Original Articles

Measuring and Modeling of Ecohydrological Processes: Progresses and Perspectives

Expand
  • Water Sub-Center of CERN, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

Received date: 2010-01-01

  Revised date: 2010-07-01

  Online published: 2010-11-25

Abstract

Water Center of Chinese Ecosystem Research Network (CERN) is a management unit that manages the long-term water environment of CERN field stations, and it is also a scientific research group of the Institute of Geographical Sciences and Natural Resources Research (IGSNRR). Water Center always focuses its research on the application of the advanced measuring methods to ecohydrological processes field observation. The faculties of Water Center have made important progresses in the application of Lysimeter, eddy covariances techniques, experimental remote sensing techniques, large aperture scintillometer applications, and stable water isotope techniques. At the same time, the modeling researches on surface evapotranspiration have also developed from the early empirical model to the mechanism model based on water-carbon coupled processes. The further development of measuring method on ecohydrological processes should place emphasis on the combination of the flux observation technique and the in situ vapor isotopic analyzing technique, and the combination of local measurement and the remote sensing information.

Cite this article

SUN Xiaomin, YUAN Guofu, ZHU Zhilin, ZHANG Xinyu, WEN Xuefa, TANG Xinzhai . Measuring and Modeling of Ecohydrological Processes: Progresses and Perspectives[J]. PROGRESS IN GEOGRAPHY, 2010 , 29(11) : 1293 -1300 . DOI: 10.11820/dlkxjz.2010.11.004

References


[1] 王根绪, 钱鞠, 程国栋. 生态水文科学研究的现状与展望. 地球科学进展, 2001, 16(3): 314-323.

[2] 王根绪, 刘桂民, 常娟. 流域尺度生态水文研究评述. 生态学报, 2005, 25(4): 892-903.

[3] 中国生态系统研究网络科学委员会. 陆地生态系统水环境观测规范. 北京: 中国环境科学出版社, 2007: 6.

[4] 谢贤群, 王立军. 水环境要素观测与分析. 北京: 中国标准出版社, 1998.

[5] 张心昱, 孙晓敏, 袁国富, 等. 中国生态系统研究网络水体pH 和矿化度监测数据初步分析. 地球科学进展,2009, 24(9): 1042-1050.

[6] 唐登银, 程维新, 洪嘉琏. 我国蒸发研究的概况与展望.地理研究, 1984, 3(3): 84-97.

[7] 陈发祖, 孙晓敏, 汪西林, 等. 高地下水埋深条件下的农田水热平衡试验研究. 地理研究, 1994, 13(1): 32-42.

[8] 甘卓亭, 刘文兆. 黄土塬区麦田蒸散特征. 应用生态学报, 2006, 17(8): 1435-1438

[9] 刘恩民, 张代桥, 刘万章, 等. 鲁西北平原农田耗水规律与测定方法比较. 水科学进展, 2009, 20(2): 190-196.

[10] 杨建锋,李宝庆,李运生, 等. 浅地下水埋深区潜水对SPAC系统作用初步研究. 水利学报, 1999(7): 27-32.

[11] Yang J F, Wan S Q, Deng W, et al. Water fluxes at a fluctuating water table and groundwater contributions to wheat water use in the lower Yellow River flood plain, China. Hydrological Process, 2007, 21(6): 717-724

[12] Luo Y, Ouyang Z, Yuan G, et al. Evaluation of macroscopic root water uptake models using lysimeter data. Transactions of the ASAE, 2003, 46(3): 625-634.

[13] 陈建耀, 刘昌明, 吴凯. 利用大型蒸渗仪模拟土壤-植物-大气连续体水分蒸散. 应用生态学报, 1999, 10(1):45-48.

[14] Baldocchi D D. Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: Past, present and future. Global Change Biology, 2003, 9(4): 479-492.

[15] 朱治林, 陈发祖, 孙晓敏, 等. 绿洲边缘地带温湿风廓线特征及其通量的测定. 干旱区地理, 1995, 18(2): 77-83.

[16] 朱治林, 孙晓敏, 张仁华. 淮河流域典型地面水热通量的观测分析. 气候与环境研究, 2001, 6(3): 214-220.

[17] 朱治林, 孙晓敏, 张仁华. 内蒙古半干旱草原能量物质交换的微气象方法估算. 气候与环境研究, 2002, 7(3):351-358.

[18] 朱治林, 孙晓敏, 张仁华, 等. 作物群体CO2通量和水分利用效率的快速测定. 应用生态学报, 2004, 15(9):1684-1686.

[19] Wang S S, Zhu Z L, Sun X M. Characteristics of energy and mass exchanges in the wheat field of Lhasa, Xizang (Tibet). Science in China: Series D, 1996, 39(4): 418-424.

[20] 张仁华, 孙晓敏, 朱治林, 等. 遥感区域地表植被二氧化碳通量的机理及其应用. 中国科学: D 辑, 2000, 30(2):215-225.

[21] Yu G R, Wen X F, Sun X M, et al. Overview of China-FLUX and evaluation of its eddy covariance measurement. Agricultural and Forest Meteorology, 2006, 137(3-4): 125-137.

[22] Sun X M, Zhu Z L, Wen X F, et al. The impact of averaging period on eddy fluxes observed at ChinaFLUX sites. Agricultural and Forest Meteorology, 2006, 137(3/4): 188-193.

[23] 朱治林, 孙晓敏, 温学发, 等. 中国通量网(ChinaFLUX)夜间CO2涡度相关通量数据处理方法研究. 中国科学: D辑, 2006, 36(增刊I): 34-44.

[24] Sun X M, Zhu Z L, Xu J P, et al. Determination of averaging period parameter and its effect analysis for eddy covariance measurements. Science in China: Series D, 2005, 48 (Supp.I): 33-41.

[25] Lee X. On micrometeorological observation of surface-air exchange over tall vegetation. Agricultural and Forest Meteorology, 1998, 91(1-2): 39-49.

[26] Massman W J, Lee X. Eddy covariance flux corrections and uncertainties in long term studies of carbon and energy exchanges. Agricultural and Forest Meteorology, 2002, 113(1-4): 121-144.

[27] Baldocchi D, Finnigan J, Wilson K, et al. On measuring net ecosystem carbon exchange over tall vegetation on complex terrain. Boundary-Layer Meteorology, 2000, 96(1-2): 257-291.

[28] Zhu Z L, Sun X M, Zhou Y L, et al. Correcting method of eddy covariance fluxes observed at non-flat surfaces and its application in ChinaFLUX. Science in China, Series D, 2005, 48 (Supp.I): 42-50.

[29] Zhu Z L, Sun X M, Wen X F, et al. Study on the processing method of nighttime CO2 eddy covariance flux data in ChinaFLUX. Science in China: Series D, Earth sciences, 2006, 49(2): 36-46.

[30] Zhang R H, Sun X M, Liu J Y, et al. Determination of regional distribution of crop transpiration and soil water use efficiency using quantitative remote sensing data through inversion, Science in China. Series D, Earth sciences, 2003, 46(1): 10-22.

[31] Zhang R H, Sun X M,Zhu Z L, et al. A remote sensing model for monitoring soil evaporation based on differential thermal inertia and its validation. Science in China: Series D, Earth sciences, 2003, 46(4): 342-355.

[32] Zhang R H, Sun X M, Wang W M, et al. An operational two-layer remote sensing model to estimate surface flux in regional scale: Physical background. Science in China: Series D, 2005, 48(AprSI): 225-244.

[33] Su H B, Zhang R H, Tang X Z, et al. Determination of the effective emissivity for the regular cavities using Mote-Carlo method. International Journal of Remote Sensing, 2000, 21(11): 2313-2319.

[34] Zhang R H, Li Z L, Tang X Z, et al. Study of emissivity scaling and relative of homogeneity of surface temperature. International Journal of Sensing, 2004, 25(1): 245-295.

[35] Zhang R H. A proposed approach the infrared emissivities of terres: Trial surface from airborne or spaceborne plantform. International Journal of Remote Sensing, 1989, 3(3): 591-595.

[36] 张仁华. 定量热红外遥感模型及地面实验基础. 北京:科学出版社, 2009.

[37] Zhu Z L, Sun X M, Xu J P, et al. Using large aperture scintillometer to validate pixel heat flux based on remote sensing models. IEEE International Geoscience and Remote Sensing Symposium, USA, 2004.

[38] 朱治林, 孙晓敏, 贾媛媛, 等. 基于大孔径闪烁仪(LAS)测定农田显热通量的不确定性分析. 地球科学进展,2010, 25(11): 88-96.

[39] 苑晶晶, 袁国富, 罗毅, 等. 利用δ18O信息分析冬小麦对浅埋深地下水的利用. 自然资源学报, 2009, 24(2):360-368.

[40] Wen X F, Sun X M, Zhang S C, et al. Continuous measurement of water vapor D/H and18O/16O isotope ratios in the atmosphere. Journal of Hydrology, 2008, 349(3-4): 489-500.

[41] Wen X F, Zhang S C, Sun X M, et al. Water vapor and precipitation isotope ratios under the influence of the Asian monsoon climate. Journal of Geophysical Research-Atmospheres, 2010b, 115, D01103, doi: 10.1029/2009JD012408

[42] 袁国富, 张娜, 孙晓敏, 等. 利用原位连续测定水汽δ18O值和Keeling Plot 方法区分麦田蒸散组分. 植物生态学报, 2010, 34(2): 170-178.

[43] 温学发, 张世春, 孙晓敏, 等. 叶片水H218O富集的研究进展. 植物生态学报, 2008, 32(4): 961-966.

[44] 左大康, 谢贤群. 农田蒸发研究. 北京: 气象出版社,1991.

[45] 谢贤群, 于沪宁. 作物与水分关系研究. 北京: 中国科学技术出版社, 1992.

[46] 牛文元, 周允华, 张翼, 等. 农田生态系统能量物质交换. 北京: 气象出版社, 1987.

[47] 罗毅, 于强, 欧阳竹, 等. SPAC系统中的水热CO2通量与光合作用的综合模型(I)模型建立. 水利学报, 2001, 1(2): 90-97.

[48] Mo X G, Liu S X. Simulating evapotranspiration and photosynthesis of winter wheat over the growing season. Agricultural and Forest Meteorology, 2001, 109(3): 203-222.

[49] Wang J, Yu Q, Li J, et al. Simulation of diurnal variations of CO2, water and heat fluxes over winter wheat with a model coupled photosynthesis and transpiration. Agricultural and Forest Meteorology, 2006, 137(3-4): 194-219.

[50] Luo Y, He C, Sophocleous M, et al. Assessment of crop growth and soil water modules in SWAT2000 using extensive field experiment data in an irrigation district of the Yellow River Basin. Journal of Hydrology, 2008, 352(1-2): 139-156.

[51] Mo X, Liu S, Lin Z, et al. Simulating temporal and spatial variation of evapotranspiration over the Lushi basin. Journal of Hydrology, 2004, 285(1-4): 125-142.

[52] Yu Q, Xu S, Wang J, et al. Influence of leaf water potential on diurnal changes in CO2 and water vapour fluxes. Boundary-Layer Meteorology, 2007, 124(2): 166-181.

Outlines

/