Original Articles

Respondence of Grassland Soil Respiration to Global Change

  • 1. Lhasa Plateau Ecosystem Research Station, Key Laboratory of Ecosystem Network Observation and Modeling,Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2010-03-01

  Revised date: 2010-07-01

  Online published: 2010-11-25


Grassland is one of the main terrestrial ecotypes and the dynamic change of its soil respiration can directly affect the global C cycle. Grassland responses more rapidly to global C cycle than other terrestrial ecosystems. Therefore, grassland soil respiration could be firstly affected by global climate change and land use change. The objective of this paper is to provide a scientific review on grassland soil respiration response to global change and human activities. The elevated atmospheric CO2 and rising temperature can both stimulate, suppress or show no significant effect on grassland soil respiration, depending on whether changes of soil moisture, soil available N and other related factors occur or not. The Q10, which is the temperature sensitivity index of soil respiration, of grassland soil respiration is affected by soil temperature, soil moisture, precipitation, soil depth, soil organic carbon, altitude, land use patterns, time scales and other related factors. This implies that the relationships between grassland soil respiration and soil temperature is affected by other factors and grassland soil respiration is actually affected by the combined effects of multiple factors. Increasing precipitation will generally stimulate grassland soil respiration. However, the decrease of soil temperature and soil permeability which are caused by precipitation will reduce soil respiration amount. Due to grazing intensity, grazing frequency and grazing forms, the impact of grazing on soil respiration appears to increase, decrease or show no significant effect. The effects of clipping on soil respiration and its components (soil heterotrophic respiration and root respiration) are different. When agricultural reclamation occurs in grassland, soil respiration could enhance and the soil carbon will lose approximately 20%-50%. Fertilization might increase, decrease or show no significant effect on grassland soil respiration, according to fertilizer type, loading levels and so on. In the arid and semi-arid regions, irrigation might promote grassland soil respiration. However, the integrated effects of these global changes, i.e., elevated atmospheric CO2, rising temperature, increasing precipitation, grazing, land reclamation, fertilization and irrigation, are unclear. Therefore, the research on the respondence of soil respiration to global climate change and land use change should be enhanced in the future.

Cite this article

FU Gang, SHEN Zhenxi, ZHANG Xianzhou, YU Guirong, HE Yongtao, WU Jianshuang . Respondence of Grassland Soil Respiration to Global Change[J]. PROGRESS IN GEOGRAPHY, 2010 , 29(11) : 1391 -1399 . DOI: 10.11820/dlkxjz.2010.11.030


[1] 周广胜, 王玉辉. 全球生态学. 北京: 气象出版社, 2003: 17-40.

[2] Houghton J T, Jenkins G J, Ephraums J J. Climate Change: The IPCC Scientific Assessments. Cambridge: Cambridge University Press, 1990.

[3] Rustad L E, Campbell J L, Marion G M, et al. A meta- analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia, 2001, 126(4): 543-562.

[4] Houghton J T, Ding Y, Griggs D J, et al. Climate Change 2001: The Scientific Basis. Cambridge: Cambridge University Press, 2001: 1-896.

[5] Hulme M, Osborn T J, Johns T C. Precipitation sensitivity to global warming: Comparison of observations with HadCM2 simulations. Geophysical Research Letters, 1998, 25(17): 3379-3382.

[6] Jones P D, Hulme M. Calculating regional climatic time series for temperature and precipitation: Methods and illustrations. International Journal of Climatology, 1996, 16 (4): 361-377.

[7] Wan S Q, Xia J Y, Liu W X, et al. Photosynthetic overcompensation under nocturnal warming enhances grassland carbon sequestration. Ecology, 2009, 90(10): 2700-2710.

[8] Yurova A Y, Volodin E M, Agren G I, et al. Effects of variations in simulated changes in soil carbon contents and dynamics on future climate projections. Global Change Biology, 2010, 16(2): 823-835.

[9] Bond-Lamberty B, Thomson A. Temperature-associated increases in the global soil respiration record. Nature, 2010, 464(7288): 579-583.

[10] 闫玉春, 王旭, 李林芝, 等. 翻耕短期内对草原土壤呼吸 的影响. 中国草地学报, 2010, 32(1): 75-78.

[11] 李凌浩. 土地利用方式对草原生态系统土壤碳贮量的 影响.植物生态学报, 1998, 22(4): 300-302.

[12] 周萍, 刘国彬, 薛萐. 草地生态系统土壤呼吸及其影响 因素研究进展. 草业学报, 2009, 18(2): 184-193.

[13] 张芳, 王涛, 薛娴, 等. 影响草地土壤呼吸的主要自然因 子研究现状.中国沙漠, 2009, 29(5): 872-877.

[14] 赵有益, 龙瑞军, 林慧龙, 等. 草地生态系统安全及其评 价研究. 草业学报, 2008, 17(2): 143-150.

[15] 刘立新, 董云社, 齐玉春.草地生态系统土壤呼吸研究进 展. 地理科学进展, 2004, 23(4): 35-42.

[16] 齐志勇, 王宏燕, 王江丽, 等. 陆地生态系统土壤呼吸的 研究进展. 农业系统科学与综合研究, 2003, 19(2): 116-119.

[17] Singh J S, Gupta S R. Plant decomposition and soil respiration in terrestrial ecosystems. The Botanical Review, 1977, 43(4): 449-528.

[18] Raich J W, Potter C S. Global patterns of carbon dioxide emissions from soils. Global Biogeochemical Cycles, 1995, 9(1): 23-36.

[19] Raich J W, Schlesinger W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus, 1992, 44(2): 81-99.

[20] Schlesinger W H. Carbon balance in terrestrial detritus. Annual Review of Ecology and Systematics, 1977, 8(1): 51-81.

[21] Stoffel J L, Gower S T, Forrester J A, et al. Effects of winter selective tree harvest on soil microclimate and surface CO2 flux of a northern hardwood forest. Forest Ecology and Management, 2010, 259(3): 257-265.

[22] Ineson P, Coward P A, Hartwig U A. Soil gas fluxes of N2O, CH4 and CO2 beneath Lolium perenne under elevated CO2: The Swiss free air carbon dioxide enrichment experiment. Plant and Soil, 1998, 198(1): 89-95.

[23] Pendall E, Del Grosso S, King J Y, et al. Elevated atmospheric CO2 effects and soil water feedbacks on soil respiration components in a Colorado grassland. Global Biogeochemistry Cycles, 2003, 17(2). 1046, doi:10.1029/ 2001GB001821.

[24] Owensby C E, Auen L M, Coyne P I. Biomass production in a nitrogen-fertilized, tallgrass prairie ecosystem exposed to ambient and elevated levels of CO2. Plant and Soil, 1994, 165(1):105-113.

[25] Hungate B A, Holland E A, Jackson R B, et al.The fate of carbon in grasslands under carbon dioxide enrichment. Nature, 1997, 388(6642): 576-579.

[26] 曹裕松, 李志安, 江远清, 等. 陆地生态系统土壤呼吸研 究进展. 江西农业大学学报, 2004, 26(1):138-143.

[27] Berntson G M, Bazzaz F A. Belowground positive and negative feedbacks on CO2 growth enhancement.Plant and Soil, 1996, 187(2): 119-131.

[28] 周玉梅, 韩士杰, 辛丽花. CO2浓度升高对红松和长白松 土壤呼吸作用的影响. 应用生态学报, 2006, 17(9): 1757-1760.

[29] Harris D G, van Bavel C H M. Growth, yield, and water absorption of tobacco plants as affected by the composi-tion of the root atmosphere. Agronomy Journal, 1957, 49 (1):11-14.

[30] Harris D G, van Bavel C H M. Root respiration of tobacco, corn, and cotton plants. Agronomy Journal, 1957, 49 (4):182-184.

[31] Qi J E, Marshall J D, Mattson K G. High soil carbon-dioxide concentration inhibit root respiration of Douglas- Fir.New Phytologist, 1994, 128(3): 435-442.

[32] Hu S, Chapin F S, Firestone M K, et al.Nitrogen limitation of microbial decomposition in a grassland under elevated CO2. Nature, 2001, 409(6817): 188-191.

[33] 陈全胜, 李凌浩, 韩兴国, 等. 温带草原11 个植物群落夏 秋土壤呼吸对气温变化的响应. 植物生态学报, 2003, 27(4): 441-447.

[34] Lellei-Kovács E, Kovács-Láng E, Kalapos T, et al. Experimental warming does not enhance soil respiration in a semiarid temperature forest-steppe ecosystem. Community Ecology, 2008, 9(1): 29-37.

[35] 珊丹, 韩国栋, 赵萌莉, 等. 控制性增温和施氮对荒漠草 原土壤呼吸的影响.干旱区资源与环境, 2009, 23(9): 106-112.

[36] Briones M J I, Ostle N J, McNamara N R, et al. Functional shifts of grassland soil communities in response to soil warming. Soil Biology & Biochemistry, 2009, 41(2): 315-322.

[37] Luo Y, Wan S, Hui D F. et al. Acclimatization of soil respiration to warming in a tall grass prairie. Nature, 2001, 413(6856): 622-625.

[38] Wan S Q, Hui D F, Wallace L, et al. Direct and indirect effects of experimental warming on ecosystem carbon process in a tallgrass prairie. Global Biogeochemical Cycles, 2005, 19(2): GB2014, doi:10.1029/2004GB002315.

[39] Zhou X H, Sherry R A, An Y, et al. Main and interactive effects of warming, clipping, and doubled precipitation on soil CO2 efflux in a grassland ecosystem. Global Biogeochemical Cycles, 2006, 20(1): GB1003, doi:10.1029/ 2005GB002526.

[40] Zhou X H, Wan S Q, Luo Y Q. Source components and interannual variability of soil CO2 efflux under experimental warming and clipping in a grassland ecosystem. Global Change Biology, 2007, 13(4): 761-775.

[41] 张东秋. 西藏高原草原化嵩草草甸生态系统呼吸及碳 平衡
[D]. 北京: 中国科学院地理科学与资源研究所, 2005: 59-61.

[42] 张东秋, 石培礼, 何永涛, 等. 西藏高原草原化小嵩草草 甸生长季土壤微生物呼吸测定. 自然资源学报, 2006, 21(3): 458-464.

[43] 陈全胜, 李凌浩, 韩兴国, 等. 典型温带草原群落土壤呼 吸温度敏感性与土壤水分的关系. 生态学报, 2004, 24 (4): 831-836.

[44] 王小国, 朱波, 王艳强, 等. 不同土地利用方式下土壤呼 吸及其温度敏感性. 生态学报, 2007, 27(5): 1960-1968.

[45] Conant R T, Dalla-Betta P, Klopatek C C, et al. Controls on soil respiration in semiarid soils. Soil Biology & Biochemistry, 2004, 36(6): 945-951.

[46] 刘立新, 董云社, 齐玉春, 等. 内蒙古锡林郭勒流域土壤 呼吸的温度敏感性. 中国环境科学, 2007, 27(2): 226-230.

[47] 罗光强, 耿元波. 温度和水分对羊草草原土壤呼吸温度 敏感性的影响. 生态环境学报, 2009, 18(5): 1938-1943.

[48] 齐玉春, 董云社, 刘立新, 等. 内蒙古锡林河流域主要针 茅属草地土壤呼吸变化及其主导因子. 中国科学: D 辑, 2010, 40(3): 341-351.

[49] 张金波, 宋长春, 杨文燕. 不同土地利用下土壤呼吸温 度敏感性差异及影响因素分析. 环境科学学报, 2005, 25(11): 1537-1542.

[50] 施政, 汪家社, 何容, 等. 武夷山不同海拔植被土壤呼吸 季节变化及对温度的敏感性.应用生态学报, 2008, 19 (11): 2357-2363.

[51] Cao G M, Tang Y H, Mo W H, et al. Grazing intensity alters soil respiration in an alpine meadow on the Tibetan plateau. Soil Biology & Biochemistry, 2004, 36(2): 237-243.

[52] Wang W, Peng S S, Wang T, et al. Winter soil CO2 efflux and its contribution to annual soil respiration in different ecosystems of a forest-steppe ecotone, North China. Soil Biology & Biochemistry, 2010, 42(3): 451-458.

[53] Zhou X H, Tallev M, Luo Y Q. Biomass, litter, and soil respiration along a precipitation gradient in southern Great Plains, USA. Ecosystems, 2009, 12(8): 1369-1380.

[54] Gupta S R, Singh J S. Soil respiration in a tropical grassland. Soil Biology and Biochemistry, 1981, 13(4): 261-268.

[55] Munson S M, Benton T J, Lauenroth W K, et al. Soil carbon flux following pulse precipitation events in the shortgrass steppe. Ecological Research, 2010, 25(1): 205-211.

[56] 于占源, 曾德慧, 姜凤岐, 等. 半干旱区沙质草地生态系 统碳循环关键过程对水肥添加的响应. 北京林业大学 学报, 2006, 28(4): 45-50.

[57] Mcculley R L, Boutton T W, Archer S R. Soil respiration in a subtropical savanna parkland: Response to water additions. Soil Science Society of America Journal, 2007, 71 (3): 820-828.

[58] 董云社, 齐玉春, 刘纪远, 等. 不同降水强度4 种草地群 落土壤呼吸通量变化特征. 科学通报, 2005, 50(5): 473-480.

[59] 吴琴, 曹广民, 胡启武, 等. 矮嵩草草甸植被-土壤系统 CO2的释放特征. 资源科学, 2005, 27(2): 96-102.

[60] 张金霞, 曹广民, 周党卫, 等. 草毡寒冻雏形土CO2释放 特征. 生态学报, 2001, 21(4): 544-549.

[61] 张金霞, 曹广民, 周党卫, 等. 退化草地暗沃寒冻雏形土 CO2释放的日变化和季节动态. 土壤学报, 2001, 38(1):31-40.

[62] Liu X Z, Wan S Q, Su B, et al. Response of soil CO2 efflux to water manipulation in a tall grass prairie ecosystem. Plant and Soil, 2002, 240(2): 213-223.

[63] Pendall E, Bridgham S, Hanson P J, et al. Below-ground process responses to elevated CO2 and temperature: A discussion of observations, measurements methods, and models. New Phytologist, 2004, 162(2): 311-322.

[64] Coughenour M B, Chen D X. Assessment of grassland ecosystem responses to atmospheric change using linked plant-soil process models. Ecological Applications, 1997, 7(3): 802-827.

[65] Parton W J, Morgan J A, Wang G M, et al. Projected ecosystem impact of the prairie heating and CO2 enrichment experiment. New Phytologist, 2007, 174(4): 823-834.

[66] Bai W M, Wan S Q, Niu S L, et al. Increased temperature and precipitation interact to affect root production, mortality, and turnover in a temperate steppe: Implications for ecosystem C cycling. Global Change Biology, 2010, 16(4):1306-1316.

[67] 闫玉春, 唐海萍, 常瑞英, 等. 长期开垦与放牧对内蒙古 典型草原地下碳截存的影响. 环境科学, 2008, 29(5): 1388-1393.

[68] 齐玉春, 董云社, 耿元波, 等. 我国草地生态系统碳循环 研究进展. 地理科学进展, 2003, 22(4): 342-352.

[69] 曹广民, 李英年, 张金霞, 等. 高寒草甸不同土地利用格 局土壤CO2的释放量. 环境科学, 2001, 22(6): 14-19.

[70] Zhou G S, Wang Y H, Jiang Y L, et al. Carbon balance along the Northeast China Transect (NECT-IGBP). Science in China: Series C, 2002, 45(Suppl.): 18-29.

[71] 李志刚, 侯扶江. 管理方式与地形对黄土高原丘陵沟壑 区草地土壤呼吸的影响.土壤通报, 2009, 40(4):721-724.

[72] 车宗玺, 刘贤德, 王顺利, 等. 祁连山放牧草原土壤呼吸 及影响因子分析. 水土保持学报, 2008, 22(5): 172-175.

[73] 贾丙瑞, 周广胜, 王风玉, 等. 放牧与围栏羊草草原土壤 呼吸作用及其影响因子. 环境科学, 2005, 26(6): 1-7.

[74] 李玉强, 赵哈林, 赵学勇, 等. 不同强度放牧后自然恢复 的沙质草地土壤呼吸、碳平衡与碳储量. 草业学报, 2006, 15(5): 25-31.

[75] Wang Z W, Jiao S Y, Han G D, et al. Soil respiration response to different stocking rates on Stipa breviflora Griseb. Desert Steppe. Journal of Inner Mongolia University, 2009, 40(2): 186-193.

[76] Frank A B, Liebig M A, Hanson J D. Soil carbon dioxide fluxes in northern semiarid grasslands. Soil Biology & Biochemistry, 2002, 34(9): 1235-1241.

[77] Li L H, Chen Z Z, Wang Q B, et al. Changes in soil carbon storage due to over-grazing in Leymus chinensis steppe in the Xilin River Basin of Inner Mongolia. Journal of Environmental Sciences(China), 1997, 9(4): 486-490.

[78] 李凌浩, 王其兵, 白永飞, 等. 锡林河流域羊草草原群落 土壤呼吸及其影响因子的研究. 植物生态学报, 2000, 24(6): 680-686.

[79] 陈海军, 王明玖, 韩国栋, 等. 不同强度放牧对贝加尔针 茅草原土壤微生物和土壤呼吸的影响. 干旱区资源与 环境, 2008, 22(4): 165-169.

[80] Stark S, Kyt?viita M M. Simulated grazer effects on microbial respiration in a subarctic meadow: Implications for nutrient competition between plants and soil microorganisms. Applied Soil Ecology, 2006, 31(1-2): 20-31.

[81] 耿元波, 罗光强, 袁国富, 等. 农垦及放牧对温带半干旱 草原土壤碳素的影响.农业环境科学学报, 2008, 27(6): 2518-2523.

[82] 王艳芬, 陈佐忠, Tieszen L T. 人类活动对锡林郭勒地区 主要草原土壤有机碳分布的影响. 植物生态学报, 1998, 22(6): 545-551.

[83] De Jong E, Schappert H J V, MacDonald K B. Carbon dioxide evolution from virgin and cultivated soil as affected by management practices and climate. Canadian Journal of Soil Science, 1974, 54(3): 299-307.

[84] 李明峰, 董云社, 齐玉春, 等. 农垦对温带草地生态系统 CO2、CH4、N2O通量的影响. 中国农业科学, 2004, 37 (12): 1960-1965.

[85] Aguilar R, Kelly E F, Heil R D. Effects of cultivation on soils in Northern Great Plains Rangeland. Soil Science Society of America Journal, 1988, 52(4):1081-1085.

[86] Davidson E A, Ackerman I L. Changes in soil carbon inventories following cultivation of previously untilled soils. Biogeochemistry, 1993, 20(3): 161-193.

[87] Lal R. Soil carbon dynamics in cropland and rangeland. Environmental Pollution, 2002, 116(3):3 53-362.

[88] Tiessen H, Stewart J W B, Bettany J R. Cultivation effects on the amounts and concentration of carbon, nitrogen, and phosphorus in grassland soils. Agronomy Journal, 1982, 74(5): 831-835.

[89] Picek T, Ka?tovská E, Edwards K, et al. Short term effects of experimental eutrophication on carbon and nitrogen cycling in two types of wet grassland. Community Ecology, 2008, 9(Supp1): 81-90.

[90] 套格图, 赵吉, 孙启忠. 多年生人工草地对沙质土壤呼 吸作用的影响. 中国沙漠, 2008, 28(2): 301-305.

[91] Jones S K, Rees R M, Kosmas D, et al. Carbon sequestration in a temperate grassland, management and climatic controls. Soil Use and Management, 2006, 22(2): 132-142.