Distribution characteristics and influencing factors of commercial center and hotspots based on big data: A case of the main urban area of Urumqi City
Received date: 2019-04-26
Request revised date: 2019-07-26
Online published: 2020-07-28
Supported by
2016 Open Foundation of State Key Laboratory of Resources and Environmental Information System(201619)
Copyright
The structure of commercial space is vital to the vitality of cities, therefore it is essential to quantitatively identify and analyze the distribution of different types of commercial sites so as to optimize the configuration of commercial resources and facilitate the orderly development of cities. Taking the main urban area of Urumqi City as the case study area, using 136975 business-related points of interest (POIs) including six types of businesses in 2018 and open street map (OSM) road network, and based on head/tail division rule, this study identified high-density commercial parcels and used kernel density estimation to estimate the core region of business activities. The Getis-Ord G * method was used to identify the overall and different types of commercial hot spot areas. Geographic detector analysis was performed to explore the determinants of overall and different types of commercial site distribution in Urumqi, and Pearson correlation coefficient matrix of commercial sites was established to estimate the impact of the combination and coordination of business forms on commercial space. The findings of this study suggest that the key features of high-density commercial parcel distribution are central-peripheral, separated by highways and internal loops; the number of high value parcels from the center to the peripheral area reduces progressively; and the distribution of the six types of commercial sites varies. Commercial zone presents multi-core distribution characteristics, the agglomeration characteristic is apparent in the urban center region, and the northern commercial agglomeration is gradually becoming obvious. There are six main commercial centers including Nanhu, Zhongshan Road, Youhao, Huizhan Center, Midong New Area, and Tieluju. Tuwu Expressway and Wukui Expressway together constitute the two axes of commercial hotspots. Hotspots of the six types of commercial sites can be divided into three spatial structures. Business and finance show a single-center distribution trend; accommodation and food & restraurant are of banded extension type; while services and shopping spots are of banded dual-core type. The primary determinants of the spatial distribution of commercial sites are: land price, agglomeration effect, and road network density. The influence of population and central accessibility is secondary; elevation has no significant effect. In particular, for business and financial services, land price and center accessibility are the main factors affecting the distribution. Accommodation and food & restraurant are affected by road network density. Shopping and services are significantly affected by population density. Business and finance sites, food & restraurant and shopping sites all have strong synergistic effects on the formation of urban commercial space, while others are not significance.
CHEN Hongxing , YANG Degang , LI Jiangyue , WU Rongwei , HUO Jinwei . Distribution characteristics and influencing factors of commercial center and hotspots based on big data: A case of the main urban area of Urumqi City[J]. PROGRESS IN GEOGRAPHY, 2020 , 39(5) : 738 -750 . DOI: 10.18306/dlkxjz.2020.05.004
表1 商业POI分类及各类型比例Tab.1 Classification of commercial points of interest (POIs) and the proportion of each class |
主类 | 亚类 | 占比/% |
---|---|---|
餐饮服务 | 糕饼店、外国餐厅、快餐店、冷饮店、甜品店、餐饮相关场所、饮茶馆、咖啡厅、茶艺馆 | 31.58 |
购物服务 | 便民商店、家居建材市场、特色商业街、服装鞋帽皮具店、专卖店、文化用品店、超市、购物相关场所、家电电子卖场、体育用品店、商场、花鸟鱼虫市场、综合市场、特殊买卖场所 | 38.22 |
住宿服务 | 宾馆、酒店、旅馆、招待所、住宿服务相关场所 | 2.86 |
金融保险服务 | 保险公司、财务公司、银行、ATM、证券公司、金融保险服务机构 | 1.76 |
商务服务 | 商务写字楼、商住两用楼宇 | 1.81 |
生活服务 | 旅行社、美容店、摄影冲印店、事务所、售票处、物流速递点、洗衣店、洗浴推拿、中介机构、药店、诊所、驾校、培训机构 | 23.76 |
表2 各类POI头尾打断法分类结果Tab.2 Classification results of six types of points of interest (POIs) with head/tail division |
类型 | 街区单元数量 | 单元密度均值 | 头部单元数量 | 头部单元占比/% |
---|---|---|---|---|
商务服务 | 4138 | 0.58 | 190 | 4.59 |
190 | 12.62 | 63 | 33.15 | |
63 | 25.30 | 24 | 38.09 | |
24 | 37.93 | 10 | 41.00 | |
住宿服务 | 4138 | 6.50 | 555 | 13.41 |
555 | 47.60 | 173 | 31.17 | |
173 | 68.54 | 113 | 65.00 | |
餐饮服务 | 4138 | 68.95 | 680 | 16.43 |
680 | 397.94 | 232 | 34.11 | |
232 | 809.86 | 85 | 36.48 | |
85 | 1299.73 | 36 | 42.35 | |
购物服务 | 4138 | 83.05 | 662 | 16.00 |
662 | 489.71 | 205 | 30.96 | |
205 | 1091.94 | 78 | 38.04 | |
金融服务 | 4138 | 4.10 | 541 | 13.07 |
541 | 31.03 | 160 | 29.57 | |
160 | 73.59 | 52 | 32.50 | |
52 | 134.36 | 19 | 36.50 | |
19 | 180.22 | 8 | 42.10 | |
生活服务 | 4138 | 39.96 | 670 | 16.19 |
670 | 232.95 | 223 | 33.28 | |
223 | 471.24 | 102 | 45.74 |
表3 乌鲁木齐市商业网点布局影响因素Tab.3 Effect factors of commercial network distribution in Urumqi City |
变量属性 | 变量 | 探测因子 | 计算方法 |
---|---|---|---|
自然因素 | 高程 | X1 | 街道单元内各高程栅格数据的均值作为街道的高程属性 |
地形起伏度 | X2 | 街道单元的高程栅格数据的最高和最低值之差 | |
社会因素 | 人口密度 | X3 | 街道单元人口数量/街道面积 |
路网密度 | X4 | 街道单元路网长度/街道面积 | |
中心可达性 | X5 | 距离市政府所在地的欧氏距离 | |
经济因素 | 地价 | X6 | 街道单元土地基准价格 |
集聚效应 | X7 | 距离大型商圈的最近欧氏距离 |
表4 乌鲁木齐市商业布局各探测因子解释力Tab.4 Explanatory power of different types of detectors of commercial network distribution in Urumqi City |
探测因子 | 整体 | 商务服务 | 住宿服务 | 餐饮服务 | 金融服务 | 生活服务 | 购物服务 |
---|---|---|---|---|---|---|---|
高程X1 | 0.03** | 0.03 | 0.05 | 0.06 | 0.01 | 0.04 | 0.02 |
地形起伏度X2 | 0.23* | 0.07* | 0.11 | 0.30 | 0.04 | 0.15 | 0.19 |
人口密度X3 | 0.37** | 0.41 | 0.38 | 0.45* | 0.31 | 0.62*** | 0.66** |
路网密度X4 | 0.39** | 0.17 | 0.31 | 0.29* | 0.08 | 0.44** | 0.29 |
中心可达性X5 | 0.28** | 0.67*** | 0.12 | 0.16 | 0.33*** | 0.07 | 0.22 |
地价X6 | 0.50* | 0.53 | 0.44 | 0.21 | 0.55** | 0.21 | 0.34 |
集聚效应X7 | 0.47*** | 0.36 | 0.09 | 0.16** | 0.25 | 0.14 | 0.44** |
注:*、**、***分别表示通过置信度为90%、95%和99%的显著性检验。 |
表5 各商业业态类型Pearson相关系数矩阵Tab.5 Pearson correlation coefficient matrix of different types of commercial sites |
商业业态 | 餐饮服务 | 住宿服务 | 商务服务 | 购物服务 | 金融服务 | 生活服务 |
---|---|---|---|---|---|---|
餐饮服务 | 1.000 | 0.608*** | 0.474*** | 0.822*** | 0.565*** | 0.842*** |
住宿服务 | 1.000 | 0.457*** | 0.527*** | 0.430*** | 0.604*** | |
商务服务 | 1.000 | 0.420*** | 0.695*** | 0.513*** | ||
购物服务 | 1.000 | 0.558*** | 0.777*** | |||
金融服务 | 1.000 | 0.606*** | ||||
生活服务 | 1.000 |
注:***表示在0.01水平(双侧)上显著相关。 |
[1] |
阎小培, 周春山, 冷勇 , 等. 广州CBD的功能特征与空间结构 [J]. 地理学报, 2000,67(4):475-486.
[
|
[2] |
|
[3] |
|
[4] |
吴郁文, 谢彬, 骆慈广 , 等. 广州市城区零售商业企业区位布局的探讨 [J]. 地理科学, 1988,8(3):208-217.
[
|
[5] |
杨吾扬 . 北京市零售商业与服务业中心和网点的过去、现在和未来 [J]. 地理学报, 1994,49(1):9-17.
[
|
[6] |
王士君, 浩飞龙, 姜丽丽 . 长春市大型商业网点的区位特征及其影响因素 [J]. 地理学报, 2015,70(6):893-905.
[
|
[7] |
宁越敏 . 上海市区商业中心区位的探讨 [J]. 地理学报, 1984,39(2):163-172.
[ NingYuemin. An approach to shopping center location of Shanghai's urban area. Acta Geographica Sinica, 1984,39(2):163-172. ]
|
[8] |
周素红, 郝新华, 柳林 . 多中心化下的城市商业中心空间吸引衰减率验证: 深圳市浮动车 GPS 时空数据挖掘 [J]. 地理学报, 2014,69(12):1810-1820.
[
|
[9] |
吴康敏, 张虹鸥, 王洋 , 等. 广州市多类型商业中心识别与空间模式 [J]. 地理科学进展, 2016,35(8):963-974.
[
|
[10] |
|
[11] |
杨振山, 龙瀛 ,
[
|
[12] |
|
[13] |
|
[14] |
王晓梦, 王锦, 朱青 . 基于签到数据的城市商业空间空心化识别研究: 以北京市城六区为例 [J]. 城市发展研究, 2018,25(2):77-84.
[
|
[15] |
|
[16] |
王芳, 牛方曲, 王志强 . 微观尺度下基于商圈的北京市商业空间结构优化 [J]. 地理研究, 2017,36(9):1697-1708.
[
|
[17] |
浩飞龙, 王士君, 冯章献 , 等. 基于POI数据的长春市商业空间格局及行业分布 [J]. 地理研究, 2018,37(2):366-378.
[
|
[18] |
陈蔚珊, 柳林, 梁育填 . 基于POI数据的广州零售商业中心热点识别与业态集聚特征分析 [J]. 地理研究, 2016,35(4):703-716.
[
|
[19] |
薛冰, 肖骁, 李京忠 , 等. 基于POI大数据的城市零售业空间热点分析: 以辽宁省沈阳市为例 [J]. 经济地理, 2018,38(5):36-43.
[
|
[20] |
陆娟, 汤国安, 张宏 , 等. 犯罪热点时空分布研究方法综述 [J]. 地理科学进展, 2012,31(4):419-425.
[
|
[21] |
薛东前, 黄晶, 马蓓蓓 , 等. 西安市文化娱乐业的空间格局及热点区模式研究 [J]. 地理学报, 2014,69(4):541-552.
[
|
[22] |
|
[23] |
|
[24] |
傅辰昊, 周素红, 闫小培 , 等. 广州市零售商业中心的居民消费时空行为及其机制 [J]. 地理学报, 2017,72(4):603-617.
[
|
[25] |
赵宏波, 余涤非, 苗长虹 , 等. 基于POI数据的郑州市文化设施的区位布局特征与影响因素研究 [J]. 地理科学, 2018,38(9):1525-1534.
[
|
[26] |
|
[27] |
李德华 . 城市规划原理 [M]. 第3版. 北京: 中国建筑工业出版社, 2001.
[
|
[28] |
|
[29] |
|
[30] |
|
[31] |
焦利民, 李泽慧, 许刚 , 等. 武汉市城市空间集聚要素的分布特征与模式 [J]. 地理学报, 2017,72(8):1432-1443.
[
|
[32] |
韩会然, 杨成凤, 宋金平 . 北京批发企业空间格局演化与区位选择因素 [J]. 地理学报, 2018,73(2):219-231.
[
|
[33] |
王劲峰, 徐成东 . 地理探测器: 原理与展望 [J]. 地理学报, 2017,72(1):116-134.
[
|
[34] |
曹芳洁, 邢汉发, 侯东阳 , 等. 基于POI数据的北京市商业中心识别与空间格局探究 [J]. 地理信息世界, 2019,26(1):66-71.
[
|
[35] |
刘晓倩 . 成都市城市商业空间发展研究[D]. 成都: 西南交通大学, 2008.
[
|
[36] |
安成谋 . 兰州市商业中心的区位格局及优势度分析 [J]. 地理研究, 1990,9(1):28-34.
[
|
[37] |
张利, 雷军, 张小雷 , 等. 乌鲁木齐城市社会区分析 [J]. 地理学报, 2012,67(6):817-828.
[
|
/
〈 |
|
〉 |