Original Articles

Spatial Variability and Prediction of Soil Organic Matter at County Scale on the Loess Plateau

Expand
  • y Laboratory of Land Use, Ministry of Land and Resources, China Land Surveying &|Planning Institute, Beijing 100035|2 Key Laboratory of Systems Ecology,Research Center for Eco-Environmental Sciences, CAS, Beijing, 100085

Received date: 2006-01-01

  Revised date: 2006-02-01

  Online published: 2006-03-25

Abstract

Analysis and forecast on the spatial distribution and dynamics of soil properties is an important element of sustainable land management. Spatial variation of soil organic matter was analyzed according to different land use types and different topography conditions, based on data from 254 points of surface soil (0~20cm) in Hengshan county on the Loess Plateau (NW China). Correlation analyses were carried out between the soil organic matter and the terrain attributes and remote sensing indices. Finally, the land use types and the terrain attributes and remote sensing indices were used to predict soil organic matter spatial distribution by multiple-linear regression analysis. Significant differences in soil organic matter among different land use types were found, the highest values in soil organic matter were measured in soils from paddy field, and lower values in the soils from woodland and shrub land. For soil organic matter, the tendency was: paddy field>irrigated farmland>terrace farmland>check-dam farmland>grassland>slope farmland>woodland>shrub land. In different slope gradients, soil organic matter in ‘0~3°’ gradients was significantly higher than other slope gradient classes. There was little difference in soil organic matter among different slope aspects, but there was a tendency that soil organic matter in northern aspects was higher. Different correlations were found between the soil organic matter and the terrain attributes and remote sensing indices. It was found that there are positive correlations between soil organic matter and the COSα, CTI, MSAVI and WI. There is a strong negative correlation between soil organic matter and elevation. Using environmental variables to predict soil organic matter, the regression model explains 34.6% of the variability of the measured soil organic matter. But the variation is rather large and there is a more smoothing effect on the predicted values for soil organic matter.

Cite this article

LIAN Gang1,2, GUO Xudong1, FU Bojie2,HU Chenxia2 . Spatial Variability and Prediction of Soil Organic Matter at County Scale on the Loess Plateau[J]. PROGRESS IN GEOGRAPHY, 2006 , 25(2) : 112 -122 . DOI: 10.11820/dlkxjz.2006.02.013

References


[1] 黄昌勇主编. 土壤学. 北京:中国农业出版社,2000.

[2] Florinsky I.V. Eilers R.G. Manning G.R. Fuller L.G. Prediction of soil properties by digital terrain modeling. Environmental Modelling & Software, 2002,17:295~311.

[3] 彭少麟,郭志华,王伯荪. RS和GIS在植被生态学中的应用及其前景. 生态学杂志,1999,18(5):52~64.

[4] 邱 扬,傅伯杰,王军,陈利顶. 黄土丘陵小流域土壤水分空间预测的统计模型. 地理研究,2001,20(6):739~751.

[5] 傅伯杰,陈利顶,马克明. 黄土丘陵区小流域土地利用变化对生态环境的影响. 地理学报,1999,54(3):241~246.

[6] 中国科学院南京土壤研究所. 土壤理化分析. 上海:上海科技出版社,1983,132~136.

[7] Moore I D, Gessler P E, Nieslen G A, Peterson G A. Soil attribute prediction using terrain analysis. Soil Science Society of American Journal, 1993,57:443~452.

[8] Gessler P E, Moore I D, Mckenzie N J, Ryan P J. Soil-landscape modeling and spatial prediction of soil attributes. Int. J. Geographical Information Systems, 1995,4:421~432.

[9] 张彩霞, 杨勤科, 李 锐. 基于DEM的地形湿度指数及其应用研究进展. 地理科学进展,2005,24(6):17-25.

[10] 邓慧平, 李秀彬. 地形指数的物理意义分析. 地理科学进展,2002,21(2):103-110.

[11] 高志海, 魏怀东,丁 峰. TM影像VI提取植被信息技术研究. 干旱区资源与环境,1998,12(3):98~104.

[12] 田庆久, 闵祥军. 植被指数研究发展. 地球科学发展,1998,13(4):327~333.

[13] 王正兴, 刘 闯, HUETE Alfredo. 植被指数研究进展: 从AVHRR-NDVI到MODIS-EVI.生态学报, 2003, 23(5): 979~987.

[14] Qi J, Chehebouni A, Huete A R, Kerr Y H, Sorooshian S. Modified Soil Adjusted Vegetation Index (MSAVI).Remote Sensing of Environment,1994, 48:119~126.

[15] 池宏康. 黄土高原地区提取植被信息方法的研究. 植物学报,1996, 38(1):40~44.

[16] 梅安新,彭望琭,秦其明,刘慧平 编著. 遥感导论. 北京: 高等教育出版社, 2001.

[17] 党安荣,王晓栋,陈晓峰,张建宝 编著. EARDAS IMAGINE 遥感图像处理方法. 北京: 清华大学出版社,2003.

[18] Tomislav Hengl, Gerard B M, Heuvelink, et al. A generic framework for spatial prediction of soil variables based on regression-kriging. Geoderma, 2004,120:75~93.

[19] 连 纲,郭旭东,傅伯杰等. 基于参与性调查的农户对退耕还林政策及生态环境的认知与响应. 生态学报, 2005, 25(7):1741~1747.

[20] 郑剑英,吴瑞俊,翟连宁. 黄土丘陵沟壑区小流域土壤养分的分布特征.水土保持通报,1996,16(4):26~30.

[21] Wang J, Fu B J, Qiu Y, Chen L D. Soil nutrients in relation to land use and landscape position in the semi-arid small catchment on the loess plateau in China. Journal of arid environments, 2001,48: 537~550.

[22] 郝仕龙,安韶山,李壁成等. 黄土丘陵区退耕还林(草)土壤环境效应. 水土保持研究, 2005,12(3):29~30.

[23] 江忠善,王志强,刘 志. 黄土丘陵区小流域土壤侵蚀空间定量化研究. 土壤侵蚀与水土保持学报, 1996, 2(1): 1~9.

[24] 靳长兴. 坡度在坡面侵蚀中的作用. 地理研究,1996,15(3): 57~62.

[25] 方华军,杨学明,张晓平等. 土壤侵蚀对农田中土壤有机碳的影响. 地理科学进展, 2004, 23(2): 77~87.

[26] 黄元仿,周志宇,苑小勇等. 干旱荒漠区土壤有机质空间变异特征. 生态学报, 2004, 24(12): 2776~2781.

[27] 赵 忠,李 鹏,王乃江. 渭北黄土高原主要造林树种根系分布特征的研究. 应用生态学报, 2000,11(1): 37~39.

[28] Edward Batschelet. Circular statistics in biology. Academic Press,1981.

[29] 邱 扬,傅伯杰,王军等. 黄土丘陵小流域土壤物理性质的空间变异. 地理学报,2002,57(5):587~592.

[30] McKenzie N J, Austin M P. A quantitative Australian approach to medium and small scale surveys based on soil stratigraphy and environmental correlation. Geoderma, 1993, 57:329~355.

[31] 余建英, 何旭宏. 数据统计分析与SPSS应用. 北京:人民邮电出版社,2003.

[32] Schimel D S, Kittel T G F, Knapp A K, et al. Physiological interactions along resource gradients in tallgrass prairie. Ecology,1991,72:672~684.

[33] Townsend A R, Vitousek P M, Trumbore S E. Soil organic matter dynamics along gradients in temperature and land use on the island of Hawaii. Ecology, 1995,76:721~733.

[34] Kosmas C, Gerontidis S, Marathianou M. The effect of land use change on soils and vegetation over various lithological formations on Lesvos (Greece). Catena, 2000,40:51~68.

[35] Dwivedi R S. Soil resources mapping: a remote sensing perspective. Remote Sensing Review, 2001, 20:89~122.

[36] 耿元波, 董云社, 孟维奇. 陆地碳循环研究进展. 地理科学进展,2000,19(4): 297~306.

Outlines

/