Original Articles

Reviewing on Factors and Critical Conditions of Rill Erosion

  • 1. Key Laboratory ofWater Cycle and Related Land Surface Processes, Institute of Geographical Sciences and Natural Resources Research, CAS, Beijing 100101,China;

    2. Graduate School of the Chinese Academy of Science, Beijing 100049;
    3. China National Laboratory of Soil Erosion and Dryland Agriculture on the Loess Plateau,Institute of Soil andWater Conservation, CAS, Yangling, 712100;
    4. College of Resources and Environment, Huazhong Agriculture University,Wuhan, 430070

Received date: 2010-01-01

  Revised date: 2010-05-01

  Online published: 2010-11-25


Rill erosion plays an important role in soil erosion process in loess hillslopes. It is a quantum leap during the process of soil erosion on slopes, and also is the beginning of a qualitative change in the process of soil erosion. On the basis of studying many papers, the authors review the study of factors and critical conditions of rill erosion. Rainfall and runoff, soil, topography, soil surface characteristics and land management all have their impact on rill erosion. On the one hand, researches use a variety of parameters to represent the impact of rainfall and runoff, soil, topography and land management. On the other hand, there are two forms of soil surface characteristics, namely, surface roughness and surface soil crust. The studies on the impacts of both of them are still in a qualitative research stage, and some studies have shown they can weaken rill erosion, the other studies concluded that they would exacerbate the occurrence of rill erosion. The generation of rill on the slopes needs certain conditions, and the critical runoff, soil and terrain conditions have their corresponding research results. The critical conditions for the generation of rill are not numbers, but are related to many factors. Critical conditions for rill erosion are not fixed values, but all of them should be a comprehensive index of other factors. At the same time, the future possible research direction and contents of the influencing factors and the critical conditions of rill erosion are pointed out. More experiments and field observation data are needed. In rill erosion factors research, the following points need further works: (1) the quantitative analysis of the impact of rainfall and runoff on the joint action of rill erosion; (2) screening key indicators to represent the effect of soil, topography and land management factors; (3) an in-depth study on how the soil surface characteristics affect rill erosion, and a quantitative analysis of the impact of surface roughness and soil crust on rill erosion; (4) the interaction of various factors with the impact of rill erosion. Meanwhile, the studies of critical conditions of rill erosion need more investments, which include: (1) exploring the critical rainfall conditions for rill erosion, and finding out its relationship with critical runoff conditions, (2) a systematic study on the critical conditions in different areas, to obtain a judgment with strong applicability about whether rill erosion will occur.

Cite this article

LI Junlan, CAI Qiangguo, SUN Liying, CHEN Xiao'an . Reviewing on Factors and Critical Conditions of Rill Erosion[J]. PROGRESS IN GEOGRAPHY, 2010 , 29(11) : 1319 -1325 . DOI: 10.11820/dlkxjz.2010.11.010


[1] 陈永宗, 景可, 蔡强国. 黄土高原现代侵蚀与治理. 北京: 科学出版社, 1988.

[2] FAO. Soil erosion by water: some measures for its control on cultivated lands. Rome:

[s.n.], 1965: 141-156

[3] Meyer L D, Foster G R, Nikolov S. Effect or flow rate and canopy on rill erosion. Transactions of the ASAE. 1975, 18(5): 905-911.

[4] 朱显谟. 黄土高原流水侵蚀的主要类型及有关因素. 水 土保持通报, 1982(1): 1-9.

[5] 郑粉莉, 唐克丽, 周佩华. 坡耕地细沟侵蚀影响因素研 究. 土壤学报, 1989, 26(2): 109-116.

[6] 黄秉维. 谈黄河中游土壤保持问题. 中国水土保持, 1983 (1): 8-13.

[7] 雷廷武, 张晴雯. 细沟侵蚀物理模型. 北京: 科学出版社, 2009.

[8] Foster G R, MeyerL D. A closed form erosion equation for upland areas//Shen H W. Sedimentation. Ft Collins. 210, 1972.

[9] Foster G R, Meyer L D. Transport of soil particles by shallow flow. Transaction of the ASAE, 1972, 15(1): 99-102.

[10] 刘宝元, 史培军. WEPP水蚀预报流域模型. 水土保持通 报, 1998, 18(5): 6-12.

[11] 张玉斌, 郑粉莉. WEPP模型概述. 水土保持研究, 2004, 11(4): 146-149.

[12] Foster G R. Modeling the soil erosion process//Hann C T, Johnson H P, Brakensiek H P. Hydrologic modeling of Small Watersheds, ASAE, St, Joseph, MI (Chapter 8), 1982: 297-382.

[13] 丁文峰, 李占斌, 丁登山. 坡面细沟侵蚀过程的水动力学 特征试验研究. 水土保持学报, 2002, 16(3): 72-75.

[14] 陈力, 刘青泉, 李家春. 坡面细沟侵蚀的冲刷试验研究. 水动力学研究与进展, 2005, 20(6): 761-766.

[15] R?mkens M J M, Helming K, Prasad S N. Soil erosion under different rainfall intensities, surface roughness, and soil water regimes. Catena, 2002, 46(2): 103-123.

[16] 王治国, 魏忠义, 段喜明, 等. 黄土残塬区人工降雨条件 下坡耕地水蚀的研究(I): 影响细沟侵蚀因素的综合分 析. 水土保持学报, 1995, 9(2): 51-57.

[17] Yen B C, Wenzel H G. Dynamic equations for steady spatially varied flow. Journal of Hydraulics Division, ASCE, 1970, 96(3): 801-814.

[18] 刘青泉, 李家春, 陈力, 等. 坡面流及土壤侵蚀动力学 (Ⅰ): 坡面流. 力学进展, 2004, 34(3): 360-370.

[19] Emmett W W. Overland flow//Kirkby M J. Hillslope Hydrology. New York: John-Wiely and Sons, 1978: 145-176.

[20] Yoon Y N, Brater E F. Spatially varied flow from controlled rainfall. Journal of the Hydraulics Division, ASCE, 1962, 97(9): 1367-1386.

[21] 吴淑安, 蔡强国, 朱同新, 等. 王家沟流域不同土壤的抗 蚀性研究//晋西黄土高原土壤侵蚀管理与地理信息系统 应用研究. 北京: 科学出版社, 1992.

[22] 韩鲁艳, 贾燕锋, 王宁, 等. 黄土丘陵沟壑区植被恢复过 程中的土壤抗蚀与细沟侵蚀演变. 土壤, 2009, 41(3): 483-489.

[23] 肖培青, 郑粉莉. 上方来水来沙对细沟侵蚀泥沙颗粒组 成的影响. 泥沙研究, 2003(5): 64-68.

[24] 蔡强国, 朱远大, 王石英. 几种土壤的细沟侵蚀过程及其 影响因素. 水科学进展, 2004, 15(1): 12-18.

[25] Ghebreiyessus Y T, Gantzer C J, Alberts E E, et a1. Soil erosion by concentrated flow: Shear stress and bulk density. Trans.of£k ASAE, 1984, 37(6): 1791-l797.

[26] 靳长兴. 坡度在坡面侵蚀中的作用. 地理研究, 1996, 15 (3): 57-63.

[27] Govers G. Time dependency of runoff velocity and erosion: The effect of the initial soil moisture profile. Earth Surface Processes and Landforms, 1991, 16(8): 713-729.

[28] Nearing M A, Norton L D, Bulgakov D A, et al. Hydraulics and erosion in eroding rills. Water resouces research, 33(4): 865-876.

[29] 王贵平, 白迎平, 贾志军, 等. 细沟发育及侵蚀特征初步 研究. 中国水土保持, 1988(5): 13-16.

[30] Gerard G. Rill erosion on arable land in Central Belgium: Rates, controls and predictability. Cantena,1991,18(2): 133-155.

[31] 雷廷武, Nearing MA. 侵蚀细沟水力学特性及细沟侵蚀 与形态特征的试验研究. 水力学报, 2000(11): 49-54.

[32] Gabriels D. The effect of slope length on the amount and size distribution of eroded silt loam soils: Short slope laboratory experiments on interrill erosion. Geomorphology, 1999, 28(1-2): 169-172.

[33] 王礼先, 朱金兆. 水土保持学. 北京: 中国林业出版社, 1995.

[34] 吕悦来, 李广毅. 地表粗糙度与土壤风蚀. 土壤学进展, 1992(6): 38-42.

[35] R?mkens M J M, Wang J Y. Soil changes from rainfall. Trans.Am.Soc.Agric.Eng, 1987, 30: 101-107.

[36] Henlming K, R?mkens M J M, Prosad S N. Surface roughness related processes of runoff and soil loss: A flume stude. Soil Science Society of America Journal, 1998, 62 (1): 243-250.

[37] Magunda M K, Larson W E, Linden D R, et al. Changes in microrelief and their effects on infiltration and erosion during simulated rainfall. Soil Technology, 1997, 10(1): 57-67.

[38] Huang C, Gascuel-Odoux C, Cros-Cayot S. Hillslope topographic and hydrologic effects on overland flow and erosion. Cayena, 2001, 46(2/3): 177-188.

[39] R?mkens M J M, Prasad S N, Gerits J J P. Soil erosion modes of sealing soils: A phenomenological study. Soil Technology, 1997, 11(1): 31-41.

[40] McIntyre D S. Soil splash and the formation of surface crusts by raindrop impact. Soil Science, 1958, 85(5): 261-266.

[41] Tackett J L, Pearson R W. Some characteristics of soil crusts formed by simulated rainfall. Soil Science, 1965, 99 (6): 407-413.

[42] 吴发启, 范文波. 坡耕地黄墡土结皮的理化性质分析. 水 土保持通报, 2001, 21(4): 22-24.

[43] 陆兆熊, 蔡强国, 王贵平. 黄土丘陵沟壑区表土结皮与坡 度对径流产沙的影响//晋西黄土高原土壤侵蚀管理与地 理信息系统应用研究. 北京: 科学出版社, 1992.

[44] Singer M J, Le Bissonnais Y. Importance of surface sealing in the erosion of some soils from a Mediterranean climate. Geomorphology, 1998, 24(1): 79-85.

[45] Woo M k, Fang G. The role of vegetation in the retardation of rill erosion. Catena, 1997, 29(2): 145-159.

[46] 柳长顺, 齐实. 土地利用变化与土壤侵蚀关系的研究进 展. 水土保持学报, 2001, 15(5): 10-14.

[47] 吴秀芹, 蔡运龙. 土地利用/土地覆盖变化与土壤侵蚀关 系研究进展. 地理科学进展, 2003, 22(6): 576-584.

[48] Savat J, De Ploey J. Sheetwash and rill development by surface flow//Bryan R B, Yair A. Badland Geomorphology and Piping. Norwich: Geo Books, 1982: 113-126.

[49] 张科利, 秋吉康宏. 坡面细沟侵蚀发生的临界水力条件 研究. 土壤侵蚀与水土保持学报, 1998, 4(1): 41-46.

[50] 雷阿林, 唐克丽. 黄土坡面细沟侵蚀的动力条件. 土壤侵 蚀与水土保持学报, 1998, 4(3): 39-43.

[51] Meyer L D, Foster G R, R?mkens M J M. Source of soil eroded by water from upland slopes//Present and Prospective Technology for Prediction Sediment Yield and Sources. Oxford: Sediment Yield Workshop, USDA Sedimentation Lab, 1975: 177-189.

[52] Rauws G, Govers G. Hydraulic and soil mechanical aspects of rill generation on agricultural soil. Journal of Soil Science, 1988, 39(1): 111-124.

[53] 陆兆熊, Merz W. 应用盐液示踪技术测定表面水流流速 //王福堂. 晋西黄土高原土壤侵蚀管理与地理信息系统 应用研究. 北京: 科学出版社, 1992.

[54] 蔡强国. 坡面细沟发生临界条件研究. 泥沙研究, 1998 (1): 52-59.

[55] 丁文峰, 李占斌, 鲁克新. 黄土坡面细沟侵蚀发生的临界 条件. 山地学报, 2001, 19(6): 551-555.

[56] 范兴科, 蒋定生, 赵合理. 黄土高原浅层原状土抗剪强度 浅析. 土壤侵蚀与水土保持学报, 1997, 3(4): 69-75.

[57] Crouch R J, Novruzi T. Threshold conditions for rill initiation on a vertisol. Gunnedah, N.S.W., Australia. Catena, 1989, 16(1): 101-110.

[58] Gilley J E, Elliot W J, Laflen J M, et al. Critical shear stress and critical flow rates for initiation of rilling. Journal of Hydrology, 1993, 142(1-4): 251-271.

[59] 唐泽军, 雷廷武, 张晴雯, 等. 确定侵蚀细沟土壤临界抗 剪应力的REE示踪方法. 土壤学报, 2004, 41(1): 28-34.

[60] 雷廷武, Nearing MA. 水流作用下疏松土壤材料中细沟 的再生及其临界剪切应力的实验研究. 农业工程学报, 2000, 16(1): 26-30.

[61] Savat J, De Ploey J. Sheetwash and rill development by surface flow//Bryan R B, Yair A. Badland Geomorpholo-gy and Piping. Geobooks, Norwich, 1982:113-126.

[62] 杨具瑞, 史正涛, 曹叔尤, 等. 细沟侵蚀临界坡度研究. 干 旱区资源与环境, 2008, 22(5): 64-67.

[63] 罗来兴. 划分晋西、陕北、陇东黄土区域沟间地与沟谷的 地貌类型. 地理学报, 1956, 22(3): 201-221.

[64] 陈永宗. 陕北绥德地区沟间地水流侵蚀形态形成和分布 规律的初步研究//黄河流域水土保持科学研究工作会 议论文汇编. 郑州: 水利电力出版社, 1964.

[65] 郑粉莉. 发生细沟侵蚀的临界坡长与坡度. 中国水土保 持, 1989(8): 23-24.