Original Articles

Advancements of the Metrics of Evapotranspiration

  • 1. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2012-02-01

  Revised date: 2012-06-01

  Online published: 2012-09-25


Evapotranspiration (ET) is very important for water cycle, and is determinant for the estimation of water and heat transfer in the Soil-Plant-Atmosphere Continuum (SPAC). Quantitative estimation of ET is the base of appraising terrestrial NPP, water conservation valuation, regional water consumption, soil water transport and crop production. It is important for studies on global climate change. More and more ET models and associated measurements are being reported in the literature and used to develop, calibrate and test important ET process models. The ET data can be derived from a range of measurement systems including lysimeters, eddy covariance, Bowen ratio and sap flow. In addition, the satellite-based remote sensing and direct models (e.g. radiation- based models and combination models) can also been important methods to evaluate the ET. This paper distinguished the methods of ET evaluation into ET measuring and ET modeling, with outline of different types of ET models and ET measurements involving principles, merits and disadvantages. Key issues and development direction in ET were evaluated to provide a guide to evaluate accurately ET for other researches.

Cite this article

SONG Lulu, YIN Yunhe, WU Shaohong . Advancements of the Metrics of Evapotranspiration[J]. PROGRESS IN GEOGRAPHY, 2012 , 31(9) : 1186 -1195 . DOI: 10.11820/dlkxjz.2012.09.010


[1] Fisher J B, Whittaker R J, Malhi Y. ET come home: Potentialevapotranspiration in geographical ecology. GlobalEcology and Biogeography, 2011, 20(1): 1-18.

[2] Brutsaert W. Evaporation into the Atmosphere: Theory,History and Applications. The Netherland: Springer,1982.

[3] Blaney H F, Criddle W D. Determining water requirementsin irrigated areas from climatological irrigation data.Technical Paper No. 96. US Department of Agriculture,SoilConservation Service,Washington, D C. 1950.

[4] Hargreaves G H. Moisture availability and crop production.Transactions of the American Society of AgriculturalEngineers, 1975, 18(5): 980-984.

[5] Thornthwaite C W. An approach toward a rational classificationof climate. Geographical Review, 1948, 38(1):55-94.

[6] Wilm H G. Statistical control of hydrologic data from experimentalwatersheds. Trans. Amer. Geophys. Union,1944, 29: 618-622.

[7] Donohue R J, Roderick M L, McVicar T R. On the impor-tance of including vegetation dynamics in Budyko’s hydrologicalmodel. Hydrology and Earth System Sciences,2007, 11(2): 983-995.

[8] Hu Z M, Yu G R, Zhou Y L, et al. Partitioning of evapotranspirationand its controls in four grassland ecosystems:Application of a two-source model. Agriculturaland Forest Meteorology, 2009, 149(9): 1410-1420.

[9] Trenberth K E, Fasullo J T, Kiehl J. Earth’s global energybudget. Bulletin of American Meteorological Society,2009, 90(3): 311-323.

[10] Allen R G, Pereira L, Howell T A, et al. Evapotranspirationinformation reporting: Ⅰ. Factors governing measurementaccuracy. Agricultural Water Management,2011, 98(6): 899-920.

[11] Granier A. A new method of sap flow measurement intree stems. Annales des Sciences Forestieres, 1985, 42(2): 193-200.

[12] Granier A. Evaluation of transpiration in a Douglas-firstand by means of sap flow measurements. Tree Physiol,1987, 3(4): 309-320.

[13] Fisher J B, Baldocchi D D, Mission L, et al. What thetowers don’t see at night: Nocturnal sap flow in trees andshrubs at two AmeriFlux sites in California. Tree Physiology,2007, 27: 597-610。

[14] Hultine K R, Nagler P L, Morino K, et al. Sap flux-scaledtranspiration by tamarisk (Tamarix spp.) before, duringand after episodic defoliation by the saltcedar leaf beetle(Diorhabda carinulata). Agric. Forest Meteorol, 2010, 150(11): 1467-1475.

[15] Bowen L S. The ratio of heat losses by conduction and byevaporation from any water surface. Physical Review,1926, 27(6): 779-787.

[16] 黄妙芬. 地表通量研究进展. 干旱区地理, 2003, 6(2):159-165.

[17] Ohmura A. Objective criteria for rejecting data for Bowenratio flux calculations. Journal Appl. Meteorol, 1982,21(4): 595-598.

[18] Howell T A, Schneider A D, Jensen M E. History of lysimeterdesign and use for evapotranspiration measurements.Lysimeters for evapotranspiration and environmentalmeasurements: Proceedings of the InternationalSymposium on Lysimetry. ASCE, Honolulu, HI, 1991:1-9.

[19] Massman W J. A simple method for estimating frequencyresponse corrections for eddy covariance systems. Agriculturaland Forest Meteorology, 2000, 104(3): 185-198.

[20] Swinbank W C. The measurement of vertical transfer ofheat and water vapour by eddies in the lower atmosphere.Journal of Atmospheric Sciences, 1951, 8(3): 135-145.

[21] Sun X M, Zhu Z L, Wen X F, et al. The impact of averagingperiod on eddy fluxes observed at ChinaFLUX sites.Agricultural and Forest Meteorology, 2006, 137(3):188-193.

[22] 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法. 北京: 高等教育出版社, 2006.

[23] Baldocchi D, Falge E, Gu L H, et al. FLUXNET: A newtool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energyflux densities. Bulletin of the American MeteorologicalSociety, 2001, 82(11): 2415-2434.

[24] Moncrieff J B, Malhi Y, Leuning R. The propagation oferrors in long-term measurements of land – atmospherefluxes of carbon and water. Global Change Biology,1996, 2(3): 231-240.

[25] 杨正明, 金一锷. 农业气象仪器. 北京: 北京农业大学出版社, 1989: 110-128.

[26] Seguin B, Itier B. Using midday surface temperature toestimate daily evaporation from satellite thermal IR data.International Journal of Remote Sensing, 1983, 4(2):371-383.

[27] Mastrorilli M, Katerji N, Rana G, et al. Daily actualevapotranspiration measured with TDR technique inMediterranean conditions. Agricultural and Forest Meteorology,1998, 90(1): 81-89.

[28] Bisht G, Venturini V, Islam S, et al. Estimation of the netradiation using MODIS (Moderate Resolution ImagingSpectroradiometer). Remote Sensing of Environment,2005, 97(1): 52-67.

[29] Su Z. The Surface Energy Balance System (SEBS) for estimationof turbulent heat fluxes. Hydrology and EarthSystem Sciences, 2002, 6(1): 85-99.

[30] Menenti M, Choudhury B J. Parameterization of land surfaceevaporation by means of location dependent potentialevaporation and surface temperature range//Bolle HJ, Feddes R A, Kalma J D. Exchange processes at theland surface, 1993.

[31] Roerink G J, Su Z, Menenti M. S-SEBI: A simple remotesensing algorithm to estimate the surface energy balance.Physics and Chemistry of the Earth. Part B: Hydrology,Oceans and Atmosphere, 2000, 25(2): 147-157.

[32] Bastiaanssen W G M, Menenti M, Feddes R A, HoltslagAAM. A remote sensing surface energy balance algorithmfor land (SEBAL):1. Formulation. The Journal ofHydrology, 1998, 212: 198-212.

[33] Anderson M C, Norman J M, Diak G R, et al. Atwo-source time-integrated model for estimating surface fluxes using thermal infrared remote sensing. RemoteSensing of Environment, 1997, 60(2): 195-216.

[34] Baldocchi D. A Lagrangian random-walk model for simulatingwater vapor, CO2 and sensible heat flux densitiesand scalar profiles over and within a soybean canopy.Boundary Layer Meteorology, 1992, 61(1-2): 113-144.

[35] Hope A S, Engstrom R, Stow D A. Relationship betweenAVHRR surface temperature and NDVI in arctic tundraecosystems. International Journal of Remote Sensing,2005, 26(8): 1771-1776.

[36] Stewart J B, Kustus W P, Humes KS, et al. Sensible heatflux: Radiometric surface temperature relationship foreight semiarid areas. Journal of Applied Meteorology,1994, 33(9): 1110-1117.

[37] Wild M, Ohmura A, Makowski K. Impact of global dimmingand brightening on global warming. GeophysicalResearch Letters, 2007, 34L04702, doi: 10. 1029/2006GL028031.

[38] Xu C Y, Singh V P. Evaluation and generalization of radiation-based methods for calculating evaporation. HydrologicalProcesses, 2000, 14(2): 339-349.

[39] Priestley C H B, Taylor R J. On the assessment of surfaceheat flux and evaporation using large scale parameters.MonthlyWeather Review, 1972, 100(2): 81-92.

[40] Black TA. Evapotranspiration from Douglas-fir stands exposedto soil water deficits. Water Resources Research,1979, 15(1): 164-170.

[41] Stewart R B, Rouse W R. Substantiation of the Priestleyand Taylor parameter alpha=1.26 for potential evaporationin high latitudes. Journal of Applied Meteorology,1977, 16(4): 649-650.

[42] Fisher J B, Debiase T A, Qi Y, et al. Evapotranspirationmodels compared on a Sierra Nevada forest ecosystem.Environmental Modelling and Software, 2005, 20(6):783-796.

[43] Fisher J B, Tu K P, Baldocchi D D. Global estimates ofthe land-atmosphere water flux based on monthlyAVHRR and ISLSCP-Ⅱdata, validated at 16 FLUXNETsites. Remote Sensing of Environment, 2008, 112(3):901-919.

[44] Fisher J B, Malhi Y, Bonal D, et al. The land – atmospherewater flux in the tropics. Global Change Biology,2009, 15(11): 2694-2714.

[45] Vinukollu R K, Wood E F, Ferguson C R, et al. Global estimatesof evapotranspiration for climate studies usingmulti-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment,2011, 115(3): 801-823.

[46] Penman H L. Natural Evaporation from Open water, baresoil and grass. Proceedings of the Royal Society of London:A series, 1948, 193: 120-145.

[47] Allen R G. Assessing integrity of weather data for referenceevapotranspiration estimation. Journal of Irrigationand Drainage Engineering, 1998, 122(2): 97-106.

[48] Monteith J L. Evaporation and the environment. Symposiumof the Society of Exploratory Biology, 1965, 19(2):205-234.

[49] Cleugh H A, Leuning R, Mu Q Z, et al. Regional evaporationestimates from flux tower and MODIS satellite data.Remote Sensing of Environment, 2007, 106(3): 285-304.

[50] Mu Q Z, Heinsch F A, Zhao M S, et al. Development of aglobal evapotranspiration algorithm based on MODISand global meteorology data. Remote Sensing of Environment,2007, 111(4): 510-526.

[51] Mu Q Z, Zhao M S, Running S W. Improvements to aMODIS global terrestrial evapotranspiration algorithm.Remote Sensing of Environment, 2011, 115(8):1781-1800.

[52] Zhang K, Kimball J S, Mu Q Z, et al. Satellite based analysisof northern ET trends and associated changes in theregional water balance from 1983 to 2005.

[53] Shuttleworth W J, Wallace J S. Evaporation from sparsecrops-an energy combination theory. Q.J. Royal MeteorologicalSociety, 1985, 111(469): 839-855.

[54] Manare S, Bryan K. Climate calculations with a combinedocean-atmosphere model. Journal of the AtmosphericSciences, 1969, 26(1): 786-789.

[55] Bouchet R J. Evapotranspiration reelle evapotranspirationpotentielle, signification climatique. Int. Assoc.Sci. Hydrol.,Gentbrugge, Belgium, Publ. 1963, 62:134-142.

[56] Hobbins M T, Ramirez J A, Brown T C. The complementaryrelationship in estimation of regional evapotranspiration:An enhanced Advection-Aridity model. Water ResourcesResearch, 2001, 37(5): 1389-1403.

[57] Morton F L. Operational estimates of area evapotranspirationand their significance to the science and practice ofhydrology. Journal of Hydrology, 1983, 66(1-4): 1-76.

[58] Budyko M I. Climate and Life. San Diego, Califonia: AcademicPress, 1974: 508.

[59] Yang D W, Sun F B, Liu Z Y, et al. Interpreting the complementaryrelationship in non-humid environmentsbased on the Budyko and Penman hypotheses. GeophysicalResearch Letters, 2006, 33(2): L18402.

[60] Kite G W, Droogers P. Comparing evapotranspiration estimatesfrom satellites, hydrological models and field data.Journal of Hydrology, 2000, 229(1-2): 3-18.

[61] Miralles D G, Gash J H, Holmes T R H, et al. Global canopyinterception from satellite observations. Journal ofGeophysical Research Atmospheres, 2010, 115, D16122,doi:10.1029/2009JD013530.

[62] Valente F, David J S, Gash J H C. Modelling interceptionloss for two sparse eucalypt and pine forests in centralPortugal using reformulated Rutter and Gash analyticalmodels. Journal of Hydrology, 1997, 190(1-2): 141-162.

[63] Carlyle-Moses D E, Price A G. An evaluation of the Gashinterception model in a northern hardwood stand. Journalof Hydrology, 1999, 214(1-4): 103-110.

[64] Jetten V G. Interception of tropical rain forest: Performanceof a canopy water balance model. HydrologicalProcesses, 1996, 10(5): 671-685.

[65] Rutter A J, Kershaw K A, Robins P C, et al. A predictivemodel of rainfall interception in forests, 1. Derivation ofthe model from observations in a plantation of corsicanpine. Agricultural Meteorology,1971, 9(1): 367-384.

[66] Navar J, Bryan R. Interception loss and rainfall redistributionby 3 semiarid growing shrubs in Northeastern Mexico.Journal of Hydrology, 1990, 115(1-4): 51-63.

[67] Navar J, Charles F, Jurado E. Spatial variations of interceptionloss components by Tamaulipan thornscrub innortheastern Mexico. Forest Ecology and Management,1999, 124(1): 231-239.

[68] van Dijk A J M, Bruijnzeel L A. Modelling rainfall interceptionby vegetation of variable density using an adaptedanalytical model. Part 1. Model description. Journal ofHydrology, 2001, 247(4): 230-238.