The Changes of Net Primary Productivity in Chinese Terrestrial Ecosystem: Based on Process and Parameter Models

  • 1. Synthesis Research Center of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Shanghai Key Laboratory for Urban Ecology and Sustainability, East China Normal University, Shanghai 200062, China

Received date: 2011-10-01

  Revised date: 2012-01-01

  Online published: 2012-01-25


Net primary productivity (NPP) is a basis of material and energy flows in terrestrial ecosystems, and it is also an important component in the research on carbon cycle and carbon budget. At present, studies on NPP on regional and global scales mainly depend on model simulation, among which process and remote sensing models are widely used. In this paper, we analyzed the published NPP for Chinese terrestrial ecosystem and its response to future climate change which were computed by process and remote sensing models. The results revealed that the averaged NPP in Chinese terrestrial ecosystem was (2.828?0.827) PgC穉-1. Between 1982 and 1998, NPP tended to fluctuate but increased by 0.027 PgC穉-1 with an annual rate of 1.07%. Among different vegetation types, NPP per unit area was the maximum in evergreen broadleaf forests, which varied in a wide range among different researches; the values had a small discrepancy among deciduous needleleaf forests, evergreen needleleaf forests and deciduous broadleaf forests, and the value of croplands was lower than that of broadleaf forests, but higher than that of needleleaf forests; both grasslands and deserts had relatively low values, with the former having a significantly higher value than the latter. Furthermore, the total amount of NPP was the maximum in croplands followed by grasslands. The sum of both accounted for 58.34% of the gross. Except shrublands and evergreen needleleaf forests, all the other vegetation types had less than 10% of the gross. In the future climate scenarios, the NPP of Chinese terrestrial ecosystem might increase firstly, and then decrease.

Cite this article

GAO Yanni, YU Guirui, ZHANG Li, LIU Min, HUANG Mei, WANG Qiufeng . The Changes of Net Primary Productivity in Chinese Terrestrial Ecosystem: Based on Process and Parameter Models[J]. PROGRESS IN GEOGRAPHY, 2012 , (1) : 109 -117 . DOI: 10.11820/dlkxjz.2012.01.014


[1] 于贵瑞, 孙晓敏. 陆地生态系统通量观测的原理与方法. 北京: 高等教育出版社, 2006.
[2] 曹明奎, 于贵瑞, 刘纪远, 等. 陆地生态系统碳循环的多尺度试验观测和跨尺度机理模拟. 中国科学: D 辑,2004, 34(增刊Ⅱ): 1-14.
[3] 于贵瑞, 王秋凤, 朱先进. 区域尺度陆地生态系统碳收支评估方法及其不确定性. 地理科学进展, 2011, 30(1):103-113.
[4] Cao M K, Prince S D, Li K R, et al. Response of terrestrialcarbon uptake to climate interannual variability in China.Global Change Biology, 2003, 9(4): 536-546.
[5] 陶波, 李克让, 邵雪梅, 等. 中国陆地净初级生产力时空特征模拟. 地理学报, 2003, 58(3): 372-380.
[6] Piao S L, Fang J Y, Zhou L M, et al. Changes in vegetationnet primary productivity from 1982 to 1999 in China.Global Biogeochemical Cycles, 2005, 19, GB2027,doi:10.1029/2004GB002274.
[7] 李刚, 辛晓平, 王道龙, 等. 改进CASA 模型在内蒙古草地生产力估算中的应用. 生态学杂志, 2007, 26(12):2100-2106.
[8] 张峰, 周广胜, 王玉辉. 基于CASA 模型的内蒙古典型草原植被净初级生产力动态模拟. 植物生态学报,2008, 32(4): 786-797.
[9] Yan, H M, Liu J Y, Cao M K, et al. Remotely-sensedchanges in agricultural productivity in China from the1980s to the 1990s. Remote Sensing and Modeling ofEcosystems for Sustainability, 2004, 5544: 319-327.
[10] 刘海桂, 唐旭利, 周国逸, 等. 1981~2000 年广东省净初级生产力的时空格局. 生态学报, 2007, 27(1):4065-4074.
[11] 姜群鸥, 邓祥征, 战金艳, 等. 黄淮海平原耕地转移对植被碳储量的影响. 地理研究, 2008, 27(4): 839-846.
[12] 王秋凤, 牛栋, 于贵瑞, 等. 长白山森林生态系统CO2 和水热通量的模拟研究. 中国科学: D辑, 2004, 34(A02):131-140.
[13] Feng X, Liu G, Chen J M, et al. Net primary productivityof China’s terrestrial ecosystems from a process modeldriven by remote sensing. Journal of Environmental Management,2007, 85(3): 563-573.
[14] Ji J J. A climate-vegetation interaction model: Simulatingphysical and biological processes at the surface. Journalof Biogeography, 1995, 22(2-3): 445-451.
[15] 黄玫, 季劲钧, 曹明奎, 等. 中国区域植被地上与地下生物量模拟. 生态学报, 2006, 26(12): 4156-4163.
[16] Huang Y, Yu Y Q, Zhang W, et al. Agro-C: A biogeophysicalmodel for simulating the carbon budget of agroecosystems.Agricultural and Forest Meteorology, 2009, 149(1):106-129.
[17] 延晓冬, 赵俊芳. 基于个体的中国森林生态系统碳收支模型FORCCHN 及模型验证. 生态学报, 2007, 27(7):2684-2694.
[18] 黄耀, 周广胜, 吴金水. 中国陆地生态系统碳收支模型.2008, 北京: 科学出版社.
[19] Ji J J, Huang M, Li K R. Prediction of carbon exchangesbetween China terrestrial ecosystem and atmosphere in21st century. Science in China: Series D, 2008, 51(6):885-898.
[20] 黄玫. 中国陆地生态系统水、热通量和碳循环模拟研究
[D]. 北京: 中国科学院地理科学与资源研究所, 2006.
[21] 陶波. 中国陆地生态系统净初级生产力与净生态系统生产力模拟研究[D]. 北京: 中国科学院地理科学与资源研究所, 2003.
[22] 孙国栋. LPJ 模型对1981-1998 年中国区域潜在植被分布和碳通量的模拟. 气候与环境研究, 2009, 14(4):341-351.
[23] Mao J F, Dan L, Wang B, et al. Simulation and evaluationof terrestrial ecosystem NPP with M-SDGVM over continentalChina. Advances in Atmospheric Science, 2010, 27(2): 427-442.
[24] Meng J H, Wu B F, Zhou Y M. Monitoring terrestrial netprimary productivity of China using BIOME-BGC modelbased on remote sensing. Geoscience and Remote SensingSymposium, 2005, 5: 3105-3108.
[25] 王李娟, 牛铮, 旷达. 基于MODIS 数据的2002~2006 年中国陆地NPP 分析. 国土资源遥感, 2010, 87(4):113-116.
[26] 周蕾. 1991-2001 年中国陆地生态系统生产力及蒸散的定量化研究[D]. 北京: 中国科学院地理科学与资源研究所, 2009.
[27] 刘明亮. 中国土地利用/土地覆盖变化与陆地生态系统植被碳库和生产力研究[D]. 北京: 中国科学院遥感应用研究所, 2001.
[28] Xiao X M, Melillo J M, Kicklighter DW, et al. Net primaryproduction of terrestrial ecosystems in China and itsequilibrium response to changes in climate and atmosphericCO2 concentration. Acta Phytoecologica Sinica,1998, 22(2): 97-118.
[29] Pan Y D, Melillo J M, Kicklighter D W, et al. Modelingstructural and functional responses of terrestrial ecosystemsin China to changes in climate and atmosphericCO2. Acta Phytoecologica Sinica, 2001, 25(2): 175-189.
[30] Gao Z Q, Liu J Y. Simulation study of China's net primaryproduction. Chinese Science Bulletin, 2008, 53(3):434-443.
[31] Fang J Y, Piao S L, Field C B, et al. Increasing net primaryproduction in China from 1982 to 1999. Frontier EcologicalEnvironment, 2003, 1(6): 293-297.
[32] 朴世龙, 方精云, 郭庆华. 1982-1999 年我国植被净第一性产力及其时空变化. 北京大学学报: 自然科学版,2001, 37(4): 563-569.
[33] 朴世龙, 方精云, 郭庆华. 利用CASA模型估算我国植被净第一性生产力. 植物生态学报, 2001, 25(5): 603-608.
[34] Piao S L, Fang J Y, Chen A P. Seasonal dynamics of terrestrialnet primary production in response to climatechanges in China. Acta Botanica Sinica, 2003, 45(3):269-275.
[35] 王艳艳, 杨明川, 潘耀忠, 等. 中国陆地植被生态系统生产有机物质价值遥感估算. 生态环境, 2005, 14(4):455-459.
[36] 牛铮, 王长耀. 碳循环遥感基础与应用. 北京: 科学出版社. 2008: 210-214, 229.
[37] 王磊, 丁晶晶, 季永华, 等. 1981-2000 年中国陆地生态系统NPP 时空变化特征分析. 江苏林业科技, 2009, 36(6): 1-5.
[38] 崔林丽, 史军, 唐娉, 等. 中国陆地净初级生产力的季节变化研究. 地理科学进展, 2005, 24(3): 8-17.
[39] 陈利军, 刘高焕, 励惠国. 中国植被净第一性生产力遥感动态监测. 遥感学报, 2002, 6(2): 129-136.
[40] 朱文泉, 潘耀忠, 阳小琼, 等. 气候变化对中国陆地植被净初级生产力的影响分析. 科学通报, 2007, 52(21):2535-2541.
[41] 朱文泉, 潘耀忠, 张锦水. 中国陆地植被净初级生产力遥感估算. 植物生态学报, 2007, 31(3): 413-424.
[42] 孙睿, 朱启疆. 中国陆地植被净第一性生产力及季节变化研究. 地理学报, 2000, 55(1): 36-45.
[43] 李贵才. 基于MODIS数据和光能利用率模型的中国陆地净初级生产力估算研究[D]. 北京: 中国科学院遥感应用研究所, 2004: 66-78.
[44] 高彦春. 基于NOAA数据的中国陆地植被净第一性生产力计算及粮食产量估测[D]. 北京: 中国科学院遥感应用研究所, 2000.
[45] 高彦华. 基于MODIS的中国陆地生态系统碳格局研究
[D]. 北京: 中国科学院地理科学与资源研究所, 2010.
[46] 陈斌, 王绍强, 刘荣高, 等. 中国陆地生态系统NPP模拟及空间格局分析. 资源科学, 2007, 29(6): 45-53.
[47] Ren W, Tian H Q, Tao B, et al. Impacts of troposphericozone and climate change on net primary productivityand net carbon exchange of China’s forest ecosystems.Global Ecology and Biogeography, 2011, 20(3): 391-406.
[48] Cao M K, Tao B, Li K R, et al. Interannual variation interrestrial ecosystem carbon fluxes in China from 1981 to1998. Acta Botanica Sinica, 2003b, 45(5): 552-560.
[49] 侯英雨, 柳钦火, 延昊, 等. 我国陆地植被净初级生产力变化规律及其对气候的响应. 应用生态学报, 2007, 18(7): 1546-1553.
[50] Tian H Q, Melillo J, Lu C Q, et al. China’s terrestrial carbonbalance: Contributions from multiple global changefactors. Global Biogeochemical Cycles, 2011, 25,GB1007, doi:10.1029/2010GB003838.
[51] Wang S Q, Zhou L, Chen J M, et al. Relationships betweennet primary productivity and stand age for severalforest types and their influence on China’s carbon balance.Journal of Environmental Management, 2011, 92(6): 1651-11662.
[52] 中国科学院中国植被图编辑委员会. 中华人民共和国植被图1:1000000. 北京: 地质出版社, 2007.
[53] Ren W, Tian H Q, Chen G S, et al. Influence of ozone pollutionand climate variability on net primary productivityand carbon storage in China’s grassland ecosystemsfrom 1961 to 2000. Environmental Pollution, 2007, 149(3): 327-335.
[54] IPCC, 2007: Climate Change 2007: Synthesis Report.Contribution of Working Groups I, II and III to theFourth Assessment Report of the Intergovernmental Panelon Climate Change [Core Writing Team, Pachauri, R.Kand Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland,104 pp.
[55] 何勇, 董文杰, 季劲均, 等. 基于AVIM的中国陆地生态系统净初级生产力模拟. 地球科学进展, 2005, 20(3):345-349.
[56] 何勇, 董文杰, 郭晓寅, 等. 1971-2000 年中国陆地植被净初级生产力的模拟. 冰川冻土, 2007, 29(2): 226-232.
[57] 王军邦. 中国陆地净生态系统生产力遥感模型研究[D].杭州: 浙江大学, 2004.
[58] 赵东升, 吴绍洪, 尹去鹤. 气候变化情景下中国自然植被净初级生产力分布. 应用生态学报, 2011, 22(4): 897-904.
[59] Wu S H, Yin Y H, Zhao D S, et al. Impact of future climatechange on terrestrial ecosystem in China. InternationalJournal of Climatology, 2010, 30: 866-873.
[60] 陈泮勤, 王效科, 王礼茂, 等. 中国陆地生态系统碳收支与增汇对策. 北京: 科学出版社, 2008: 130-134.
[61] Tao F L, Zhang Z. Dynamic responses of terrestrial ecosystemsstructure and function to climate change in China.Journal of Geophysical Research, 2010, 115, G03003,doi:10.1029/2009JG001062.
[62] Ju W M, Chen J M, Harvey D, et al. Future carbon balanceof China’s forests under climate change and increasingCO2. Journal of Environmental Management, 2007, 85(3): 538-562.
[63] Zhang W, Huang Y, Sun W J, et al. Simulating crop netprimary production in China from 2000 to 2050 by linkingthe Crop-C model with a FGOALS’s model climatechange scenario. Advances in Atmospheric Sciences,2007, 24(5): 845-854.
[64] Li H, Wu J G. Uncertainty analysis in ecological studies:An overview//Wu J G, Jones K B, Li H, et al (eds). Scalingand Uncertainty Analysis in Ecology: Methods andapplications, 2006: 43-64.
[65] Yuan W, Luo Y, Li X, et al. Redefinition and global estimationof basal ecosystem respiration rate. Global BiogeochemicalCycles, 2011, 25(4): GB4002, doi:10.1029/2011GB004150.