Original Articles

Spatial Pattern of Health Clubs in Beijing at Various Scales

  • 1. College of Resources and Environment Science, Hebei Normal University, Shijiazhuang 050016, China|
    2. Hebei Key Laboratory of Environmental Change and Ecological Construction, Shijiazhuang 050016, China|
    3. Hebei Institute of Geographical Sciences, Shijiazhuang 050011, China

Online published: 2010-02-25


The research target is the health club, which is a special type of the recreation space in a city. Based on GIS and geostatistical software, using point pattern identification and ESDA(exploratory spatial data analysis) methods, the paper analyzes the spatial pattern characteristics of health clubs in Beijing. The nearest neighbor indicator(NNI) and quadrat analysis results indicate that the health clubs cluster together evidently at a whole region scale. But if we observe the pattern in the units separated by the roads or district, it presents different spatial patterns, varying from clustering to random, even dispersing. The analyzing results of health clubs based on the 5 scale cell units from 1 km to 5 km grids make further explanation that its spatial pattern are influenced evidently by the units’ scale. At any scales the density and NNI of health club samples have evident spatial diversification. From the Moran’s I statistics and Moran Scatterplot Map we also find the evident spatial autocorrelation of the units. The 2 km and 3 km unit scales are the best scales for finding the microscopic spatial pattern and diversification. So the whole region scale is not the only or the best scale for spatial pattern research of recreation spaces especially for the health clubs. In some microscopic units the spatial pattern will be more evident and the research results will even be opposite to that at the whole region scale. The pattern description based on more statistical units at various scales may discover the points’ distributional characteristics and the patterns more easily. The spatial pattern research of health club points in units at various scales provides a new way of describing spatial patterns of recreation space points. And the effects of such a way are also demonstrated in this paper.

Cite this article

LI Renjie1,2, GUO Fenghua3, ZHANG Junhai1,2, FU Xueqing1,2, HE Yuanyuan1 . Spatial Pattern of Health Clubs in Beijing at Various Scales[J]. PROGRESS IN GEOGRAPHY, 2010 , 29(2) : 232 -240 . DOI: 10.11820/dlkxjz.2010.02.015


[1]  Smith S L. Recreation Geography. London: Longman, 1983.

[2]  Preobrazensky V S, Krivosheyev V M. Recreational geography of the USSR. Moscow: Progress Publishers, 1982.

[3]  Weaver D B. Model of urban tourism for small Caribbean islands. Geographical Review, 1993, 83(2):134.

[4]  吴必虎. 大城市环城游憩带(ReBAM)研究: 以上海市为例. 地理科学, 2001, 21(4): 354-359.

[5]  Stansfield C A, Rickert J E. The recreational business district. Journal of Leisure Research, 1970(2): 213-215.

[6]  侯国林, 黄震方, 赵志霞. 城市商业游憩区的形成及其空间结构分析. 人文地理, 2002, 17(5): 13-18.

[7]  吴志强, 吴承照. 城市旅游规划原理. 北京: 中国建筑工业出版社, 2005: 126.

[8]  俞晟. 城市旅游与城市游憩学. 上海: 华东师范大学出版社, 2003, 168-170.

[9]  申玉铭, 邱灵, 任旺兵, 等. 中国服务业空间差异的影响因素与空间分异特征. 地理研究, 2007,26(6):1255-1264.

[10] Illeris, Jean Philippe. Introduction: The role of services in regional economic growth. Service Industries Journal, 1993,13(2): 3-10.

[11]洪银兴. 城市功能意义的城市化及其产业支持. 经济学家, 2003,(2): 29-36.

[12]丹尼斯·迪帕斯奎尔, 威廉·C·惠顿. 城市经济学与房地产市场. 北京: 经济科学出版社, 2002,126-129.

[13]阎小培, 姚一民. 广州第三产业发展变化及空间分布特征分析. 经济地理, 1997(17): 41-48.

[14] Marcon E, Puech F. Evaluating the geographic concentration of industries using distance-based methods. Journal of Economic Geography, 2003, 3: 409-428.

[15] Duranton G, Overman H G. Testing for localization using micro-geographic data. Review of Economic Studies, 2005, 72:1077-1106.

[16]贺灿飞, 潘峰华. 产业地理集中、产业集聚与产业集群: 测量与辨识. 地理科学进展, 2007, 26(2): 1-13.

[17] Tobler W. A computer movie simulating urban growth in the Detroit region. Economic Geography, 1970, 46(suppl): 234-240.

[18] 王劲峰 等著. 空间分析. 北京:科学出版社, 2006,54-55.

[19] Anselin L. Interactive techniques and exploratory spatial data analysis//Longley P A, Michael F Goodchild, David J Maguire, et al. Geographic Information System: Principles, Technical Issues, Management Issues and Applications. Newyork: John Wiley and Sons, Inc, 1999: 253-266.

[20] Anselin L, Bao S. Exploratory spatial data analysis linking spaces tat and ArcView // Fischer M M, Getis A. Recent developments in spatial analysis: Spatial statistics, behavioral modeling and neurocomputing. Berlin: Springer, 1997, 34-59.

[21] 柏延臣, 李新, 冯学智. 空间数据分析与空间模型. 地理研究, 1999, 18(2): 185-190.

[22] 马晓冬, 马荣华, 徐建刚. 基于ESDA-GIS的城镇群体空间结构. 地理学报, 2004, 59(6): 1048-1057.

[23] Anselin L. The Moran Scatterplot as an ESDA tool to assess local instability in spatial association. // Fischer M, Scholten H, Unwin D. Spatial Analytical Perspectives on GIS in Environmental and Socioeconomic Sciences. London: Taylor and Francis, 1996: 111-125.

[24] Cliff A D, Ord J. Spatial Processes, Models and Applications. Pion, London, 1981.

[25] Anselin L. Spatial Econometrics: Methods and Models. Boston: Kluwer Academic Publishers, 1988.