其空间聚类既有“近水楼台先得月”式块状集聚,也有“舍近求远”式点状“飞地”镶嵌。⑤ 城际技术流呈现等级扩散、接触扩散、跳跃扩散等多种空间扩散模式,其流向表现出经济指向性和行政等级指向性特征。⑥ 城市经济发展水平、对外开放程度、政策支持等主体属性和地理、技术、社会、产业邻近性的城市主体关系均会影响其技术转移强度。

[ Liu Chengliang, Guan Mingming, Duan Dezhong.

Spatial pattern and influential mechanism of interurban technology transfer network in China

Acta Geographica Sinica, 2018, 73(8): 1462-1477. ]

DOI:10.11821/dlxb201808006      [本文引用: 1]

On the basis of patent transaction data in 2015, spatial pattern of interurban technology transfer network in China was portrayed by integrating big data mining, social network, and GIS, from the perspectives of nodal strength and centrality, linkage intensity, and modular divisions. Then, its key influencing factors were identified as well using the Negative Binominal Regression Analysis. Some findings were ontained as follows. First of all, the intensity of interurban technology transfers in China is not well distributed with obvious polarization. Those cities with higher-level technology transfers are concentrated in the three urban clusters, namely, the Yangtze River Delta, the Pearl River Delta and Beijing-Tianjin-Hebei urban agglomeration. Secondly, a typical core-periphery structure with hub-and-spoke organization is evidently observed, which consists of several hubs and the majority of cities with far lower technology transfers. Beijing, Shenzhen, Shanghai and Guangzhou are acting as the pivot of the technology transfer network and playing a critical role in aggregating and dispersing technology flows. Thirdly, technology linkage intensities of urban pairs appear to be significantly uneven with hierarchies, centralizing in the three edges from Beijing to Shanghai, from Shanghai to Guangzhou and Shenzhen, and from Beijing to Guangzhou and Shenzhen, which shapes a triangle pattern. Fourthly, the technology transfer network is divided into four communities or plates, with prominent reflexivity and spillover effects, which is resulted from geographical proximity and technological complementary. Last but not least, spatial flows of technology are co-organized by a variety of spatial diffusion modes such as hierarchical diffusion, contact diffusion and leapfrog diffusion, owing to economic and administrative powers. They are greatly influenced by urban economic scale, foreign linkage, policy making, as well as multiple proximity factors related to geographical, technological, social and industrial proximities.

谢雅萍, 宋超俐.

风险投资与技术创新关系研究现状探析与未来展望

[J]. 外国经济与管理, 2017, 39(2): 47-59.

[本文引用: 1]

[ Xie Yaping, Song Chaoli.

Research status analysis of the relationship between venture capital and technological innovation and future prospects

Foreign Economics & Management, 2017, 39(2): 47-59. ]

[本文引用: 1]

管驰明, 马奇骐.

航空运输投资对经济增长的影响及其机制的实证研究

[J]. 中国软科学, 2010, 25(10): 47-56, 142.

[本文引用: 2]

[ Guan Chiming, Ma Qiqi.

Empirical analysis of dynamic effect on economic growth and its mechanism due to China's air transport investment

China Soft Science, 2010, 25(10): 47-56, 142. ]

[本文引用: 2]

冼国明, 严兵.

FDI对中国创新能力的溢出效应

[J]. 世界经济, 2005, 28(10): 18-25, 80.

[本文引用: 2]

[ Xian Guoming, Yan Bing.

The spill-over effect of FDI on China's innovation capacity

The Journal of World Economy, 2005, 28(10): 18-25, 80. ]

[本文引用: 2]

Bilotkach V.

Are airports engines of economic development? A dynamic panel data approach

[J]. Urban Studies, 2015, 52(9): 1577-1593.

DOI:10.1177/0042098015576869      URL     [本文引用: 1]

Percoco M.

Airport activity and local development: Evidence from Italy

[J]. Urban Studies, 2010, 47(11): 2427-2443.

DOI:10.1177/0042098009357966      URL     [本文引用: 1]

吴丰华, 刘瑞明.

产业升级与自主创新能力构建: 基于中国省际面板数据的实证研究

[J]. 中国工业经济, 2013, 30(5): 57-69.

[本文引用: 2]

[ Wu Fenghua, Liu Ruiming.

Industrial upgrading and independent innovation ability construction: Empirical research based on China's provincial panel data

China Industrial Economics, 2013, 30(5): 57-69. ]

[本文引用: 2]

牛方曲, 刘卫东.

中国区域科技创新资源分布及其与经济发展水平协同测度

[J]. 地理科学进展, 2012, 31(2): 149-155.

DOI:10.11820/dlkxjz.2012.02.003      [本文引用: 1]

21 世纪是知识经济时代,为了提高中国的科技创新能力以促进经济快速发展,各区域进行了大量科技创新资源的建设投入。但科技投入只有真正转化为创新能力、产出创新成果,才能促进经济的发展。本文分别从国立、地方、企业三方面综合评价了各省的科技创新资源,分析其空间分布格局,并结合经济发展水平,分析了区域科技创新资源与经济发展水平之间的相关性。研究表明,中国各省科技创新资源与经济发展水平总体上呈正相关趋势,但具体到各省份,随着科技创新资源的增加,其经济发展水平却有升有降。为充分发挥区域科技创新资源的作用,提高科研成果产出,区域科技创新资源与经济发展水平的配置关系仍需优化调整。探索中国科技创新资源与经济发展水平间的驱动与响应机制,建立科学合理的决策模型,实现国家用于宏观调控的国立科技创新资源、各地区自主决策的地方科技创新资源、市场驱动的企业科技创新资源三者有机结合、高效配置,以更大程度地实现科技产出,促进经济发展,对于转型期的中国,实现由依靠传统资源要素进入到依靠科技资源支撑和推动社会经济发展的新阶段,具有重要意义。

[ Niu Fangqu, Liu Weidong.

Relationships between scientific & technological resources and regional economic development in China

Progress in Geography, 2012, 31(2): 149-155. ]

DOI:10.11820/dlkxjz.2012.02.003      [本文引用: 1]

The 21st century is an era of knowledge. In China, to increase the innovation capacity and accelerate the economic development, every province is now injecting a great deal of investment in scientific & technological resources (STR). But only when STR produces outputs can it increase the economic progress. Classifying the regional STR into three groups: national, regional, and enterprise scales, we quantify regional STR, and analyze its spatial distribution. Based on the evaluation of regional economic development, we study the relationship between regional economy and STR. As a whole, the STR has a positive correlation with the economy level. It is not the same in different provinces. So it remains to be solved on how to deploy scientific & technological resources according to economy level and how to make full use of investment to boost economy. There is a need for further research on the driving mechanism between STR and economy to make relevant policies.

马光荣, 程小萌, 杨恩艳.

交通基础设施如何促进资本流动: 基于高铁开通和上市公司异地投资的研究

[J]. 中国工业经济, 2020, 37(6): 5-23.

[本文引用: 4]

[ Ma Guangrong, Cheng Xiaomeng, Yang Enyan.

How does transportation infrastructure affect capital flows: A study from high-speed rail and cross-region investment of listed companies

China Industrial Economics, 2020, 37(6): 5-23. ]

[本文引用: 4]

温忠麟, 刘红云. 中介效应和调节效应: 方法及应用[M]. 北京: 教育科学出版社, 2020: 15-89.

[本文引用: 2]

[ Wen Zhonglin, Liu Hongyun. Mediating and moderating effects:Methods and applications. Beijing, China: Educational Science Publishing House, 2020: 15-89. ]

[本文引用: 2]

贺灿飞, 谭卓立.

全球—地方互动与中国城市产业创新

[J]. 城市与环境研究, 2020, 7(2): 3-23.

[本文引用: 2]

[ He Canfei, Tan Zhuoli.

Global-local interactions and urban industrial innovation in China

Urban and Environmental Studies, 2020, 7(2): 3-23. ]

[本文引用: 2]

王春杨, 张超.

中国地级区域创新产出的时空模式研究: 基于ESDA的实证

[J]. 地理科学, 2014, 34(12): 1438-1444.

DOI:10.13249/j.cnki.sgs.2014.013.1438      [本文引用: 1]

以341个地级层面区域作为空间观测单元,以专利申请受理数作为衡量指标,对中国1997~2009年期间地级区域创新产出的时空特征进行了ESDA分析。结果表明:中国地级区域创新产出的地域性特征显著,首先表现为全局上的地理集聚和地带间的巨大差异;但不同于省级空间尺度下地带内部区域创新显著的极化特征,地级空间尺度区域创新却呈现多样化的局部空间依赖模式。整体上,创新产出在地级空间尺度上自然形成2个显著的空间集群,即东部沿海的H-H集群和西部内陆的L-L集群。东部H-H集群在考察期内由东北和华北地区逐渐向山东半岛、长三角和珠三角地区转移,西部L-L集群的空间发展则相对稳定;H-L型集群和L-H型集群主要分布在中部地区和东中西邻接地区,创新的空间过渡特征明显。最后在实证分析的基础上,提出了政策建议和未来研究的方向。

[ Wang Chunyang, Zhang Chao.

Spatial-temporal pattern of prefecture-level innovation outputs in China: An investigation using the ESDA

Scientia Geographica Sinica, 2014, 34(12): 1438-1444. ]

DOI:10.13249/j.cnki.sgs.2014.013.1438      [本文引用: 1]

With the development of the new economic geography, spatial structure study of regional innovation becomes more and more important. Using the methods of exploratory spatial data analysis(ESDA)and spatial analysis software Geoda, the article analyzes the spatial distribution of innovation outputs in China, measured by the number of patent applications examined, throughout 341 prefecture-level cities from 1997 to 2009 of China. A significantly high level of spatial concentration and regional difference of innovation outputs among Chinese cities has been captured by the exploratory spatial data analysis, and the concentration level has increased steadily over the past years. Different from the significant polarization characteristics of innovation within the provincial spatial scale regions, prefecture level regional innovation showing a diversity local spatial dependent model. On the whole, the output of innovation in the prefecture level spatial scales naturally formed two distinct spatial clusters, named the eastern H-H cluster and the western L-L cluster. The eastern H-H cluster gradually transferred to the Shandong Peninsula, the Huanghe River Delta and the Zhujiang River Delta from the northeast and North China in the study period, while the western L-L cluster spatial development maintains relatively stable. The H-L clusters and L-H clusters are mainly distributed in the middle and join area, which shows an obvious characteristic of transition. This study can provide a scientific basis for the spatial correlation of innovation outputs among prefecture-level cities, and reflects the knowledge spillover and its spatial limitations of regional innovation which make a significant contribution to the evolution of Spatial-temporal pattern of innovation in China. Finally, on the basis of empirical analysis, policy suggestions and future research direction are proposed.

刘承良, 牛彩澄.

东北三省城际技术转移网络的空间演化及影响因素

[J]. 地理学报, 2019, 74(10): 2092-2107.

DOI:10.11821/dlxb201910010      [本文引用: 4]

从全国—本地视角,以东北三省为研究区,基于2005-2015年的专利权转移数据,融合社会网络、GIS空间分析和计量方法,定量刻画东北三省技术转移网络的空间演化规律。结果显示:① 全国视角下东北三省城际技术转移网络呈现“核心—边缘”等级层次性结构,形成了专利技术由东北辐散向全国沿海辐合的空间格局。② 本地视角下东北三省技术转移网络呈现出向心收缩结网态势,“哈长沈大”四大核心城市在本地网络中扮演“技术守门者”角色。技术转移表现出“强全国化,弱本地化”特征。③ 东北三省城际技术流动既存在路径依赖,也不断涌现路径创造。全国视角下,技术转移以东北三省核心城市为流源,基本流向以北京、上海和深圳分别为枢纽的京津冀、长三角和珠三角城市群。本地城际技术转移以哈尔滨、长春、沈阳、大连为集散中心,集中于省内转移,呈现等级、接触和跳跃式混合扩散空间模式。④ 地理距离接近度、产业结构相似度、经济水平差异度、创新能力相似度、技术吸收能力、外商直接投资对东北三省城际技术转移存在一定影响。

[ Liu Chengliang, Niu Caicheng.

Spatial evolution and factors of interurban technology transfer network in Northeast China from national to local perspectives

Acta Geographica Sinica, 2019, 74(10): 2092-2107. ]

DOI:10.11821/dlxb201910010      [本文引用: 4]

Interurban technology transfer becomes an essential channel for regions or cities to obtain external knowledge. Based on patent transaction data among cities during 2005-2015, this study investigates the interurban technology transfer network of Northeast China, aiming to explore spatial evolution of technology transfer network in this region from national to local perspectives based on social network analysis (SNA). A negative binomial regression analysis further reveals the factors of interurban technology transfer network. The results of the study are as follows: (1) From the national perspective, the interurban technology transfer network of Northeast China presents a core-periphery structure. The spatial pattern of "divergence in the northeast region" and "convergence in the coastal areas" has been formed. (2) From the local perspective, the technology transfer network of Northeast China shows a centripetal contraction situation, and its four hubs, namely, Harbin, Changchun, Shenyang and Dalian, play the role of technology gatekeeper. The interurban technology transfer flows present the characteristic of strengthening nationalization and weakening localization, which are more likely to emerge between the Northeast-Southeast China rather than among the Northeast China. (3) Both path-dependence and path-creation exist in the spatial dynamics of intercity technology flows in Northeast China. From the national perspective, technology flows from Northeast China to the Beijing-Tianjin-Hebei, Yangtze River Delta and Pearl River Delta urban agglomerations with Beijing, Shanghai and Shenzhen as the core respectively, while the local intercity technology transfer in Northeast China presents a mixed diffusing mode including hierarchical, contagious and jump diffusions. In addition, the local network mainly focuses on intra-provincial technology flows which centered on Haibin, Changchun, Shenyang and Dalian. (4) Some drivers, such as geographical proximity, the similarity of industrial structure, economic differences, the similarity of innovation capability, technology absorptive capacity, foreign direct investment, are evidenced to play a significant or determining role in interurban technology transfer of Northeast China.

干春晖, 郑若谷, 余典范.

中国产业结构变迁对经济增长和波动的影响

[J]. 经济研究, 2011, 46(5): 4-16, 31.

[本文引用: 1]

[ Gan Chunhui, Zheng Ruogu, Yu Dianfan.

An empirical study on the effects of industrial structure on economic growth and fluctuations in China

Economic Research Journal, 2011, 46(5): 4-16, 31. ]

[本文引用: 1]

Boschma R, Iammarino S.

Related variety, trade linkages, and regional growth in Italy

[J]. Economic Geography, 2009, 85(3): 289-311.

DOI:10.1111/j.1944-8287.2009.01034.x      URL     [本文引用: 1]

Frenken K, van Oort F, Verburg T.

Related variety, unrelated variety and regional economic growth

[J]. Regional Studies, 2007, 41(5): 685-697.

DOI:10.1080/00343400601120296      URL     [本文引用: 1]

Fischer M M, Varga A.

Spatial knowledge spillovers and university research: Evidence from Austria

[J]. The Annals of Regional Science, 2003, 37(2): 303-322.

DOI:10.1007/s001680200115      URL     [本文引用: 1]

Fischer M M, Scherngell T, Jansenberger E.

The geography of knowledge spillovers between high-technology firms in Europe: Evidence from a spatial interaction modeling perspective

[J]. Geographical Analysis, 2006, 38(3): 288-309.

DOI:10.1111/j.1538-4632.2006.00687.x      URL     [本文引用: 1]

van Stel A J, Nieuwenhuijsen H R.

Knowledge spillovers and economic growth: An analysis using data of dutch regions in the period 1987-1995

[J]. Regional Studies, 2004, 38(4): 393-407.

DOI:10.1080/03434002000213914      URL     [本文引用: 1]

丁金学, 金凤君, 王姣娥, .

高铁与民航的竞争博弈及其空间效应: 以京沪高铁为例

[J]. 经济地理, 2013, 33(5): 104-110.

[本文引用: 2]

[ Ding Jinxue, Jin Fengjun, Wang Jiaoe, et al.

Competition game of high-speed rail and civil aviation and its spatial effect: A case study of Beijing-Shanghai high-speed rail

Economic Geography, 2013, 33(5): 104-110. ]

[本文引用: 2]

王姣娥, 杜德林, 金凤君.

多元交通流视角下的空间级联系统比较与地理空间约束

[J]. 地理学报, 2019, 74(12): 2482-2494.

DOI:10.11821/dlxb201912005      [本文引用: 3]

交通运输联系是区域空间级联系统与城市体系结构研究的重要视角之一,而不同交通运输方式表达的级联体系结构亦存在一定的差异。为综合研究交通运输体系刻画的空间级联系统及克服单一交通方式的局限性,基于长途汽车、高铁和航班时刻表数据,比较分析了多元交通网络的空间级联体系结构及其表达的城市网络组织体系,并进一步揭示了地理空间的约束作用。研究发现:① 每种交通运输方式适合在一定的空间尺度和行政范围内刻画和表达城市网络体系结构与城市联系,公路客运受省域行政范围约束,高铁联系具有廊道影响效应,航空运输体现全国和区域尺度较高层次的社会经济联系。② 从旅客直达视角分析,长途汽车与高铁的城际运输市场重叠最大,近年来长途汽车的运输市场受高铁影响明显。③ 地理空间是影响陆路交通运输和组织的重要约束因子,距离衰减效应明显;结合设施空间、行政空间和管理体制的作用,长途汽车和高铁运输在空间上形成分异的社区结构;航空运输由于具有超空间连接特性,既不遵循距离衰减规律,社区结构也并不明显。

[ Wang Jiaoe, Du Delin, Jin Fengjun.

Comparison of spatial structure and linkage systems and geographic constraints: A perspective of multiple traffic flows

Acta Geographica Sinica, 2019, 74(12): 2482-2494. ]

DOI:10.11821/dlxb201912005      [本文引用: 3]

Transportation connection has always been one of the important perspectives of studying spatial cascading systems and urban systems. Based on the timetable data in 2018 of inter-city coach, high-speed train and aviation, this paper builds networks of the three modes of transportation in China. Through the methods of the city-pair connectivity and community detection, this paper compares the spatial structure and linkage systems of multi-traffic flow network and reveals the geospatial constraints. The research results show that: (1) Different modes of transportation are suitable for portraying urban systems on different spatial and administrative scales. Inter-city coaches are constrained by the provincial administrative boundaries. High-speed train network shows the effect of corridors especially along the main trunks. The aviation network reflects the spatial relationship at the national scale. (2) From the perspective of the direct accessibility, there is a large spatial overlap between inter-city coaches and high-speed trains, and the market of inter-city coaches is obviously squeezed in recent years. For air transport, its frequency advantage mainly concentrates on the city-pairs with a long distance. The competition and complementarity of the three modes of transportation have a great impact on the urban system and are useful for the understanding of the spatial cascading system. (3) Geographical space, infrastructure space and administrative space constraint and management system are important factors affecting the transportation networks. Inter-city coach network and high-speed train network are obviously affected by distance attenuation effects, and they present significant community structures in the two networks, but their communities have different spatial characteristics. However, air transport does not follow the constraint of distance attenuation, and there is not an obvious community structure in the network. Factors related to the passenger transport market, such as social and economic links and tourism resources, play the important roles in the aviation network structure.

何舜辉, 杜德斌, 焦美琪, .

中国地级以上城市创新产出的时空格局演变及影响因素分析

[J]. 地理科学, 2017, 37(7): 1014-1022.

DOI:10.13249/j.cnki.sgs.2017.07.006      [本文引用: 2]

基于中国287个地级以上城市的专利、论文数据测度中国城市创新能力,揭示2001~2014年中国创新格局的时空演变特征,并分析城市创新能力的影响因素。研究表明:① 中国创新格局刻有明显的经济地带性差异的烙印,呈“东–中–西”逐渐衰减的态势,且随着时间推移,东部的压倒性地位进一步强化。② 基尼系数呈现先增后降的倒U型变化趋势,反映了整体由极化增长向优化均衡发展的空间过程。东部地区基尼系数维持相对稳定;创新能力较弱的中西部地区,城市间的创新能力差异却在不断缩小。③ 高水平和较高水平的创新城市分布具有很强的经济依赖性,广泛分布于发达城市,而中等水平以上的城市呈集聚分布态势,表现出明显的“集群化”特征,与中国主要城市群的分布高度吻合。④ Moran’s I值均为正,并呈不断上升之势,反映了城市间显著的空间相关性。高高集聚区主要分布于京津冀、长三角和珠三角地区,而中部和西部省会城市作为区域性的创新极,对周围城市的创新带动效应并不明显,辐射作用有限。⑤ 经济基础、人力资本、教育水平、FDI规模、制度因素、基础设施6方面因素不同程度地影响城市创新能力的形成。其中经济基础和人力资本因素影响较大,教育水平和制度因素次之,而FDI规模和基础设施水平对区域的创新能力影响相对较小,但仍表现为正向影响。

[ He Shunhui, Du Debin, Jiao Meiqi, et al.

Spatial-temporal characteristics of urban innovation capability and impact factors analysis in China

Scientia Geographica Sinica, 2017, 37(7): 1014-1022. ]

DOI:10.13249/j.cnki.sgs.2017.07.006      [本文引用: 2]

Based on patent and dissertation database of China’s 287 cities, the evaluation system of urban innovation capability was established in the perspective of innovation output, which is concerning the temporal-spatial evolution of innovation in China during 2001-2014. Then the article constructed the spatial econometric model to analyze influencing factors. The results are as follows: from 2001 to 2014, there are great differences of regional innovation output in China, and the output weakened from east to west, which showed an obvious trend of strengthen of western. The Gini Index of regional innovation capability in China raised at first, then decreased, which indicated that the innovation spatial patterns has evolved from polarized development to balanced development. The Gini Index of eastern where innovation output mainly concentrated in showed little change, in contract, the Gini Index of western showed declined. High level innovation hotspots widely distributed in developed cities, and the cities in the innovation secondary level are distributed in the form of agglomeration. Spatial dependence characteristic of city innovation level was significant, and further strengthen over time. H-H cluster areas are mainly distributed in Beijing-Tianjin-Hebei, the Yangtze River Delta and the Pearl River Delta, and the central and western provincial capital cities as regional innovation, didn’t have obvious driven effect to neighboring city and had limited radiation effect. Economic base, human capital, education level, FDI scale, institutional factors and infrastructure could promote the development of regional innovation. Especially, economic base and human capital were the most important factors, followed by education level and institutional factors.

刘晔, 曾经元, 王若宇, .

科研人才集聚对中国区域创新能力的影响

[J]. 经济地理, 2019, 39(7): 139-147.

[本文引用: 2]

[ Liu Ye, Zeng Jingyuan, Wang Ruoyu, et al.

The relationship between geographical concentration of researchers and regional innovation in China

Economic Geography, 2019, 39(7): 139-147. ]

[本文引用: 2]

连玉君, 廖俊平.

如何检验分组回归后的组间系数差异?

[J]. 郑州航空工业管理学院学报, 2017, 35(6): 97-109.

[本文引用: 1]

[ Lian Yujun, Liao Junping.

How to test the coefficient difference between groups after grouping regression?

Journal of Zhengzhou University of Aeronautics, 2017, 35(6): 97-109. ]

[本文引用: 1]

周锐波, 邱奕锋, 胡耀宗.

中国城市创新网络演化特征及多维邻近性机制

[J]. 经济地理, 2021, 41(5): 1-10.

[本文引用: 1]

[ Zhou Ruibo, Qiu Yifeng, Hu Yaozong.

Characteristics, evolution and mechanism of inter-city innovation network in China: From a perspective of multi-dimensional proximity

Economic Geography, 2021, 41(5): 1-10. ]

DOI:10.2307/141854      URL     [本文引用: 1]

宋文杰, 朱青, 朱月梅, .

高铁对不同规模城市发展的影响

[J]. 经济地理, 2015, 35(10): 57-63.

[本文引用: 1]

[ Song Wenjie, Zhu Qing, Zhu Yuemei, et al.

The impacts of high speed railways for different scale cities

Economic Geography, 2015, 35(10): 57-63. ]

[本文引用: 1]

王海江, 苗长虹.

中国航空联系的网络结构与区域差异

[J]. 地理科学, 2015, 35(10): 1220-1229.

DOI:10.13249/j.cnki.sgs.2015.010.1220      [本文引用: 2]

区域空间联系是不同客体之间基于空间法则下的相互作用现象,航空联系是诸多空间联系的一种。依据中国国内航班运营信息数据,运用基于O-D联系网络的GIS空间分析法,通过在大尺度数据空间内刻画每一条运营航线,深入解析全国通航中心城市间(不含港澳台)航空联系的网络结构,并与按重力模型计算的空间联系进行对比,分运距区段绘制中国城市空间相互作用联系与航空联系网络结构图谱,深入揭示航空联系的空间相互作用本质。进而分析东、中、西部及东北4区域间航空联系的网络结构差异,揭示中国航空联系的网络结构及区域结构特征。研究发现,城市航空联系网络与人口、经济之间的空间相互作用高度吻合,大城市集聚特征显著,空间分布较不平衡。依据进出港航班数量,可将通航中心城市划分为全国性、区域性、省域及地方性中心4个等级,其中北京、上海、广州为全国性中心。城市航空联系主要集中在600~2 000 km空间距离范围内,总体上服从空间距离衰减规律。全国航空客流的区域分布极不平衡,东部航空运输地位极其突出,西部相对较强,中部与东北相对较弱。

[ Wang Haijiang, Miao Changhong.

Network structure and regional difference of aviation links in China

Scientia Geographica Sinica, 2015, 35(10): 1220-1229. ]

DOI:10.13249/j.cnki.sgs.2015.010.1220      [本文引用: 2]

Regional spatial links is based on the interactivity phenomenon between different objects space, the aviation links is one kinds of space relationship. According to the national domestic flights information data(data of Hongkong, Macau and Tiwan excluding), using GIS spatial analysis method base on O-D network, by means of carve every aviation links within the large dimension data space, this article analyses the network structures of the aviation links between national center cities which open to air traffic, compares with special links in the abstract, and display airline network structure and its spatial atlases by different transport distance in China. Research shows, aviation network distribution highly coincide with population and economic space in China, large city agglomeration characteristics is significantly, the whole spatial distribution is not balanced. Based on the flights data, central cities can be divided into 4 grades as national, regional, provincial and local center, including Beijing, Shanghai, and Guangzhou as the national center. The study also found, national airlines mainly concentrated in the 600-2 000 km space distance range, and the aviation links network with the spatial links shows strong correlation during this range, indicates China’s domestic flights suitable travel during this spatial distance range, aviation links on the whole subject to spatial distance attenuating tendency. The regional distribution of the air passenger flows is extremely out-off-balance, the eastern air transport status is extremely prominent, the west is relatively strong, the central and northeast relatively weak. Air passenger flows interflows mainly concentrate on the eastern coastal to western, central and northeast regional, and extremely less between western, central and northeast regional.

王绍博, 郭建科, 罗小龙, .

高速铁路对中心城市航空客运市场的空间影响: 基于人均时间价值视角

[J]. 地理科学进展, 2019, 38(11): 1665-1674.

DOI:10.18306/dlkxjz.2019.11.002      [本文引用: 1]

揭示高铁对中国航空客运市场影响的空间分异特征,对于针对性协调2种交通方式的发展具有重要参考价值。运用标准差椭圆和交通综合效用分析方法,对中国中心城市高铁、航空客运市场实际发展现状及空间竞合分异特征进行分析。结果发现:① 高铁、航空客运市场均形成以武汉为重心点的空间发展格局;与高铁客运市场相比,航空客运市场区域发展更加均衡;与东西部中心城市相比,中部中心城市旅客出行选乘高铁的概率更高。② 人均时间价值与高铁优势距呈反比,优势距的不同使各中心城市高铁、航空客运市场范围存在明显的空间分异特征;基于交通出行综合效用视角,中国大多数中心城市间的交往,航空出行依旧是最好的选择。③ 高铁对航空客运市场的影响存在明显的空间分异特征。中部大部分中心城市受影响最大,是协调高铁、航空发展的关键区域;西部地区受交通区位条件及高铁发展滞后的影响,中心城市间交往时飞机仍是旅客主要的出行方式,在航空主导优势区依旧存在一定的市场空白。

[ Wang Shaobo, Guo Jianke, Luo Xiaolong, et al.

Spatial differentiation of the impact of high-speed rail on aviation passenger market in central cities of China

Progress in Geography, 2019, 38(11): 1665-1674. ]

DOI:10.18306/dlkxjz.2019.11.002      [本文引用: 1]

The spatial differentiation characteristics of the impact of high-speed rail on China's air passenger market is of important reference value for the coordinated development of the two modes of transportation. Using the standard deviation ellipse and traffic comprehensive utility analysis methods, this study analyzed the development status and spatial competition of the high-speed rail and air passenger transport market. The results show that: 1) The high-speed rail and aviation passenger markets have all formed a spatial pattern with Wuhan as the center. Compared with the high-speed rail, the development of the air passenger market area is more balanced; compared with the central cities of the eastern and western regions, the probability of passengers traveling with high-speed rail in the central cities of central China is higher. 2) The per capita time value is inversely proportional to the superiority distance of high-speed rail. The difference in superiority distance makes the high-speed rail and aviation passenger markets in central cities clearly different spatially. Based on the comprehensive utility perspective of traffic, for travels between most central cities in China, air travel is still the best choice. 3) The impact of high-speed rail on the air passenger transport market shows clear spatial differentiation. Most of the central cities in central China are the most affected, which is a key area for coordinating the development of high-speed railways and aviation. In the western region, due to the location conditions of transportation and the lagging development of high-speed rail, air transportation is dominant, and there is still a market gap in the aviation-dominated areas.

宋周莺, 车姝韵, 王姣娥.

东北地区的创新能力演化及其经济带动作用分析

[J]. 地理科学, 2016, 36(9): 1388-1396.

DOI:10.13249/j.cnki.sgs.2016.09.012      [本文引用: 1]

通过建立创新能力指标体系和计算模型,并采用相关分析、回归分析、变异系数等方法,从不同空间层级剖析了东北三省的创新能力发展格局及其对经济发展的带动作用,并根据研究结果提出了相关政策建议。研究发现:① 从创新能力分析,吉林、辽宁的创新能力增长较快而黑龙江相对较慢,省际差异呈扩大态势;地级市之间的创新能力相差悬殊,呈现明显的省会城市及门户城市集聚效应,但市级差异呈缩小态势。② 从创新贡献率分析,辽宁的科技创新转化能力及其对经济发展的带动相对较强,而吉林、黑龙江相对较弱;地级市差异较大,沈阳、大连、长春、大庆的创新贡献率比较突出,而锦州、吉林、盘锦、铁岭上升较快。③ 大部分地级市的创新发展对经济带动模式为“低创新能力-弱经济带动”和“高创新能力-强经济带动”,说明各地级市的创新发展及其对经济带动的两极分化较严重。

[ Song Zhouying, Che Shuyun, Wang Jiaoe.

The spatio-temporal analysis of regional innovation capacity and its economic contribution in northeast China

Scientia Geographica Sinica, 2016, 36(9): 1388-1396. ]

DOI:10.13249/j.cnki.sgs.2016.09.012      [本文引用: 1]

In the globalization and information era, with the development of knowledge economy, regional innovation capacity is increasingly becoming the determinant of competitive advantage. Especially for Northeastern Old Industrial Base, the innovation of science and technology has become the key support for improving comprehensive regional strength, and the strong lead for changing the mode of regional industrial structure and production. It is against such a background that this article takes a close examination on the spatio-temporal evolution of innovation capacity and its economic contribution in Northeast China. Based on literature review, principal components analysis and fuzzy analytic hierarchy process, we establish innovation capacityindex(ICI), in order to provide a more comprehensive explanation of innovation development trends. We also try to gauge and justify the economic impacts of innovation development, by regression analysis and modeling economic contribution of innovation(ECI). The findings of this article are salutary. In general, in 2003-2014, Northeast China has achieved a great development in regional innovation capacity, and has improved the economic contribution of innovation. But its rank in China has declined, as the development of ICI in Western China and Central China are much faster. Firstly, the development of ICI in Jilin and Liaoning Province are much faster than Heilongjiang, while provincial gap is becoming bigger. At local scale, there are significant regional differences in ICI, while regional digital gap is becoming smaller. Secondly, the spatial distribution of ICI has obviously positive correlation with local GDP development. At provincial scale, innovation in Liaoning Province has strongly promoted economic development, while Jilin and Heilongjiang Province are much weakly. At local scale, the difference of ECI among cities is also very remarkable, while Shenyang, Dalian, Changchun and Daqing share much higher ECI. Thirdly, the development model of most cities are ‘low ICI-low ECI’ and ‘high ICI-high ECI’, which illustrate that there are critical spatial difference between cities’innovation capacity and its economic contribution.

何瑛, 于文蕾, 杨棉之.

CEO复合型职业经历、企业风险承担与企业价值

[J]. 中国工业经济, 2019, 36(9): 155-173.

[本文引用: 1]

[ He Ying, Yu Wenlei, Yang Mianzhi.

CEOs with rich career experience, corporate risk-taking and the value of enterprises

China Industrial Economics, 2019, 36(9): 155-173. ]

[本文引用: 1]

Cumming D, Dai N.

Local bias in venture capital investments

[J]. Journal of Empirical Finance, 2010, 17(3): 362-380.

DOI:10.1016/j.jempfin.2009.11.001      URL     [本文引用: 1]

龙玉, 李曜.

风险投资应该舍近求远吗: 基于我国风险投资区域退出率的实证研究

[J]. 财贸经济, 2016(6): 129-145.

[本文引用: 1]

[ Long Yu, Li Yao.

Should venture capitalists seek far? A comparative study of regional exit rate of venture capital investments in China

Finance & Trade Economics, 2016(6): 129-145. ]

[本文引用: 1]

韦朕韬, 孙晋云.

高铁开通能否促进我国中西部地区吸引FDI?

[J]. 南方经济, 2020, 38(1): 33-45.

[本文引用: 1]

[ Wei Zhentao, Sun Jinyun.

Can high-speed railway opening promote FDI attraction in Chinese central and western regions?

South China Journal of Economics, 2020, 38(1): 33-45. ]

[本文引用: 1]

/