Comparative Analysis of Three Covariates Methods in Thin-Plate Smoothing Splines for Interpolating Precipitation

  • 1. Linyi University, The Key Laboratory of Soil &Water Conservation and Environment Protection of Shandong Province/College of Resources Environment, Linyi, 276005, Shandong, China;
    2. Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing, 100101, China;
    3. College of Population, Resource and Environment, Shandong Normal University, Jinan 250014, China;
    4. Department of Geography and Resource Management, the Chinese University of Hong Kong, Hong Kong, China

Received date: 2011-10-01

  Revised date: 2012-02-01

  Online published: 2012-01-25


In the thin-plate smoothing splines interpolation, the accuracy of interpolation results is mainly determined by choosing the independent covariate. Annual precipitation data were extracted by using daily precipitation data of 728 meteorological stations from 2001 to 2009 in China. We evaluated spatial correlation relationships between annual precipitation and two covariates such as DEM and distance from the coastline to each point (DCL) and compared the accuracy difference of precipitation interpolation results from different covariates in the national scale and regional scale. All interpolation work has been conducted with the aid of the software of ANUSPLIN. We used three interpolation methods, which respectively considered DEM, DCL and DEM-DCL as the covariates to obtain spatial distribution of precipitation. Our analyses show that, (1) in the national scale, the mean absolute error (MAE) of interpolation method of DEM is 47.79, which is slightly lower than that of the method of DEM-DCL (48.90), while obviously lower than that of the method of DCL (55.54), and MRE and RMSE of the method of DEM were also lower than other two methods significantly. (2) In regional scale, the errors of three methods of interpolation are the same as that in national scale except Tibet. The accuracy of precipitation interpolation results was the highest using DCL method, and the poorest using DEM method. Results suggest that precipitation interpolation method of DEM could be widely used in some relevant national scale researches, and precipitation interpolation method of DCL was strongly recommended in Tibet.

Cite this article

LIU Zhengjia, YU Xingxiu, WANG Sisi, SHANG Guiduo . Comparative Analysis of Three Covariates Methods in Thin-Plate Smoothing Splines for Interpolating Precipitation[J]. PROGRESS IN GEOGRAPHY, 2012 , (1) : 56 -62 . DOI: 10.11820/dlkxjz.2012.01.008


[1] Marie B, Pierre F, Philippe C, et al. How uncertainties infuture climate change predictions translate into future terrestrialcarbon fluxes. Global Change Biology, 2005, 11(6): 959–970.
[2] 潘耀忠, 龚道溢, 邓磊, 等. 基于DEM的中国陆地多年平均温度插值方法. 地理学报, 2004, 59(3): 666-374.
[3] Nynke H, Mark N, Carol M. The influence of interpolationand station network density on the distributions andtrends of climate variables in gridded daily data. ClimateDynamics, 2010, 35(5): 841-858.
[4] 朱会义, 贾绍凤. 降雨信息空间插值的不确定性分析.地理科学进展, 2004, 23(2): 34-42.
[5] Jorge M, Javier L, Pilar G. Estimation models for precipitationin mountainous regions: The use of GIS and multivariateanalysis. Journal of Hydrology. 2003, 270(1-2):1-11.
[6] 何红艳, 郭志华, 肖文发. 降水空间插值技术的研究进展. 生态学杂志, 2005, 24(10): 1187-1191.
[7] 何红艳, 郭志华, 肖文发, 等. 利用GIS 和多变量分析估算青藏高原月降水. 生态学报, 2005, 25(11):2933-2938.
[8] 刘志红, Tim R, Li L T, 等. 基于ANUSPLIN的时间序列气象要素空间插值. 西北农林科技大学学报: 自然科学版, 2008, 36(10): 227-234.
[9] Cristina P, Nuria B, Josep E, et al. Seasonal precipitationinterpolation at the Valencia region with multivariatemethods using geographic and topographic information.International Journal of Climatology, 2010, 30(10):1547-1563.
[10] Ijaz H, Gunter S, Jurgen P, et al. Spatio-temporal interpolationof precipitation during monsoon periods in Pakistan.Advances inWater Resources, 2010, 33(8): 880-886.
[11] Bruce D, Ingrid S, Massimo C, et al. Spatial Mapping ofOzone and SO2 Trends in Europe. Science of Total Environment,2010, 408(20): 4795-4806.
[12] Cuauhtemoc S, Gerald E, Nicjolas L, et al. Spline modelsof contemporary 2030, 2060 and 2090 climates for Mexicoand their use in understanding climate-change impactson the vegetation. Climate Change, 2010, 102(3-4):595-623.
[13] Effie K, Christos G, Tom H, et al. Assessment of interpolatedERA-40 reanalysis temperature and precipitationagainst observations of the Balkan Peninsula. Theoreticaland Applied Climatology, 2010, 102(1-2): 115-124.
[14] Hijmans R, Cameron S, Parra J, et al. Very high resolutioninterpolated climate surfaces for global land areas.International Journal of Climatology, 2005, 25(15):1965-1978.
[15] Hutchinson M, Mckenney D, Lawrence K, et al. Developmentand Testing of Canada-Wide Interpolated SpatialModels of Daily Minimum-Maximum Temperature andPrecipitation for 1961-2003. Journal of Applied Meteorologyand Climatology, 2009, 48(4): 725-741.
[16] Price D, McKenney D, Nalder I, et al. A comparison oftwo statistical methods for spatial interpolation of Canadi-an monthly mean climate data. Agricultural and Forestmeteorology, 2000, 101(2-3): 81-94.
[17] 阎洪. 薄板光顺样条插值与中国气候空间模拟. 地理科学, 2004, 24(2): 163-169.
[18] 刘志红, Li Lingtao, Tim R, 等. 专用气候数据空间插值软件ANUSPLIN及其应用. 气象, 2008, 34(2): 92-100.
[19] 门明新, 宇振荣, 许皞. 基于地统计学的河北省降雨侵蚀力空间格局研究. 中国农业科学, 2006, 39(11):2270-2277.
[20] Murat Z, Ibrahim K, Faris K. Determination of bioclimaticcomfort in Erzurum-Rize expressway corridor usingGIS. Building and Environment, 2010, 45(1): 158-164.
[21] 林忠辉, 莫兴国, 李宏轩, 等.中国陆地区域气象要素的空间插值方法. 地理学报, 2002, 57(1): 47-56.
[22] Humchinson M F. ANUSPLIN VERSION4.36 USERGUIDE. Canberra ACT 0200, Australian National University,Centre for Resource and Environmental Studies,2006.
[23] 胡江林, 张人禾, 牛涛. 长江流域0.1°网格逐日降水数据集及其精度. 自然资源学报, 2008, 23(1): 136-149.
[24] 卢爱刚, 康世昌, 庞德谦, 等. 中国降水量区域变化稳定性研究. 生态环境, 2008, 17(6): 2433-2435.
[25] 李克让, 黄玫, 陶波, 等. 中国陆地生态系统过程及对全球变化响应与适应的模拟研究. 北京: 气象出版社,2009: 164-165.