Original Articles

Progress in Applications of the EOF Analysis in the Research of Coastal Geomorphology and Sedimentology

Expand
  • 1. School of Geographic and Oceanographic Sciences, Nanjing University|The Key Laboratory of Coastal and Island Development, MOE, Nanjing University, Nanjing 210093, China;
    2. Department of Oceanography, School of Atmospheric Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

Received date: 2008-11-01

  Revised date: 2009-01-01

  Online published: 2009-03-25

Abstract

The processes and mechanisms of coastal geomorphological evolution are the main tasks of the current research on coastal geomorphology and sedimentology. However, for the coastal zones that are high-dimensional and non-linear systems, their behavior has not been understood well, so predicting sediment transport and coastal geomorphological evolution in these areas are difficult tasks. The physically based prediction models are not modelling well, especially at larger temporal and spatial scales. Data-driving models can resolve such problems to a certain extent, and prior to the establishment of data-driving models, the EOF analysis technique can detect and quantify dominant patterns in the data and their evolution in time and space effectively, as well as how different patterns are related to each other. Thus, it is possible to obtain valuable information on the behavior of coastal zones that may be used not only for developing data-driving models, but also for increasing the understanding of the factors governing the geomorphological evolution, so it can improve the understanding of the processes and mechanisms of coastal geomorphological evolution. Based on a great deal of domestic and oversea references, this paper firstly introduces the principle of the EOF analysis technique, then makes a review of the progress in applications of the EOF analysis in studies of coastal geomorphological and sedimentary problems as the following aspects, characteristics of temporal and spatial changes on sandy and muddy coast profiles, characteristics of temporal and spatial changes of nearshore submarine erosion/accretion and their predictions, distribution of sediments grain sizes and sediments transportation et al., it also analyzes problems and deficiencies in the study cases, and proposes that the current research work should pay more attention to the following three main aspects in order to realize the deeper applications and development of the EOF analysis in the research of coastal geomorphology and sedimentology. First, the temporal and spatial resolution of field data and collection measures must be upgraded; the data types analyzed should be broadened. Second, the processes and mechanisms of coastal geomorphological evolution which the EOF analysis has revealed must be digged deeply in order to provide valuable information for numerical simulation at a certain scale. Third, the EOF analysis technique should be used with other linear or non -linear analysis methods for further data analysis or simulations.

Cite this article

XIA Fei,ZHANG Yongzhan,WU Wei . Progress in Applications of the EOF Analysis in the Research of Coastal Geomorphology and Sedimentology[J]. PROGRESS IN GEOGRAPHY, 2009 , 28(2) : 174 -186 . DOI: 10.11820/dlkxjz.2009.02.003

References


[1] 高抒,张捷主编. 现代地貌学. 北京:高等教育出版社, 2006,2~3.

[2] De Vriend H J. Mathematical modeling and large -scale coastal behaviour. Part 1: Physical processes. Journal of Hydraulic Research, 1991, 29(6): 727~740.

[3] Larson M, Kraus N C. Prediction of cross-shore sediment transport at different spatial and temporal scales. Marine Geology, 1995, 126(1-4): 111~127.

[4] Southgate H N, Wijnberg K M, Larson M, et al. Analysis of field data of coastal morphological evolution over yearly and decadal timescales. Part 2: Non -linear techniques. Journal of Coastal Research, 2003, 19(4): 776~789.

[5] Larson M, Capobianco M, Jansen H, et al. Analysis and modeling of field data of coastal morphological evolution over yearly and decadal time scales. Part 1: Background and linear techniques. Journal of Coastal Research, 2003, 19(4): 760~775.

[6] 丁裕国. EOF 在大气科学研究中的新进展. 气象科技, 1993(3):10~19.

[7] 王颖, 朱大奎编著. 海岸地貌学. 北京: 高等教育出版 社,1994,229~232.

[8] Pearson K. On lines and planes of closest fit to systems of points in space. Philosophical Magazine, 1901, 6(2): 559~ 572.

[9] Hotelling H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, 1933, 24(6): 417~441, 498~520.

[10] 施能编著.气象科研与预报中的多元分析方法. 北京:气 象出版社,2002,72~138.

[11] 黄嘉佑编著. 气象统计分析与预报方法. 北京: 气象出 版社,2004,121~141.

[12] 吴洪宝,吴蕾编著. 气候变率诊断和预测方法. 北京:气 象出版社,2005,1~33.

[13] 徐建华编著. 现代地理学中的数学方法. 北京: 高等教育出版社,2002,84~93.

[14] Vincent C L, Dolan R, Hayden B P, et al. Systematic variations in barrier island topography. Journal of Geology, 1976, 84: 583~594.

[15] Hayden B P, Dolan R. Barrier island, lagoons, and marshes. Journal of Sedimentary Petrology, 1979, 49 (4): 1061~ 1072.

[16] Resio D T, Dolan R, Hayden B P, et al. Systematic variations in offshore bathymetry. Journal of Geology, 1977, 85: 105~113.

[17] Dolan R, Hayden B P, Felder W. Systematic variations in inshore bathymetry. Journal of Geology, 1977, 85: 129 ~ 141.

[18] Felder W, Hayden B P, Dolan R. Analysis of inshore and offshore profiles. Journal of Geology, 1979, 87: 455~461.

[19] Winant C D, Inman D L, Nordstron C E. Description of seasonal beach changes using empirical eigenfunctions. Journal of Geophysical Research, 1975, 80 (15): 1979 ~ 1986.

[20] Winant C D, Aubrey D G. Stability and impulse response of empirical eigenfunctions. Proceedings of the 15th International Conference on Coastal Engineering. ASCE Publishing, New York, 1976, 1312~1325.

[21] Aubrey D G. Seasonal patterns of onshore/offshore sediment movement. Journal of Geophysical Research, 1979, 84(C10): 6347~6354.

[22] Aubrey D G. The statistical prediction of beach changes in Southern California. Journal of Geophysical Research, 1980, 85(C6): 3264~3276.

[23] Clarke D J, Eliot I G. Description of littoral alongshore sediment movement from empirical eigenfunction analysis. Journal of the Geological Society of Australia, 1982, 29: 327~341.

[24] Clarke D J, Eliot I G, Frew J R. Variation in subaerial beach sediment volume on a small sandy beach over a monthly lunar tidal cycle. Marine Geology, 1984,58(3-4): 319~344.

[25] Stubblefield W L, Permenter R W, Swift D J P. Time and space variation in the surficial sediments of New Jersey shelf. Estuarine and Coastal Marine Science, 1977, 5 (5): 597~602.

[26] Bowman D. Efficiency of eigenfunctions for discriminant analysis of subaerial non-tidal beach profiles. Marine Geology, 1981, 39(3-4): 243~258.

[27] Clarke D J, Eliot I G. Onshore -offshore pattern of sediment exchange in the littoral zone of a sand beach. Journal of the Geological Society of Australia, 1983, 30: 341~ 351.

[28] Lins H F. Storm-generated variations in nearshore beach topography. Marine Geology, 1985, 62(1-2): 13~29.

[29] Aubrey D G, Ross R M. The quantitative description of beach cycles. Marine Geology, 1985, 69(1-2): 155~170.

[30] Shenoi S S C, Murty C S, Veerayya M. Monsoon-induced seasonal variability of sheltered versus exposed beaches along the west coast of India. Marine Geology, 1987, 76: 117~130.

[31] Clarke D J, Eliot I G. Low-frequency changes of sediment volume on the beachface at Warilla Beach, New South Wales, 1975~1985. Marine Geology, 1988, 79(3-4): 189~ 211.

[32] Zarillo G A, Liu J T. Resolving bathymetric components of the upper shoreface on a wave -dominated coast. Marine Geology, 1988, 82(3-4): 169~186.

[33] Liu J T, Zarillo G A. Distribution of grain sizes across a transgressive shoreface. Marine Geology, 1989, 87 (2-4): 121~136.

[34] Medina R, Vidal C, Losada M A, et al. Three-mode principal component analysis of bathymetric data, applied to “Playa de Castilla” (Huelva, Spain). Proceedings of the 23rd International Conference on Coastal Engineering. ASCE Publishing, New York, 1992, 2265~2278.

[35] Horel J D. Complex principal analysis: Theory and examples. Journal of Climate and Applied Meteorology, 1984, 23: 1660~1673.

[36] Liang G L, Seymour R J. Complex principal component analysis of wave-like sand motions. Proceedings of Coastal Sediment ‘91 (American Society of Civil Engineer), 1991, 2175~2186.

[37] Liang G L, White T E, Seymour R J. Complex principal component analysis of seasonal variation in nearshore bathymetry. Proceedings of the 23rd Coastal Engineering Conference (American Society of Civil Engineer), 1992, 2242~2250.

[38] Ruessink B G, van Enckevort I M J, Kingston K S, et al. Analysis of observed two and three dimensional nearshore bar behavior. Marine Geology, 2000, 169(1-2): 161~183.

[39] Ruessink B G, van Enckevort I M J, Kuriyama Y. Nonlinear principal component analysis of nearshore bathymetry. Marine Geology, 2004, 203(1-2): 185~197.

[40] 王金栋. 基于数值模型和统计模型的黄河三角洲的冲 淤时空变化分析及形态发育趋势探讨. 青岛: 中国海洋 大学,2005.

[41] 何孝海. 黄河三角洲动力沉积及冲淤演变研究
[D]. 青 岛:中国海洋大学,2006.

[42] Reeve D E, Horrillo-Caraballo J M, Magar V. Statistical analysis and forecasts of long-term sandbank evolution at Great Yarmouth, UK. Estuarine, Coastal and Shelf Science, 2008, 79(3): 387~399.

[43] Karunarathna H, Reeve D, Spivack M. Long -term morphodynamic evolution of estuaries: An inverse problem. Estuarine, Coastal and Shelf Science, 2008,77(3):385~395.

[44] 金庆祥,劳治声,龚敏等. 应用经验特征函数分析杭州 湾北岸金汇港泥质潮滩随时间的波动. 海洋学报, 1988,10(3):327~333.

[45] Zhang Keqi, Jin Qingxiang, Wang Baocan. Seasonal changes of the tidal flat from Jinhuigang to Caojing along the north bank of Hangzhou Bay. Chinese Journal of Oceanology and Limnology, 1993, 11(4): 321~332.

[46] 尤胜平, 金庆祥. 南汇—奉贤杭州湾北岸岸滩水下岸坡 三维EOF 分析.华东师范大学学报(自然科学版),1997 (1):69~76.

[47] Li Hengpeng, Yang Guishan. A study on equilibrium coastal profile s of the close tidal flat: A case study of Fengxian tidal flat. Chinese Geographical Science, 2002, 12(1): 55~60.

[48] 向卫华,李九发,徐海根等. 上海市南汇南滩近期演变 特征分析. 华东师范大学学报(自然科学版),2003(3): 49~55.

[49] 陈子燊, 李春初. 弧形海岸中间过渡带海滩剖面的地貌 动态分析. 海洋科学,1990(2):6~12.

[50] 陈子燊,李春初,罗章仁. 广东水东湾弧形海岸切线段海 滩剖面的过程分析. 海洋学报,1991,13(1):82~90.

[51] 陈子燊, 李春初. 粤西水东弧形海岸海滩剖面的地貌状 态. 热带海洋,1993,12(2):61~68.

[52] 陈子燊. 海滩剖面时空变化过程分析. 海洋通报, 2000,19(2):42~48.

[53] 戴志军,陈子燊,李春初. 岬间海滩剖面短期变化的动力 作用分析. 海洋科学,2001,25(11):38~41.

[54] 戴志军,陈子燊,张清凌. 波控岬间海滩剖面短期变化过 程分析. 热带地理,2001,21(3):266~269.

[55] 戴志军,陈子燊,欧素英. 粤东汕尾岬间海滩剖面月内日 变化过程特征分析. 热带海洋学报,2002,21(1):27~32.

[56] 李志龙,陈子燊,戴志军. 粤东汕尾岬间海滩体积短期变 化分析. 中山大学学报(自然科学版),2004,43(2):112~ 116.

[57] 戴志军,陈建勇,李春初等. 季节性波浪动力作用下南 湾弧形岸滩泥沙横向输运特征. 海洋工程,2007,25(4): 39~45.

[58] 李志强,陈子燊.滩角地形时空变化过程分析.中山大学 学报(自然科学版),2007,46(5):109~120.

[59] 李志强,陈子燊.常浪条件下海滩滩角地形变化研究.海 洋通报,2008,27(1):60~67.

[60] Wijnberg K M, Terwindt J H J. Extracting decadal morphological behaviour from high -resolution, long -term bathymetric surveys along the Holland coast using eigenfunction analysis.Marine Geology,1995,126(1-4):301~330.

[61] Gao S, Collins M. Equilibrium coastal profiles: I Review and synthesis. Chinese Journal of Oceanology and Limnology, 1998, 16(2): 97~107.

[62] Gao S, Collins M, Cross J. Equilibrium coastal profiles: II Evidence from EOF analysis. Chinese Journal of Oceanology and Limnology, 1998, 16(3): 193~205.

[63] Larson M, Hanson H, Kraus N C, et al. Short- and longterm responses of beach fills determined by EOF analysis. Journal of Waterway, Port, Coastal, and Ocean Engineering1999, 125(6): 285~293.

[64] R仵zyński G. Data-driven modeling of multiple longshore bars and their interactions. Coastal Engineering, 2003, 48 (3): 151~170.

[65] Haxel J H, Holman R A. The sediment response of a dissipative beach to variations in wave climate. Marine Geology, 2004, 206(1-4): 73~99.

[66] Miller J K, Dean R G. Shoreline variability via empirical orthogonal function analysis: Part I temporal and spatial characteristics. Coastal Engineering, 2007,54(2): 111~131.

[67] Miller J K, Dean R G. Shoreline variability via empirical orthogonal function analysis: Part II relationship to nearshore conditions. Coastal Engineering, 2007, 54 (2): 133~150.

[68] Houser C, Hapke C, Hamilton S. Controls on coastal dune morphology, shoreline erosion and barrier island response to extreme storms. Geomorphology, 2008, 100 (3-4): 223~ 240.

[69] Kroon A, Larson M, M觟ller I, et al. Statistical analysis of coastal morphological data sets over seasonal to decadal time scales. Coastal Engineering, 2008, 55(7-8): 581~600.

[70] 沈健, 朱慧芳. 经验正交函数在长江河口南支河段河槽 演变分析中的应用. 泥沙研究,1992(2):35~41.

[71] 黄卫凯,陈吉余. 长江河口拦门沙地形变化的统计预报. 海洋与湖沼,1995,26(4):343~349.

[72] 吕丹梅. 黄河三角洲泥沙冲淤的时空变化规律与数值模 拟. 青岛:中国海洋大学,2003.

[73] 李蕴梅. 黄河陆上三角洲冲淤演变特征及其发展趋势预 测. 青岛:中国海洋大学,2005.

[74] Maron P P, Reeve D E, Rihouey D, et al. Transverse and longitudinal eigenfunction analysis of a navigation channel subject to regular dredgings: The Adour river mouth, France. Journal of Coastal Research, 2008, 24 (1A): 206~ 215.

[75] Velegrakis A F, Gao S, Lafite R, et al. Resuspension and advection processes affecting suspended particulate matter concentrations in the central English Channel. Journal of Sea Research, 1997, 38(1-2): 17~34.

[76] Kappenberg J, Grabemann I. Variability of the mixing zones and estuarine turbidity maxima in the Elbe and Weser estuaries. Estuaries, 2001, 24(5): 699~706.

[77] Liu J T, Zarillo G A. Shoreface dynamics: Evidence from bathymetry and surficial sediments. Marine Geology, 1990, 94(1-2): 37~53.

[78] Liu J T, Hou L H. Sediment trapping and bypassing characteristics of a stable tidal inlet at Kaohsiung Harbor, Taiwan. Marine Geology, 1997, 140(3-4): 367~390.

[79] Liu J T, Huang J S, Hsu R T, et al. The coastal depositional system of a small mountainous river: A perspective from grain-size distributions. Marine Geology, 2000, 165 (1-4): 63~86.

[80] Liu J T, Liu K J, Huang J C. The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan. Marine Geology, 2002, 181(4): 357~386.

[81] 龚文平,吴家信,莫李帅.用EOF 方法分析海口湾东部浅 滩区的泥沙来源与泥沙运动.泥沙研究,2004, (1):63~69.

[82] 陈子燊. 砂质海岸近岸地形动力过程研究. 热带地理, 2008,28(3):242~246.

Outlines

/