Original Articles

Advancement in Topographic Wetness Index and Its Application

  • 1. College of Resource and Environment, Northwestern Sci-tech University of Agriculture and Forestry, Yangling 712100, China|
    2. Institute of Soil and Water Conservation, CAS and Ministry of Water Resources, Yangling 712100, China

Received date: 2005-04-01

  Revised date: 2005-07-01

  Online published: 2005-11-25


Topographic wetness index, which takes into account the integrated effects of topography and soil hydraulic characters on soil moisture, plays important theoretical and applied potentials in the studies of spatial distribution of soil moisture. Considering the spatial-temporal variation in upslope contributing area, topographic wetness indexes were divided into three types, e.g. static, quasi-dynamic and full dynamic. The effects of computing methods of topographic wetness index and resolution of DEMs as well as the universality of the index should be analyzed discreetly in application of topographic wetness index. At the same time, for the apparent differences between the current assumptions of topographic wetness index and actual water cycling process and runoff mechanism in arid/semi-arid region, the research approaches and the conceive of the application of topographic wetness index are proposed for the Losses Plateau to provide theoretical and practical foundation for the vegetation restoration and the conservation of soil and water in the region.

Cite this article

ZhANG Caixia, YANG Qinke, LI Rui . Advancement in Topographic Wetness Index and Its Application[J]. PROGRESS IN GEOGRAPHY, 2005 , 24(6) : 116 -123 . DOI: 10.11820/dlkxjz.2005.06.014


[1] Beven, K. J., Kirkby, M. J., A physically based, variable contributing area model of basin hydrology. Hydrological Sciences Bulletin, 1979, 24: 43~68.

[2] Beven, K. J., Kirkby, M. J., Schoffield, N., et a1., Testing a Physically-based flood forecasting model (TOPMODEL) for three UK catchments. Journal of Hydrology, 1984, 69: 119~143.

[3] Barling, R. D., Moore, I. D., Grayson, R. B., A quasi-dynamic wetness index for characterizing the spatial distribution of zones of surface saturation and soil water content. Water Resource Research, 1994, 30: 1029~1044.

[4] Western, A. W., Grayson, R. B., Bl?schl, G., Willgoose, G. R., McMahon, T. A., Observed spatial organization of soil moisture and its relation to terrain indices. Water Resources Research, 1999, 35 (3): 797~810.

[5] Wilson J P, Gallant J C. Digital terrain analysis. In: Wilson and Gallant, ed. Terrain analysis: Principal and application. John Wiley & Sons, Inc. 2000, 1~26.

[6] Moore, I. D., Gessler, P. E., Nielsen, G. A., et al., Soil attribute prediction using terrain analysis. Soil Science Society of America Journal, 1993, 57: 443~452.

[7] Dymond, C. C., Johnson, E. A., Mapping vegetation spatial patterns from modeled water,temperature and solar radiation gradients. Photogrammetry & Remote Sensing, 2002, 57: 69~85.

[8] Burt, T. P., Butcher, D. P., Topographic controls of soil moisture distributions. Soil Science, 1985, 36: 469~486.

[9] Moore, I. D., Burch, G. J., Mackenzie, D.H., Topographic effects on the distribution of surface soil water and the location of ephemeral gullies. Trans. Am. Soc. Agric. Eng, 1988, 31(4): 1098~1107.

[10] Güntner, A., Seibert, J., Uhlenbrook, S., Modeling spatial patterns of saturated areas: An evaluation of different terrain indices. Water Resource Research, 2004, 40: W05114.

[11] 邓慧平,李秀彬. 地形指数的物理意义分析. 地理科学进展,2002,21(2):103~110.

[12] 韩杰,张万昌,赵登忠. 基于TOPMODEL径流模拟的黑河水资源探讨. 农村生态环境,2004,20(2):16~20.

[13] Woods, R. A., Sivapalan, M., Robinson, J. S., Modeling the spatial variability of subsurface runoff using a topographic index. Water Resource Research, 1997, 33 (5): 1061~1073.

[14] O’Loughlin, E. M., Prediction of surface sateration zones in natural catchments by topographic analysis. Water Resource Research, 1986, 22 (5): 794~804.

[15] Moore, I. D., Grayson, R. B., Ladson, A. R., Digital terrain modelling: A review of hydrological, geomorphological and biological applications. Hydrological Processes, 1991, 5: 3~30.

[16] Kim, S., Jung, S., Digital terrain analysis of the dynamic wetness pattern on the sulmachun watershed . Diffuse Pollution Conference. Dublin, Germany. 2003, 10A GIS.

[17] Moore, I. D., Machay, S. M., Wallbrink, P. J., Burch, G. J., O’loughlin, E. M., Hydrologic characteristics and modeling of a small forested catchment in Southeastern New South Wales: Prelogging condition. Journal of Hydrology, 1986, 83: 307~335.

[18] Moore, I. D., Thompson, J. C., Are water table variation in a shallow forest soil consistent with the Topmodel concept? Water Resource Research, 1996, 32(3): 663~669.

[19] Ladson A R, Moore I D. Soil water prediction on the Konza Prairic by microwave remote sensing and topographic attributes. Journal of Hydrology, 1992, 138, 385~407.

[20] 郭方,刘新仁,任立良. 以地形为基础的流域水文模型—Topmodel及其拓宽应用. 水科学进展,2000,11(3): 296~301.

[21] 陈仁升,康尔泗,杨建平,等. Topmodel模型在黑河干流出山径流模拟中的应用. 中国沙漠,2003,23(4):428~434.

[22] 孔凡哲,芮孝芳. TOPMODEL中地形指数计算方法的探讨. 水科学进展,2003(14)1:41~45.

[23] 余新晓,赵玉涛. 基于地形指数的Topmodel研究进展与热点跟踪. 北京林业大学学报,2002,24(4):117~121.

[24] Quinn, P. F., Beven, K. J., Lamb, R., The ln (a/tanβ) index: How to calculate it and how to use it in the Topmodel framework. Hydrology processes, 1995, 9: 161~182.

[25] Tarboton, D. G., A new method for the determination of flow directions and unslope area in grid digital elevation models. Water Resource Research, 1997, 33 (2): 309~319.

[26] Pan, F. F., A comparison of geographical information systerms-based algorithms for computong the Topmodel topographic index. Water Resource Research, 2004, 40: W06303.

[27] O’Callaghan, J. F., Mark, D. M., The extraction of drainage networks form digital elevation data. Comput. Vision Graphics Image, 1984, 28: 323~344.

[28] Quinn, P. F., Beven, K. J., Chevallier, P., Planchon, O., The prediction of hillslope flow paths for distributed hydrological modeling using digital terrain models. Hydrology processes, 1991, 5: 59~80.

[29] Wolock, D. M., McCabe, G. J., Comparison of single and multiple flow direction algorithms for computing topographic parameters. Water Resources Research, 1995, 31(5): 1315~1324.

[30] Martz, W., Garbrecht, J., Numerical definition of drainage network and subcatchment areas from digital elevation models. Computers & Geo sciences, 1992, 18 (6): 747~761.

[31] Anderson, M. G., Burt, T. P., The role of topography in controlling throughflow generation. Earth Surface Processes and Landforms, 1978, 3: 331~344.

[32] Hjerdt, K. N., McDonnell, J. J., Seibert, J., Rodhe, A., A new topographic index to quantify downslope controls local drainage. Water Resource Research, 2004, 40: W05602.

[33] Zhang, W. H., Montgomery, D. R., Digital elevation model grid size, landscape representation, and hydrologic simulation. Water Resource Research, 1994, 30 (4): 1019~ 1028.

[34] 李玉山. 黄土高原森林植被对陆地水循环影响的研究. 自然资源学报,2001,16(5):427~432.

[35] 蒋定生,黄国俊. 黄土高原土壤入渗速率的研究. 土壤学报,1986,23(4):299~305.

[36] 唐克丽,等. 黄河流域的侵蚀与径流泥沙变化. 北京:中国科学技术出版社,1993.

[37] Yang Q K, Van Niel T G, McVicar T R, Hutchinson M F, Li L T. Developing a digital elevation model using ANUDEM for the Coarse Sandy Hilly Catchments of the Loess Plateau, China . CSIRO Land and Water Technical Report 7/05, Canberra, Australia: 2005, 1~74.

[38] 包为民,王从良. 垂向混合产流模型及应用. 水文,1997,3:18~21.