A review and outlook of machine learning-based travel choice behavior research
Received date: 2023-07-30
Revised date: 2024-06-02
Online published: 2024-08-22
Supported by
National Natural Science Foundation of China(52302404)
National Natural Science Foundation of China(52102384)
National Natural Science Foundation of China(71871043)
Key R&D Program of Ningxia(2023BBF01004)
In recent years, machine learning models have been widely introduced into spatiotemporal travel behavior modeling and prediction research due to their superior predictive performance and flexibility, but their underlying research framework and technical routes are still unclear. This article reviewed the typical literature published in related fields from 2010 to 2022 to examine the impact of the application of machine learning algorithms on the spatiotemporal travel choice behavior research paradigm, summarize the key issues to be solved in the current application and the potential influencing factors and mechanisms that affect the effectiveness of spatiotemporal travel choice behavior modeling, and foresee the directions to be focused on in future research. The effective application of machine learning algorithms to the study of spatiotemporal travel choice behavior requires not only the support of model architectures and decision mechanisms that fit the decision scenarios, but also to overcome the inherent shortcomings of all learning processes and methods, and fully consider the impact of external research conditions on the simulation and prediction performance of spatiotemporal travel choice behavior. Existing machine learning models can already fit most spatiotemporal travel choice decision scenarios, and diversified and efficient machine learning algorithms will certainly give a strong impetus to the development of spatiotemporal travel choice behavior research. Limited model interpretability remains the fundamental reason why machine learning-based spatiotemporal travel behavior models are difficult to be widely trusted. Facing the opportunities and challenges of spatiotemporal travel choice behavior research in the era of big data, it will be an important development trend to fully integrate the respective advantages of machine learning algorithms and classical decision theories and models, while improving the simulation accuracy and model interpretability of spatiotemporal travel choice behavior.
WANG Jiangbo , LIAN Zhirui , FENG Tao , TANG Li , LIU Kai . A review and outlook of machine learning-based travel choice behavior research[J]. PROGRESS IN GEOGRAPHY, 2024 , 43(8) : 1649 -1665 . DOI: 10.18306/dlkxjz.2024.08.014
表1 应用的机器学习算法分类及主要文献Tab.1 Classification of applied machine learning algorithms and the main related publications |
[1] |
|
[2] |
|
[3] |
王灿, 王德, 朱玮, 等. 离散选择模型研究进展[J]. 地理科学进展, 2015, 34(10): 1275-1287.
[
|
[4] |
鲜于建川, 隽志才, 朱泰英. 后悔理论视角下的出行选择行为[J]. 交通运输工程学报, 2012, 12(3): 67-72, 100.
[
|
[5] |
佐佐木邦明, 藤井聪, 山本俊行. 交通行为分析与建模[M].孙轶琳, 刘锴, 李昂, 译. 北京: 中国建筑工业出版社, 2022.
[
|
[6] |
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
韩皓, 谢天. 基于潜变量RF的通勤高峰期小汽车出行方式向公交转移行为研究[J]. 内蒙古大学学报(自然科学版), 2020, 51(2): 211-218.
[
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
靳文舟, 韩博文, 郝小妮, 等. 基于小波神经网络的定制公交目标乘客出行意愿预测[J]. 重庆交通大学学报(自然科学版), 2018, 37(8): 81-87.
[
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
邓琼华, 何继宏. 基于LS-LSVM的居民出行方式选择预测模型及影响因素研究[J]. 武汉理工大学学报(交通科学与工程版), 2015, 39(4): 892-896.
[
|
[30] |
|
[31] |
|
[32] |
|
[33] |
苏敏, 栾维新, 马瑜, 等. 京沪高速客运通道旅客出行选择影响因素研究[J]. 铁道运输与经济, 2019, 41(1): 58-63.
[
|
[34] |
|
[35] |
|
[36] |
谷剑锋, 陈鹏, 胡志勇. 基于贝叶斯网络的高速铁路旅客出行方式预测研究[J]. 铁道运输与经济, 2018, 40(4): 58-63.
[
|
[37] |
|
[38] |
|
[39] |
|
[40] |
温惠英, 任倩. 基于Two-step Cluste的出行选择行为研究[J]. 公路工程, 2019, 44(2): 69-72.
[
|
[41] |
张瑞婷, 左大杰, 熊巧, 等. 基于Vague集的铁路旅客乘车选择行为研究[J]. 交通运输工程与信息学报, 2018, 16(2): 44-49.
[
|
[42] |
李海军, 李引珍, 周鹏, 等. 基于粗糙集聚类算法的铁路通道客运市场细分[J]. 交通运输系统工程与信息, 2018, 18(3): 9-14, 21.
[
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
赵思萌. 基于强化学习算法原则的出行选择行为建模与仿真[J]. 大连交通大学学报, 2020, 41(6): 6-11.
[
|
[50] |
|
[51] |
|
[52] |
|
[53] |
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
吴文静, 景鹏, 贾洪飞, 等. 基于K均值聚类与随机森林算法的居民低碳出行意向数据挖掘[J]. 华南理工大学学报(自然科学版), 2019, 47(7): 105-111.
[
|
[64] |
|
[65] |
胡郁葱, 陈杰, 邹小健, 等. 基于两阶段聚类的电动自行车出行者选择研究[J]. 广西师范大学学报(自然科学版), 2017, 35(3): 22-29.
[
|
[66] |
|
[67] |
杨励雅, 邵春福,
[
|
[68] |
|
[69] |
吴学新, 凌帅, 李庚. 基于强化学习的限行政策下双模式出发时间选择仿真研究[J]. 交通信息与安全, 2017, 35(4): 52-62.
[
|
[70] |
彭辉, 王剑坡, 张娜. 基于SVM的高原川道型城市通勤者出行方式选择研究[J]. 重庆交通大学学报 (自然科学版), 2021, 40(11): 18-23.
[
|
[71] |
|
[72] |
|
[73] |
鲜于建川, 隽志才, 朱泰英. 基于贝叶斯网络的出行选择行为分析[J]. 交通运输系统工程与信息, 2011, 11(5): 167-172.
[
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
|
[88] |
李艳霞, 柴毅, 胡友强, 等. 不平衡数据分类方法综述[J]. 控制与决策, 2019, 34(4): 673-688.
[
|
[89] |
黄海松, 魏建安, 康佩栋. 基于不平衡数据样本特性的新型过采样SVM分类算法[J]. 控制与决策, 2018, 33(9): 1549-1558.
[
|
[90] |
|
[91] |
洪永淼, 汪寿阳. 大数据、机器学习与统计学: 挑战与机遇[J]. 计量经济学报, 2021, 1(1): 17-35.
[
|
/
〈 |
|
〉 |