Progress of research on compound extreme event and hazard assessment
Received date: 2022-07-29
Revised date: 2022-11-21
Online published: 2023-03-27
Supported by
National Natural Sciences Foundation of China(42077441)
National Natural Sciences Foundation of China(42001096)
In recent years, the frequent extreme weather and climate events have attracted wide attention. Their disastrous process often stems from the interaction of multiple factors, which brings many challenges to regional security and risk prevention. Starting from a bibliometric analysis, this article systematically reviewed the progress of research on compound extreme events by focusing on the conceptual features, classification, and driving factors of such events, and summarizing the main methods for the spatial-temporal dependance analysis and hazard assessment of compound events. The review found that: 1) The research on compound extreme events has developed rapidly in recent years, and the types of events studied have become increasingly rich and diverse. 2) The research system has been established and increasingly improved, with significant advance in the research on the conceptual characteristics, dependance, causative mechanism, and risk assessment. 3) The research techniques were constantly evolving. Statistical modeling for joint probability based on Copula has developed from two-dimensional to multidimensional, and from static to dynamic; the precision of numerical simulations represented by the coupled hydrological-hydrodynamic and ocean models has been continuously improved. But further in-depth studies are still needed, especially for some key and difficult problems, such as diagnosing and modeling the complex dependance structure of temporally and spatially compounding events, the synthetic effect of weather system, large-scale circulation and human activity impact on the formation of compound events, hazard scenarios and multidimensional joint probability analysis of compound events, and so on. In addition, it is urgent to explore the non-stationary changes of the marginal distribution and dependance structure of compound events under climate change and their impact on the risk of compound events in the future.
FANG Jian , TAO Kai , MU Sha , FANG Jiayi , DU Shiqiang . Progress of research on compound extreme event and hazard assessment[J]. PROGRESS IN GEOGRAPHY, 2023 , 42(3) : 587 -601 . DOI: 10.18306/dlkxjz.2023.03.014
表1 复合极端事件类型分类、特征及案例Tab.1 Classification, characteristics and cases of compound extreme events |
类型 | 特征描述 | 案例 | 文献 |
---|---|---|---|
时空同步型 | 复合事件的多个致灾因子同时出现在同一地点 | 高温—干旱(干热复合) | [24⇓-26] |
低温—冷冻(湿冷复合) | [27-28] | ||
河流洪水与风暴潮复合 | [18] | ||
强降水与强风复合 | [29⇓-31] | ||
强降水与风暴潮复合 | [32-33] | ||
台风、暴雨、风暴潮、洪水等多碰头 | [31] | ||
同地—继发型 | 复合事件的不同致灾因子先后出现在同一地点 | 前期高土壤湿度与后期强降水复合 | [20,34] |
前期森林火灾与后期强降水复合 | [35] | ||
日间极端高温与夜间极端高温复合 | [36-37] | ||
旱涝急转 | [38] | ||
异地—同发型 | 复合事件的不同致灾因子同时出现在不同地点 | 不同地区同时发生干旱造成粮食危机 | [39-40] |
大气遥相关或大气阻塞系统影响下不同地区同时发生极端天气事件 | [41-42] | ||
异地—继发型 | 复合事件的致灾因子在不同时间出现在不同地点 | 不同支流及上下游暴雨洪水的相继发生 | [23,43] |
表2 常见复合事件类型及其驱动和影响因素Tab.2 Types of common compound extreme events and their driving and influencing factors |
复合事件类型 | 相关天气系统/驱动因素/物理机制 |
---|---|
强降水与风暴潮/强风 | 热带气旋、大气河流、极端温带气旋、锋面系统、海平面上升 |
内陆暴雨洪涝 | 大气河流、锋面系统、季风、强对流风暴和热带气旋 |
高温与干旱 | 阻塞高压、大气静稳模式、副热带高压、高压脊、大气长波振荡、陆气耦合反馈作用 |
高温与湿润 | 高温增强大气持水能力(Clapeyron-Clausius方程),增加大气湿度 |
低温与干旱 | 干冷空气的寒潮、冷高压、极涡 |
低温与湿润 | 暴雪和冷锋系统、极涡、冷涡 |
日间—夜间持续高温 | 城市化、异常的反气旋、稳定的大气层结 |
高温热浪—暴雨洪水 | 高温增加感热通量和水汽辐合、增强大气不稳定度和暴雨强度 |
高温干旱森林火灾 | 大气阻塞(高温、干旱)、异常反气旋(强风)、陆气耦合反馈作用 |
[1] |
|
[2] |
吴绍洪, 高江波, 邓浩宇, 等. 气候变化风险及其定量评估方法[J]. 地理科学进展, 2018, 37(1): 28-35.
[
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
IPCC. Managing the risks of extreme events and disasters to advance climate change adaptation: A special report of working groups I and II of the Intergovernmental Panel on Climate Change[R]. Cambridge, UK: Cambridge University Press, 2012.
|
[8] |
IPCC. Summary for policymakers[M]// IPCC.Climate change 2021: The physical science basis. Cambridge, UK: Cambridge University Press, 2021.
|
[9] |
余荣, 翟盘茂. 关于复合型极端事件的新认识和启示[J]. 大气科学学报, 2021, 44(5): 645-649.
[
|
[10] |
|
[11] |
史培军, 吕丽莉, 汪明, 等. 灾害系统: 灾害群、灾害链、灾害遭遇[J]. 自然灾害学报, 2014, 23(6): 1-12.
[
|
[12] |
|
[13] |
|
[14] |
史培军. 再论灾害研究的理论与实践[J]. 自然灾害学报, 1996, 5(4): 6-17.
[
|
[15] |
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
贺芳芳, 胡恒智, 董广涛, 等. 上海中心城区复合洪涝淹没模拟及未来重现预估[J]. 灾害学, 2020, 35(4): 93-98, 134.
[
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
赵东升, 张家诚, 邓思琪, 等. 1960—2018年中国西南地区旱涝急转的时空变化特征[J]. 地理科学, 2021, 41(12): 2222-2231.
[
|
[39] |
|
[40] |
|
[41] |
|
[42] |
|
[43] |
孙永刚, 孟雪峰, 仲夏, 等. 河套气旋发展东移对一次北京特大暴雨的触发作用[J]. 高原气象, 2014, 33(6): 1665-1673.
[
|
[44] |
|
[45] |
|
[46] |
|
[47] |
郭生练, 闫宝伟, 肖义, 等. Copula函数在多变量水文分析计算中的应用及研究进展[J]. 水文, 2008, 28(3): 1-7.
[
|
[48] |
|
[49] |
冯介玲, 李宁, 刘丽, 等. 基于混合Copula模型的灾害相关结构分析: 以内蒙古中部强沙尘暴为例[J]. 灾害学, 2019, 34(3): 216-220, 226.
[
|
[50] |
夏军, 佘敦先, 杜鸿. 气候变化影响下极端水文事件的多变量统计模型研究[J]. 气候变化研究进展, 2012, 8(6): 397-402.
[
|
[51] |
刘章君, 郭生练, 许新发, 等. Copula函数在水文水资源中的研究进展与述评[J]. 水科学进展, 2021, 32(1): 148-159.
[
|
[52] |
|
[53] |
陈心池, 张利平, 闪丽洁, 等. 基于Copula函数的汉江中上游流域极端降雨洪水联合分布特征[J]. 长江流域资源与环境, 2015, 24(8): 1425-1433.
[
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
李双双, 杨赛霓, 刘宪锋, 等. 2008年中国南方低温雨雪冰冻灾害网络建模及演化机制研究[J]. 地理研究, 2015, 34(10): 1887-1896.
[
|
[61] |
李双双, 杨赛霓, 刘宪锋. 面向非过程的多灾种时空网络建模: 以京津冀地区干旱热浪耦合为例[J]. 地理研究, 2017, 36(8): 1415-1427.
[
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
|
[86] |
|
[87] |
陈子燊, 施伟勇, 路剑飞. 波高周期联合分布四种重现水平对比分析[J]. 热带海洋学报, 2018, 37(4): 18-23.
[
|
[88] |
方佳毅, 殷杰, 石先武, 等. 沿海地区复合洪水危险性研究进展[J]. 气候变化研究进展, 2021, 17(3): 317-328.
[
|
[89] |
黄强, 陈子燊. 基于二次重现期的多变量洪水风险评估[J]. 湖泊科学, 2015, 27(2): 352-360.
[
|
[90] |
|
[91] |
|
[92] |
|
[93] |
|
[94] |
王璐阳, 张敏, 温家洪, 等. 上海复合极端风暴洪水淹没模拟[J]. 水科学进展, 2019, 30(4): 546-555.
[
|
[95] |
|
[96] |
|
[97] |
|
[98] |
|
/
〈 |
|
〉 |