Characteristics of jobs-housing spatial distribution in Beijing based on mobile phone signaling data
Received date: 2019-11-25
Request revised date: 2020-04-22
Online published: 2021-02-28
Supported by
National Natural Science Foundation of China(41601168)
National Natural Science Foundation of China(41601122)
National Natural Science Foundation of China(51878052)
Natural Science Foundation of Beijing(9182007)
Copyright
As the most important parts of urban systems, jobs and housing spaces and their balance directly affect the spatial structure of cities, the behavior and experience of the residents, and the harmony and livability of the society. This study used more than 100 million records of mobile phone signaling data, covering the whole city of Beijing and over a period of one month, to identify the jobs-housing spaces by targeting the origin-destination (OD) oriented connections applying the density-based spatial clustering of applications with noise (DBSCAN) method. Furthermore, this study explored the spatial distribution pattern and matching characteristics of Beijing's jobs and housing spaces from different spatial scales by using various measurement methods of jobs-housing balance. The spatial scales for analysis cover the whole city, ring roads, districts, and residential community and town and townships, and the methods applied include the spatial mismatch index, deviation degree, commuting flow rate, and so on. The results show that: 1) Mainly influenced by the spatial layout of the Beijing Master Plan, Beijing's housing space is characterized by dispersion at the large scale and agglomeration at the small scale, showing a pattern of scattered groupings. In contrast, its working space presents features of agglomeration at the large scale and dispersion at the small scale, retaining a significant single-centered layout. 2) Although working in local areas is the first choice for people at both the ring road scale and the district scale, there are still a great number of people works outside their residential areas. The degree of jobs-housing mismatch gradually decreases from the central city to the periphery no matter which method was adopted or at which scale. At the residential community and town and township scale, however, a more detailed feature of three-zones, with job agglomeration inside, housing agglomeration in between, and balanced distribution outside, was observed. 3) Both the general lack of jobs in certain areas caused by the high concentration of working space and the two-way commuting phenomenon in the majority of the areas caused by the high spatial concentration of jobs indicate the necessity of spatial reorganization of residential function and employment function. Specifically, for the regions with a high proportion of two-way commuting flow between them, such as Chaoyang-Changping, Tongzhou-Daxing, Haidian-Changping, Mentougou-Shijingshan, and Chaoyang-Tongzhou, further in-depth investigation should be conducted to find out the reasons for its formation and then possible industrial adjustment or functional reconstruction from the city level should be coordinated. Relying on big data, on the one hand, the job preference and demand of local residents can be identified, so the types and number of jobs in each region could be adjusted accordingly; on the other hand, the proper locations for new job and residential centers may be identified to help rearrange the land use of the whole city.
WANG Bei , WANG Liang , LIU Yanhua , YANG Bo , HUANG Xiaochun , YANG Ming . Characteristics of jobs-housing spatial distribution in Beijing based on mobile phone signaling data[J]. PROGRESS IN GEOGRAPHY, 2020 , 39(12) : 2028 -2042 . DOI: 10.18306/dlkxjz.2020.12.006
表1 北京市各区居住人口的就业流向及流量比重Tab.1 Bi-directional jobs-housing flow between districts in Beijing (%) |
就业 | 居住 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
昌平区 | 朝阳区 | 大兴区 | 东城区 | 房山区 | 丰台区 | 海淀区 | 怀柔区 | 门头 沟区 | 密云区 | 平谷区 | 石景 山区 | 顺义区 | 通州区 | 西城区 | 延庆区 | |
昌平区 | 74.74 | 5.87 | 0.76 | 0.73 | 0.47 | 1.53 | 10.24 | 0.30 | 0.33 | 0.17 | 0.14 | 0.40 | 1.81 | 0.80 | 1.15 | 0.58 |
朝阳区 | 9.77 | 49.85 | 3.33 | 3.46 | 0.76 | 6.16 | 8.31 | 0.23 | 0.27 | 0.21 | 0.25 | 0.88 | 4.19 | 9.56 | 2.72 | 0.05 |
大兴区 | 0.81 | 7.69 | 60.98 | 1.12 | 2.20 | 8.53 | 2.02 | 0.06 | 0.21 | 0.06 | 0.08 | 0.50 | 0.59 | 13.58 | 1.53 | 0.04 |
东城区 | 7.35 | 30.34 | 5.27 | 13.19 | 1.42 | 15.33 | 9.34 | 0.17 | 0.47 | 0.20 | 0.22 | 1.64 | 1.38 | 6.16 | 7.46 | 0.06 |
房山区 | 0.41 | 1.36 | 2.86 | 0.38 | 84.63 | 5.81 | 1.82 | 0.08 | 0.37 | 0.04 | 0.02 | 0.53 | 0.19 | 0.55 | 0.91 | 0.03 |
丰台区 | 1.75 | 8.50 | 14.40 | 2.42 | 8.08 | 47.28 | 6.99 | 0.07 | 1.00 | 0.06 | 0.08 | 2.31 | 0.36 | 2.10 | 4.55 | 0.04 |
海淀区 | 18.63 | 12.74 | 2.47 | 1.58 | 2.12 | 8.84 | 41.34 | 0.16 | 1.19 | 0.11 | 0.11 | 3.28 | 1.02 | 2.31 | 4.01 | 0.11 |
怀柔区 | 1.78 | 2.54 | 0.34 | 0.28 | 0.65 | 0.61 | 4.16 | 81.48 | 0.15 | 3.26 | 0.19 | 0.17 | 3.35 | 0.58 | 0.36 | 0.10 |
门头沟区 | 1.32 | 2.03 | 0.98 | 0.57 | 2.22 | 3.89 | 5.15 | 0.09 | 71.15 | 0.08 | 0.10 | 10.13 | 0.35 | 0.71 | 1.18 | 0.06 |
密云区 | 0.64 | 1.63 | 0.33 | 0.26 | 0.15 | 0.44 | 0.61 | 2.43 | 0.05 | 90.68 | 0.42 | 0.10 | 1.54 | 0.45 | 0.23 | 0.03 |
平谷区 | 0.58 | 1.93 | 0.25 | 0.26 | 0.12 | 0.94 | 0.65 | 0.09 | 0.06 | 0.30 | 91.06 | 0.06 | 2.64 | 0.85 | 0.17 | 0.05 |
石景山区 | 1.85 | 4.14 | 2.05 | 1.03 | 2.79 | 12.34 | 14.80 | 0.11 | 15.19 | 0.14 | 0.09 | 41.21 | 0.48 | 1.07 | 2.64 | 0.08 |
顺义区 | 3.47 | 9.52 | 0.90 | 0.80 | 0.42 | 1.08 | 2.26 | 1.37 | 0.15 | 0.89 | 1.41 | 0.25 | 73.74 | 2.97 | 0.68 | 0.09 |
通州区 | 0.98 | 10.46 | 9.56 | 0.90 | 0.64 | 3.10 | 1.61 | 0.11 | 0.13 | 0.10 | 0.17 | 0.28 | 1.37 | 69.69 | 0.82 | 0.08 |
西城区 | 6.01 | 14.73 | 6.11 | 5.38 | 2.45 | 19.41 | 17.19 | 0.11 | 0.97 | 0.11 | 0.11 | 2.97 | 0.73 | 2.93 | 20.68 | 0.11 |
延庆区 | 6.43 | 3.18 | 0.66 | 0.35 | 0.34 | 1.06 | 1.54 | 0.27 | 0.89 | 0.08 | 0.09 | 0.14 | 0.57 | 0.86 | 0.48 | 83.06 |
[1] |
周素红, 闫小培. 城市居住—就业空间特征及组织模式: 以广州市为例[J]. 地理科学, 2005,25(6):664-670.
[
|
[2] |
宋金平, 王恩儒, 张文新, 等. 北京住宅郊区化与就业空间错位[J]. 地理学报, 2007,62(4):387-396.
[
|
[3] |
|
[4] |
柴彦威, 刘志林, 沈洁. 中国城市单位制度的变化及其影响[J]. 干旱区地理, 2008,31(2):155-163.
[
|
[5] |
党云晓, 董冠鹏, 余建辉, 等. 北京土地利用混合度对居民职住分离的影响[J]. 地理学报, 2015,70(6):919-930.
[
|
[6] |
梁海艳, 孟斌, 李灿松. 大城市职住分离的区域测度方法探究: 以北京市为例[J]. 人口学刊, 2014,36(4):16-25.
[
|
[7] |
|
[8] |
|
[9] |
|
[10] |
|
[11] |
|
[12] |
孟晓晨, 吴静, 沈凡卜. 职住平衡的研究回顾及观点综述[J]. 城市发展研究, 2009,16(6):23-28, 35.
[
|
[13] |
周江评. “空间不匹配”假设与城市弱势群体就业问题: 美国相关研究及其对中国的启示[J]. 现代城市研究, 2004(9):8-14.
[
|
[14] |
肖琛, 陈雯, 袁丰, 等. 2000—2010年无锡市职住空间关系变化及影响因素分析[J]. 地理科学, 2014,34(2):137-146.
[
|
[15] |
张振龙, 蒋灵德. 基于职住平衡与通勤的苏州城市职住空间结构特征[J]. 规划师, 2015,31(3):81-86.
[
|
[16] |
刘志林, 张艳, 柴彦威. 中国大城市职住分离现象及其特征: 以北京市为例[J]. 城市发展研究, 2009,16(9):110-117.
[
|
[17] |
张艳, 柴彦威. 基于居住区比较的北京城市通勤研究[J]. 地理研究, 2009,28(5):1327-1340.
[
|
[18] |
冯健, 周一星. 郊区化进程中北京城市内部迁居及相关空间行为: 基于千份问卷调查的分析[J]. 地理研究, 2004,23(2):227-242.
[
|
[19] |
郑思齐, 曹洋. 居住与就业空间关系的决定机理和影响因素: 对北京市通勤时间和通勤流量的实证研究[J]. 城市发展研究, 2009,16(6):29-35.
[
|
[20] |
柴彦威, 张艳, 刘志林. 职住分离的空间差异性及其影响因素研究[J]. 地理学报, 2011,66(2):157-166.
[
|
[21] |
英成龙, 雷军, 段祖亮, 等. 乌鲁木齐市职住空间组织特征及影响因素[J]. 地理科学进展, 2016,35(4):462-475.
[
|
[22] |
魏海涛, 赵晖, 肖天聪. 北京市职住分离及其影响因素分析[J]. 城市发展研究, 2017,24(4):43-51.
[
|
[23] |
孟斌. 北京城市居民职住分离的空间组织特征[J]. 地理学报, 2009,64(12):1457-1466.
[
|
[24] |
丁亮, 钮心毅, 宋小冬. 基于移动定位大数据的城市空间研究进展[J]. 国际城市规划, 2015,30(4):53-58.
[
|
[25] |
|
[26] |
龙瀛, 张宇, 崔承印. 利用公交刷卡数据分析北京职住关系和通勤出行[J]. 地理学报, 2012,67(10):1339-1352.
[
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
申悦, 柴彦威. 基于GPS数据的城市居民通勤弹性研究: 以北京市郊区巨型社区为例[J]. 地理学报, 2012,67(6):733-744.
[
|
[32] |
|
[33] |
甄峰, 王波, 陈映雪. 基于网络社会空间的中国城市网络特征: 以新浪微博为例[J]. 地理学报, 2012,67(8):1031-1043.
[
|
[34] |
王波, 甄峰, 席广亮, 等. 基于微博用户关系的网络信息地理研究: 以新浪微博为例[J]. 地理研究, 2013,32(2):380-391.
[
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
王德, 朱查松, 谢栋灿. 上海市居民就业地迁移研究: 基于手机信令数据的分析[J]. 中国人口科学, 2016(1):80-89.
[
|
[42] |
|
[43] |
钮心毅, 丁亮, 宋小冬. 基于手机数据识别上海中心城的城市空间结构[J]. 城市规划学刊, 2014(6):61-68.
[
|
[44] |
钮心毅, 丁亮. 利用手机数据分析上海市域的职住空间关系: 若干结论和讨论[J]. 上海城市规划, 2015(2):39-43.
[
|
[45] |
|
[46] |
丁亮, 钮心毅, 宋小冬. 利用手机数据识别上海中心城的通勤区[J]. 城市规划, 2015(9):100-106.
[
|
[47] |
陆振波, 龙振, 余启航. 基于手机信令数据的昆山市职住分布与通勤特征分析[J]. 现代城市研究, 2019(3):50-55.
[
|
[48] |
钮心毅, 王垚, 刘嘉伟. 基于手机信令数据的深圳与周边城市的空间关联分析[J]. 城市建筑, 2018(5):34-38.
[
|
[49] |
王垚, 钮心毅, 宋小冬, 等. 人流联系和经济联系视角下区域城市关联比较: 基于手机信令数据和企业关联数据的研究[J]. 人文地理, 2018,33(2):84-91, 146.
[
|
[50] |
周永杰, 刘洁贞, 朱锦锋, 等. 基于手机信令数据的珠三角城市群空间特征研究[J]. 规划师, 2018,34(1):113-119.
[
|
[51] |
徐涛, 宋金平, 方琳娜, 等. 北京居住与就业的空间错位研究[J]. 地理科学, 2009,29(2):174-180.
[
|
[52] |
孟斌, 于慧丽, 郑丽敏. 北京大型居住区居民通勤行为对比研究: 以望京居住区和天通苑居住区为例[J]. 地理研究, 2012,31(11):2069-2079.
[
|
[53] |
孟斌, 郑丽敏, 于慧丽. 北京城市居民通勤时间变化及影响因素[J]. 地理科学进展, 2011,30(10):1218-1224.
[
|
[54] |
赵晖, 杨军, 刘常平, 等. 职住分离的度量方法与空间组织特征: 以北京市轨道交通对职住分离的影响为例[J]. 地理科学进展, 2011,30(2):198-204.
[
|
[55] |
赵晖, 杨开忠, 魏海涛, 等. 北京城市职住空间重构及其通勤模式演化研究[J]. 城市规划, 2013,3(8):33-39.
[
|
[56] |
张纯, 易成栋, 宋彦. 北京市职住空间关系特征及变化研究: 基于第五、六次人口普查和2001、2008年经济普查数据的实证分析[J]. 城市规划, 2016,40(10):59-64.
[
|
[57] |
郑承智, 张旺锋, 武炳炎, 等. 北京市外来人口集聚型城中村流动人口职住分离研究[J]. 地理科学进展, 2017,36(4):416-425.
[
|
[58] |
申犁帆, 张纯, 李赫, 等. 大城市通勤方式与职住失衡的相互关系[J]. 地理科学进展, 2018,37(9):1277-1290.
[
|
[59] |
郭燕宾, 王淼, 杨伯钢, 等. 基于空间信息的职住平衡评价指标构建: 以北京城市副中心为例[J]. 北京测绘, 2018,32(11):1267-1271.
[
|
[60] |
任媛, 陈园园. 北京市职住空间演化格局及其内在机理[J]. 城市发展研究, 2019,26(3):9-15.
[
|
[61] |
韩会然, 杨成凤. 北京都市区居住与产业用地空间格局演化及其对居民通勤行为的影响[J]. 经济地理, 2019,39(5):65-75.
[
|
[62] |
刘常平, 徐学明, 赵晖, 等. 北京城市职住空间演变、通勤需求与就业可达性特征[J]. 交通运输研究, 2019,5(2):1-8.
[
|
[63] |
许宁. 基于手机定位数据的居民职住地分布特征研究: 以深圳市为例[D]. 长沙: 中南大学, 2014.
[
|
[64] |
|
[65] |
|
[66] |
|
[67] |
白羽, 赵鹏军. 职住平衡概念与测度方法研究进展[J]. 西北师范大学学报(自然科学版), 2018,54(4):89-98.
[
|
[68] |
杨明, 王吉力, 伍毅敏, 等. 边缘城镇崛起下的特大城市职住梯度平衡研究: 以北京为例[J]. 城市发展研究, 2019,26(10):13-25.
[
|
[69] |
孙铁山, 刘霄泉. 中国超大城市常住外来和常住户籍人口居住—就业的空间错位: 基于北京、上海和广州的实证[J]. 人口与经济, 2016(5):23-34.
[
|
/
〈 |
|
〉 |