Landscape multifunctionality change in rapidly urbanized areas of the Yangtze River Delta:A case study of Suzhou City
Received date: 2020-04-27
Request revised date: 2020-06-01
Online published: 2021-04-28
Supported by
National Natural Science Foundation of China, No(41971234)
National Natural Science Foundation of China, No(41971235)
Major Program of National Social Science Foundation of China, No(19ZDA096)
Copyright
Assessing the characteristics of landscape multifunctionality change in rapidly urbanized areas is critical for understanding resource allocation and optimization under the background of rural-urban development and transformation and for formulating reasonable regional land management and planning policies. This study took Suzhou City, the most prominent representative city in the urbanization process in the Yangtze River Delta Economic Zone, as the research area. Six landscape multifunctionality indicators are selected, including residential support, food supply, habitat maintenance, water conservation, climate regulation, and soil retention. Based on the 1 km landscape units, change in hotspots of regional landscape multifunctionality and trade-off co-evolution relationships were analyzed through spatial analysis, self-organizing feature maps (SOFM) network model, and other methods. The research shows that: 1) Affected by urban expansion, landscape multifunctions in Suzhou during 2000-2015 were dominated by the spread of residential support functions. Other landscape functions represented a differentiated shrinking trend, of which the function of food supply and habitat maintenance was weakened most significantly, and the spatial distribution characteristics of the three regulatory functions were consistent. 2) Landscape multifunctionality in Suzhou has gradually increased over time, and its high-value (>2) areas are concentrated in forest, grassland, and farmland areas. The spatiotemporal change of regional landscape multifunctionality varied from strong to weak and gradually stabilized under the influence of socioeconomic development, the hotspots of change were mainly distributed in rural areas and rural-urban junctions, and the cold spots are mainly based on ecological spatial agglomerations. 3) Trade-off relationships between landscape multifunctions during the study period did not change over time, but there is a volatile change in trade-off degrees. Combining the features of multifunctional trade-offs and the changing pattern of multifunctionality hotspots, Suzhou City can be divided into eight types of dominant landscape functions and four types of rural-urban development zones in landscape units and township administrative units. Overall, the advantages of landscape multifunctionality in rapidly urbanized areas of the Yangtze River Delta present a circular spatial migration process of "city → near suburbs → far suburbs → rural areas". However, land use diversifications mapped out by the multifunctionality will inevitably lead to more land use conflicts. Policymakers should consider the design and implementation of landscape management or land use policies from a multi-scale spatiotemporal coupling perspective.
LIANG Xinyuan , JIN Xiaobin , HAN Bo , SUN Rui , ZHANG Xiaolin , ZHOU Yinkang . Landscape multifunctionality change in rapidly urbanized areas of the Yangtze River Delta:A case study of Suzhou City[J]. PROGRESS IN GEOGRAPHY, 2021 , 40(2) : 207 -219 . DOI: 10.18306/dlkxjz.2021.02.003
表1 景观多功能描述及计算方法Tab.1 Landscape multifunctionality description and calculation methods |
景观功能 | 功能描述 | 应用模型 | 计算过程 |
---|---|---|---|
居住承载(RS) | 为人类生存需求提供居住空间的能力 | 基于土地利用数据的人口空间分布回归模型[31,32] | pop是某模拟单元的人口总数,n是土地利用类型数量,ki是某模拟单元第i种土地利用类型系数,si是某模拟单元第i种土地利用类型的面积,b为常数项 |
粮食供给(GS) | 为人类生存需求提供粮食的能力 | 基于耕地与EVI的粮食产量空间分配模型[33,36] | Gij是j乡镇i农田单元作物产量,Gj是j乡镇的总产量,EVIij是j乡镇i农田单元的EVI值,EVIsum,j是j乡镇的EVI总值 |
水源涵养(WC) | 为调节径流和河流流量的地块产水能力 | 生态系统服务和交易的综合评估模型(InVEST)[37] | Yieldjx为产水量,j为某一土地利用类型,x代表某一栅格单元,ETmean,jx为平均实际蒸散发量,Rainx为年降雨量 |
生境维持(HM) | 提供适合于个体和种群生存条件的能力 | 生态系统服务和交易的综合评估模型(InVEST)[37] | Qxj为土地利用类型j中的斑块组x的生境质量,Hj为土地利用类型j的生境适宜性,Dxj为土地利用类型j中栅格x的总威胁水平,z和k为比例因子(常数) |
气候调节(CR) | 通过储存和固持碳控制温室气体排放的能力 | 生态系统服务和交易的综合评估模型(InVEST)[37] | Cj为土地利用类型j的碳储量,Cabove,j为植被地上碳库,Cbelow,j为植被地下碳库,Cdead,j为凋落物碳库,Csoil,j为表层土壤有机碳库 |
土壤保持(SR) | 减少水土流失和保持土壤养分的能力 | 修正的通用土壤流失方程(RUSLE)[38] | A为土壤流失量,R为降雨及径流因子,K为土壤可蚀性因子,LS为坡度坡长因子,C为地表植被覆盖因子,P为水土保持措施因子 |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
刘焱序, 傅伯杰 . 景观多功能性: 概念辨析、近今进展与前沿议题[J]. 生态学报, 2019,39(8):2645-2654.
[
|
[7] |
|
[8] |
刘紫玟, 尹丹, 黄庆旭 , 等. 生态系统服务在土地利用规划研究和应用中的进展: 基于文献计量和文本分析法[J]. 地理科学进展, 2019,38(2):236-247.
[
|
[9] |
|
[10] |
|
[11] |
|
[12] |
|
[13] |
|
[14] |
|
[15] |
彭建, 吕慧玲, 刘焱序 , 等. 国内外多功能景观研究进展与展望[J]. 地球科学进展, 2015,30(4):465-476.
[
|
[16] |
|
[17] |
|
[18] |
|
[19] |
傅伯杰, 张立伟 . 土地利用变化与生态系统服务: 概念、方法与进展[J]. 地理科学进展, 2014,33(4):441-446.
[
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
蔡建明, 杨振山 . 国际都市农业发展的经验及其借鉴[J]. 地理研究, 2008,27(2):362-374.
[
|
[25] |
孙一鸣, 刘红玉, 李玉凤 , 等. 基于水文地貌法模型的城市湿地水环境功能评估: 以南京仙林典型湿地为例[J]. 生态学报, 2016,36(10):3032-3041.
[
|
[26] |
韩博, 金晓斌, 项晓敏 , 等. 基于“要素—景观—系统”框架的江苏省长江沿线生态修复格局分析与对策[J]. 自然资源学报, 2020,35(1):141-161.
[
|
[27] |
|
[28] |
|
[29] |
李广东, 方创琳 . 城市生态—生产—生活空间功能定量识别与分析[J]. 地理学报, 2016,71(1):49-65.
[
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
郄瑞卿, 关侠, 鄢旭久 , 等. 基于自组织神经网络的耕地自然质量评价方法及其应用[J]. 农业工程学报, 2014,30(23):298-305.
[
|
[42] |
毛祺, 彭建, 刘焱序 , 等. 耦合SOFM与SVM的生态功能分区方法: 以鄂尔多斯市为例[J]. 地理学报, 2019,74(3):460-474.
[
|
[43] |
梁鑫源, 李阳兵, 邵景安 , 等. 三峡库区山区传统农业生态系统转型[J]. 地理学报, 2019,74(8):1605-1621.
[
|
[44] |
|
[45] |
彭建, 刘志聪, 刘焱序 , 等. 京津冀地区县域耕地景观多功能性评价[J]. 生态学报, 2016,36(8):2274-2285.
[
|
[46] |
|
[47] |
|
[48] |
傅伯杰, 刘焱序 . 系统认知土地资源的理论与方法[J]. 科学通报, 2019,64(21):2172-2179.
[
|
[49] |
|
[50] |
|
[51] |
彭建, 胡晓旭, 赵明月 , 等. 生态系统服务权衡研究进展: 从认知到决策[J]. 地理学报, 2017,72(6):960-973.
[
|
/
〈 |
|
〉 |