The precipitation change over the Qinghai-Tibet Plateau in Holocene is of great importance to the study of global change in the past. There is a lack of practical and effective methods to reconstruct precipitation in a large-scale region in the previous studies on global change, and in order to solve this problem, this study takes the Qinghai-Tibet Plateau as the research area and combines the method of partitioned space simulation of ancient precipitation and multi-area weighted method for the purpose of reconstructing the precipitation series of Qinghai-Tibet Plateau in Holocene. As the vegetation variation of Qinghai-Tibet Plateau can well reflect the precipitation change, this study mainly takes pollen as the circumstantial evidence, selects ten pollen reconstructed precipitation series of sampling points on the plateau, acquires 716 signaled quantitative precipitation records and reconstructs the precipitation series of the plateau in Holocene. With the help of GIS analysis, based on the geographical simulation of spatial distribution of modern plateau precipitation, and integrated with the ancient precipitation records, this paper quantitatively reconstructed the 200-resolution precipitation series of the plateau during the Holocene. The results indicated that during the Holocene the precipitation went up rapidly, reaching a peak of 500 mm at 9 ka BP, 170 mm more than that in modern times. The period 9-5.6 ka BP was a moist period with the total precipitation 80 mm more than that at present. However it showed a downward trend. Since 5.6 ka BP the precipitation went down compared with the present time with small fluctuation. Synthetic series are comparable to the other records in a high or low resolution, which means synthetic series are representative and accurate.
[1] 莫申国, 张百平, 程维明, 等. 青藏高原的主要环境效应. 地理科学进展, 2004, 23(2): 88-96.
[2] Kutzbach J E, Guetter P J, Ruddiman W F, et al. The sensitivityof climate to late Cenozoic uplift in southern Asiaand the American west: Numerical experiments. Journalof Geophysical Research, 1989, 94(3): 18393-18407.
[3] An Z S, Kutzbach J E, Prell W L, et al. Evolution ofAsian monsoons and phased uplift of the Himalayan-Tibetanplateau since late Miocene times. Nature, 2001, 411(18): 62-66.
[4] Prell W L, Kutzbach J E. Sensitivity of the Indian monsoonto forcing parameters and implications for its evolution.Nature, 1992, 360(10): 647-652.
[5] Bradley R S, Alverson T R, Pedersen F. Challenges of achanging earth: Past perspectives, future concerns//AlersonK R. Bradley T S, Pedersen F. Paleoclimate, GlobalChange and the Future. Berlin: Springer Verlag, 2003:163-167.
[6] COHMAP Members. Climatic changes of the last 18,000years: Observation and model simulations. Science, 1988,241(6): 1043-1052.
[7] 张家诚, 林之光. 中国气候. 上海: 上海科学技术出版社, 1985: 467-483.
[8] Herzschuh U, Kramer A, Mischke S, et al. Quantitativeclimate and vegetation trends since the late glacial on thenortheastern Tibetan Plateau deduced from Koucha Lakepollen spectra. Quaternary Research, 2009, 71(4):162-171.
[9] Herzschuh U, Birks H B, Mischke S, et al. A modern pollen-climate calibration set based on lake sediments fromthe Tibetan Plateau and its application to a Late Quaternarypollen record from the Qilian Mountains. Journal ofBiogeography, 2010, 37(1): 752-766.
[10] Wischnewski J, Mischke S, Wang Yongbo, et al. Reconstructingclimate variability on the northeastern Tibetanplateau since the last Lateglacial: A multi-proxy, dual-siteapproach comparing terrestrial and aquatic signals. QuaternaryScience Reviews, 2011, 30(4): 82-97.
[11] Tang L Y, Shen C M, Li C H, et al. Pollen-inferred vegetationand environmental changes in the central Tibetan Plateausince 8200 yr BP. Sci China Ser D: Earth Sci, 2009,doi: 10.1007/s11430-009-0080-5.
[12] 唐领余, 沈才明, Liu K M, 等. 南亚古季风的演变:西藏新的高分辨率古气候记录. 科学通报, 1999, 44(18):2004-2007.
[13] Shen C M, Liu K M, Tang L Y, et al. Quantitative relationshipsbetween modern pollen rain and climate in theTibetan Plateau. Review of Palaeobotany and Palynology,2006, 140(5): 61-77.
[14] Lu H Y, Wu N Q, Liu K M, et al. Modern pollen distributionsin Qinghai-Tibetan Plateau and the development oftransfer functions for reconstructing Holocene environmentalchanges. Quaternary Science Reviews, 2011, 30(3): 947-966.
[15] 葛全胜, 陈泮勤, 张雪芹. 全球变化的集成研究. 地球科学进展, 2000, 15(4): 461-466.
[16] 张兰生, 方修琦, 任国玉. 全球变化. 北京: 高等教育出版社, 2000.
[17] 鲁春霞, 王菱, 谢高地, 等. 青藏高原降水的梯度效应及其空间分布模拟. 山地学报, 2007, 25(6): 655-663.
[18] 林之光. 地形降水气候学. 北京: 科学出版社, 1995:6-45.
[19] 戴加洗. 青藏高原气候. 北京: 气象出版社, 1990: 51-184.
[20] 杜军, 马玉才. 西藏高原降水变化趋势的气候分析. 地理学报, 2004, 29(3): 375-382.
[21] Campo E V, Cour P, Hang S X. Holocene environmentalchanges in Bangong Co basin (Western Tibet). Part 2:The pollen record. Palaeogeography, Palaeoclimatology,Palaeoecology,1996, 120(5): 49-63.
[22] Campo E V, Gasse F. Pollen and diatom-inferred climaticand hydrological changes in Sumxi Co basin(wesetern Tibet)since 13000yrB.P. Quaternary Research,1993, 39(1):300-313.
[23] Xu Q H, Li Y C, Bunting M J, et al. The effects of trainingset selection on the relationship between pollen assemblagesand climate parameters: Implications. Palaeogeography,Palaeoclimatology, Palaeoecology, 2010, doi:10.1016/j.palaeo.2010.02.024.
[24] 龚高法, 张丕远, 吴祥定, 等. 历史时期气候变化研究方法. 北京: 科学出版社, 1983: 6-7.
[25] 赵东升, 李双成, 吴绍洪. 青藏高原的气候植被模型研究进展. 地理科学进展, 2006, 25(4): 68-78.
[26] 于学峰, 周卫健, Franzen G L, 等. 青藏高原东部全新世冬夏季风变化的高分辨率泥炭记录. 中国科学: D 辑,2006, 36(2): 182-187.
[27] 刘兴起, 沈吉, 王苏民, 等. 青海湖16 ka以来的花粉记录及其古气候古环境演化. 科学通报, 2002, 47(17):1351-1355.
[28] Gasse F, Arnold M, Fontes J C, et al. A 13000 year climaterecord from western Tibet. Nature, 1991, 353(4):742-745.
[29] Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution,absolute-dated Holocene and deglacial Asian monsoonrecord from Dongge Cave, China. Earth and PlanetaryScience Letters, 2005, 233(6): 71- 86.
[30] 王富葆. 青藏高原全新世气候及环境基本特征//施雅风.中国全新世大暖期气候与环境. 北京: 海洋出版社, 1992: 197-205.
[31] 靳鹤龄, 董光荣, 苏志珠, 等. 全新世沙漠—黄土边界带空间格局的重建. 科学通报, 2001, 46(7): 538-543.