Original Articles

An Overview and Perspective about Causative Factors of Surface Urban Heat Island Effects

  • 1. School of Land Science and Technology, China University of Geosciences, Beijing 100083, China;
    2. College of Urban and Environment Sciences, Peking University, Beijing 100871, China

Received date: 2010-06-01

  Revised date: 2011-10-01

  Online published: 2011-01-25


Urban heat island (UHI) is a hotspot in the study about urban ecological and environmental effects. UHI effects are caused by multiple factors, and the synthesized mechanism study can supply a foundation to release the negative effects of UHI. This study proposes a theory framework for causative factors of surface urban heat island (SUHI) by analyzing the process of surface energy on the basis of landscape ecology. Since surface temperature represents the process of surface energy, we examine the causative factors of this process, which includes energy absorption/emission, energy translation, and energy transmission. The internal and external progresses on each kind of causative factors are reviewed in this study. We also compare the internal studies on synthesized mechanism of SUHI with external studies. By the comparison of progresses of causative factor studies and the mechanism of SUHI, we deduce the prospect on this field.
The energy absorption and emission of surface represent the ability to absorb solar short-wave radiation, and the capacity to emit earth’s surface long-wave radiation, which are controlled by the physical properties of land surface. The studies on this theme focus on land use and biophysical properties. It has reached a consensus on the functions of land use/land cover. The biophysical properties can better describe the relationship between surface characteristics and temperature with higher accuracy. The physical properties of the surface include vegetation, impervious surface, and surface moisture, which are represented by land cover indices derived from remote sensed data including NDVI, ISA, NDBI, NDMI, etc. Energy translation is the process of translating one form of energy into another, which, in this case, is surface heat determined by the intensity of human activities. Population density, energy consumption intensity, and automobile flux are normal indices to depict the intensity of human activities. However, the studies in this field are limited by the spatial resolution of social-economic data. Energy transmission represents the energy flow between different patches referring to the temperature gradient, which primarily depends on the spatial relationship between landscape patches. Two themes in this field have been developed. One is the relationship between temporal heterogeneity of landscape patterns and surface temperature changes. The other is the influence of spatial characteristics of landscape patches on surface temperature. In the field of synthesized causative factors, the external study focuses on the triangle model of temperature, vegetation, and soil moisture. Most of the internal analyses are about the statistical model consisted of land cover and social-economic components.
There are two tendencies of the relating studies in the future. Firstly, high resolution data and field survey data will promote the study on the analysis of energy translation and transmission. Secondly, following a description of energy process, we can involve social-economic indicators and landscape patterns in the triangle mechanism model to establish the systemized mechanism of SUHI.

Cite this article

XIE Miaomiao, WANG Yanglin, FU Meichen . An Overview and Perspective about Causative Factors of Surface Urban Heat Island Effects[J]. PROGRESS IN GEOGRAPHY, 2011 , 30(1) : 35 -41 . DOI: 10.11820/dlkxjz.2011.01.004


[1] 李双成, 赵志强, 王仰麟. 中国城市化过程及其资源与生态环境效应机制. 地理科学进展, 2009, 28(1): 63-70.

[2] 张小飞, 王仰麟, 吴健生,等. 城市地域地表温度-植被覆盖定量关系分析: 以深圳市为例. 地理研究, 2006, 25(3): 369-377.

[3] Voogt J A, Oke T R. Thermal remote sensing of urban climates. Remote Sensing of Environment, 2003, 86: 370-384.

[4] Yuan F, Bauer M E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of Environment, 2007, 106(3): 375-386.

[5] Voogt J A. Urban heat island. Ian Douglas. Encyclopedia of Global Environmental Change. Chichester: John Wiley & Sons, Ltd, 2002: 660-666.

[6] Grimm N B, Faeth S H, Golubiewski N E, et al. Global change and the ecology of cities. Science, 2008, 319: 756-760.

[7] 周淑贞, 束炯. 城市气候学. 北京: 气象出版社, 1994.

[8] Chang C R, Li M H, Chang S D. A preliminary study on the local cool-island intensity of Taipei city parks. Landscape and Urban Planning, 2007, 80(4): 386-395.

[9] Zhou L M, Dickinson R E, Tian Y H, et al. Evidence for a significant urbanization effect on climate in China. PNAS, 2004, 101(26): 9540-9544.

[10] Patz J A, Campbell-Lendrum D, Holloway T, et al. Impact of regional climate change on human health. Nature, 2005, 438(17): 310-317.

[11] 于兴修, 杨桂山, 王瑶. 土地利用/覆被变化的环境效应研究进展与动向. 地理科学, 2004, 24(5): 626-632.

[12] 胡华浪, 陈云浩, 宫阿都. 城市热岛的遥感研究进展. 国土资源遥感, 2005(3): 5-13.

[13] 张心怡, 刘敏, 孟飞. 基于RS和GIS的地面温度和土地利用/覆被关系研究进展. 遥感信息, 2005(3): 66-70.

[14] 杨英宝, 苏伟忠, 江南. 基于遥感的城市热岛效应研究. 地理与地理信息科学, 2006, 22(5): 35-40.

[15] 肖荣波, 欧阳志云, 李伟峰, 等. 城市热岛时空特征及其影响因素. 气象科学, 2007, 27(2): 230-236.

[16] Weng Q. Thermal infrared remote sensing for urban climate and environmental studies: Methods, applications, and trends. ISPRS Journal of Photogrammetry and Remote Sensing, 2009, 64(4): 335-344.

[17] 覃志豪, Li W J, Zhang M H, 等. 单窗算法的大气参数估计方法. 国土资源遥感, 2003, 56(2): 37-43.

[18] Qin Z H, Karnieli A, Berliner P. A mono-window algorithm for retrieving land surface temperature from Landsat TM data and its application to the Israel-Egypt Border Region. International Journal of Remote Sensing, 2001, 22(18): 3719-3746.

[19] 覃志豪, Zhang M H, Arnon K, 等. 用陆地卫星TM6数据演算地表温度的单窗算法. 地理学报, 2001, 56(4): 456-466.

[20] Jime′nez-Mun′oz, J C, Sobrino J A. A generalized single-channel method for retrieving land surface temperature from remote sensing data. Journal of Geophysical Research, 2003, 108(D22): ACL2-1-9 (doi:10.1029/2003JD003480).

[21] Stathopoulou M, Cartalis C. Downscaling AVHRR land surface temperatures for improved surface urban heat island intensity estimation. Remote Sensing of Environment, 2009, 113(12):2592-2605.

[22] Nichol J. An emissivity modulation method for spatial enhancement of thermal satellite images in urban heat island analysis. Photogrammetric Engineering & Remote Sensing, 2009, 75(5): 547-556.

[23] 田国良. 热红外遥感. 北京:电子工业出版, 2006.

[24] Boochs F, Kupfer G, Dockter K, et al. Shape of the red edge as vitality indicator for plants. International Journal of Remote Sensing, 1990, 11(10): 1741-1753.

[25] 余新晓, 牛健植, 关文彬, 等. 景观生态学. 北京: 高等教育出版社, 2006.

[26] 傅伯杰, 陈利顶, 马克明, 等. 景观生态学原理及应用. 北京: 科学出版社, 2001.

[27] 张惠远, 饶胜, 迟妍妍, 等. 城市景观格局的大气环境效应研究进展. 地球科学进展, 2006, 21(10): 1025-1032.

[28] Balling R C, Brazel S W. High-resolution surface-temperature patterns in a complex urban terrain. Photographic Engineering Remote Sensing, 1988, 54(9): 1289-1293.

[29] Roth M, Oke T R, Emery W J. Satellite-derived urban heat islands from three coastal cities and the utilization of such data in urban climatology. International Journal of Remote Sensing, 1989, 10(11): 1699-1720.

[30] 周红妹, 周成虎, 葛伟强, 等. 基于遥感和GIS 的城市热场分布规律研究. 地理学报, 2001, 56(2): 189-197.

[31] 谢苗苗, 周伟, 王仰麟, 等. 城市土地利用的热环境效应研究: 以宁波城区为例. 北京大学学报: 自然科学版, 2008, 44(5): 816-812.

[32] 宫阿都, 陈云浩, 李京, 等. 北京市城市热岛与土地利用/覆盖变化的关系研究. 中国图象图形学报,2007, 12(8): 1476-1482.

[33] Streutker D R. Satellite-measured growth of the urban heat island of Houston, Texas. Remote Sensing of Environment, 2003, 85(3): 282-289.

[34] Qian L, Cui H, Chang J. Impacts of land use and cover change on land surface temperature in Zhujiang delta. Pedosphere, 2006, 16(6): 681-689.

[35] 杨英宝, 苏伟忠, 江南, 等. 南京市热岛效应变化时空特征及其与土地利用变化的关系. 地理研究, 2007, 26(5): 877-886.

[36] Amiri R, Weng Q, Alimohammadi A, et al. Spatial-temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 2009, 113(12): 2606-2617.

[37] Saaroni H, Ben-Dor E, Bitan A, et al. Spatial distribution and microscale characteristics of the urban heat island in Tel-Aviv, Israel. Landscape and Urban Planning, 2000, 48(1-2): 1-18.

[38] Weng Q H, Yang S H. Managing the adverse thermal effects of urban development in a densely populated Chinese city. Journal of Environmental Management, 2004, 70(2): 145-156.

[39] Gallo K P, Tarpley J D, McNab A L, et al. Assessment of urban heat islands: a satellite perspective. Atmospheric Research, 1995, 37(1-3): 37-43.

[40] Raynolds M K, Comiso J C, Walke D A, et al. Relationship between satellite-derived land surface temperatures, arctic vegetation types, and NDVI. Remote Sensing of Environment, 2008, 112(4): 1884-1894.

[41] Gallo K P, McNAB A L, Karl T R, et al. The use of a vegetation index for assessment of the urban heat island effect. International Journal of Remote Sensing, 1993, 14(11): 2223-2230.

[42] Nemani R, Running S. Land cover characterization using multitemporal red, near-IR, and thermal-IR data from NOAA/AVHRR. Ecological Applications, 1997, 7(1): 79-90.

[43] Owen T W, Carlson T N, Gillies R R. An Assessment of satellite remotely-sensed land cover parameters in quantitatively describing the climatic effect of urbanization. International Journal of Remote sensing, 1998, 19(9): 1663-1681.

[44] Chen X, Zhao H, Li P, et al. Remote sensing image-based analysis of the relationship between urban heat island and land use/cover changes. Remote Sensing of Environment, 2006, 104(2): 133-146.

[45] 陈晋, 陈云浩, 何春阳, 等. 基于土地覆盖分类的植被覆盖率估算亚像元模型与应用. 遥感学报, 2001, 5(6): 416-422.

[46] 陈云浩,李晓兵, 史培军,等. 北京海淀区植被覆盖的遥感动态研究. 植物生态学报, 2001, 25(5): 588-593.

[47] 陈云浩, 李晓兵, 史培军. 基于遥感的植被覆盖变化景观分析: 以北京海淀区为例. 生态学报, 2002, 22(10): 1581-1686.

[48] 谢苗苗, 王仰麟, 李贵才. 基于亚像元分解的不透水表面与植被覆盖空间分异测度. 资源科学, 2009, 31(2): 257-264.

[49] Weng Q, Lu D, Schubring J. Estimation of land surface temperature-vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment, 2004, 89(4): 467-483.

[50] 岳文泽. 基于遥感影像的城市景观格局及其热环境效应研究[D]. 上海: 华东师范大学, 2005.

[51] Xian G, Crane M. An analysis of urban thermal characteristics and associated land cover in Tampa Bay and Las Vegas using Landsat satellite data. Remote Sensing of environment, 2006, 104(2): 147-156.

[52] Zhang X, Zhong T, Wang K, et al. Scaling of impervious surface area and vegetation as indicators to urban land surface temperature using satellite data. International Journal of Remote Sensing, 2009, 30(4): 841-859.

[53] Rezaul M, Stuart A F, Travis K, et al. Impacts of irrigation on 20th century temperature in the northern Great Plains. Global and Planetary Change, 2006, 54(1-2): 1-18.

[54] 陈云浩, 李京, 李晓兵. 城市空间热环境遥感分析: 格局、过程、模拟与影响. 北京: 科学出版社, 2004.

[55] 黄荣峰, 徐涵秋. 利用Landsat ETM+影像研究土地利用/覆盖与城市热环境的关系: 以福州市为例. 遥感信息, 2005(5): 36-39.

[56] Gao B C. NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment, 1996, 58(3): 257-266.

[57] 林学椿, 于淑秋, 唐国利. 北京城市化进程与热岛强度关系的研究.自然科学进展, 2005, 15(7): 882-886.

[58] 何萍, 陈辉, 李宏波, 席武俊. 云南高原楚雄市热岛效应因子的灰色分析. 地理科学进展, 2009, 28(1): 025-032.

[59] 岳文泽, 徐丽华, 徐建华. 20世纪90年代上海市热环境变化及其社会经济驱动力. 生态学报, 2010, 30(1): 0155-0164.

[60] McGarigal K, Cushman S A, Neel M C, et al. FRAGSTATS: Spatial Pattern Analysis Program for Categorical Maps. Computer software program produced by the authors at the University of Massachusetts, Amherst. http://www.umass.edu/landeco/research/fragstats/fragstats.html[2010-04-28].

[61] 刘艳红, 郭晋平. 基于植被指数的太原市绿地景观格局及其热环境效应. 地理科学进展, 2009, 28(5): 798-804.

[62] Weng Q H, Liu H, Liang B Q, et al. The spatial variations of urban land surface temperatures: Pertinent factors, zoning effect, and seasonal variability. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2008, 1(2): 154-166.

[63] Zhang X Y, Zhong T Y, Feng X Z, et al. Estimation of the relationship between vegetation patches and urban land surface temperature with remote sensing. International Journal of Remote Sensing, 2009, 30(8): 2105- 2118.

[64] 王雪. 城市绿地空间分布及其热环境效应遥感分析[D]. 北京: 北京林业大学, 2006.

[65] Price J C. Using spatial context in satellite data to infer regional scale evapotranspiration. IEEE Transactionson Geoscience and Remote Sensing, 1990, 28(5): 940-948.

[66] Carlson T N, Gillies R R, Perry E M. A method to make use thermal infrared temperature and NDVI measurements to infer surface soil water content and fractional vegetation cover. Remote Sensing Review, 1994, 9(1/2): 161-173.

[67] Gillies R R, Carlson T N. Thermal remote sensing of surface soil water content with partial vegetation cover for incorporation into climate models. Journal of Applied Meteorology, 1995, 34(4): 745-756.

[68] Moran M S, Clarke T R, Inoue Y, et al. Estimating crop water deficit using the relation between surface-air temperature and spectral vegetation index. Remote Sensing of Environment, 1994, 49(3): 246-263.

[69] Goetz S J. Multi-sensor analysis of NDVI, surface temperature and biophysical variables at a mixed grassland site. International Journal of Remote Sensing, 1997, 18(1): 71-94.