Original Articles

An Overview on the Water Science Researches at the Experimental Catchments in China and Abroad

  • Geography and Planning School, Sun Yat-sen University , Guangzhou 510275 , China

Received date: 2010-10-01

  Revised date: 2011-01-01

  Online published: 2011-03-25


Based on the review and analysis of the conceptions and connotations of small catchments and experimental catchments, this paper overviewed the development history and research situations of experimental catchments in China and abroad. Survey, measurement and relevant researches at experimental catchments in the world began in the 1930s, and underwent rapid development since the International Hydrological Decade (1965-1974), focusing on the following aspects: hydrological cycling, watershed environment, soil erosion and sediment transportation. In China, small catchment study began in the 1950s, and underwent three development stages of‘golden stage (1956-1966)’,‘backward stage (1966-1978)’and‘stagnant stage (1978-2006)’. It gets new impetus since 2006 with more funds from the research institutes, universities, and central and local governments. The existent and ever-existed experimental catchments in China have been tabulated according to their main characteristics, research focuses and brief history. Data continuity, systematicity and observation standard at experimental catchment scale have been compared briefly between China and the developed countries, indicating that China is still far behind these developed countries. Further development in experimental catchment in China has been proposed so as to strengthen the comparison study between varied climatic and geographical conditions, and to set up national rules or standards for hydrological observation.

Cite this article

FU Congsheng, CHEN Jianyao, ZENG Songqing, JIANG Huabo, DONG Linyao . An Overview on the Water Science Researches at the Experimental Catchments in China and Abroad[J]. PROGRESS IN GEOGRAPHY, 2011 , 30(3) : 259 -267 . DOI: 10.11820/dlkxjz.2011.03.001


[1] 邓坚. 加强水文科技工作推进水文现代化进程: 为经会发展提供全面优质服务[2007-09-14]. http://www.mwr.gov.cn/ztpd/2007ztbd/zgswkjyezgclty/zyjh/20070917110011bdb159.aspx.

[2] 王忠法. 对小流域规划的几点认识. 水利规划, 1994, 2: 35-38.

[3] 卢剑波, 王兆骞. GIS 支持下的青石山小流域农业生息系统(QWAEIS) 及其应用研究. 应用生态学报, 2000, 11(5): 703-706.

[4] 王立良. 发展小流域经济大有可为. 华东森林经理, 2001, 15(1): 60-62.

[5] 陈良. 低山丘陵区水土保持治理与生态环境效应: 以省盱眙县为例. 长江流域资源与环境, 2004, 13(4): 370-374.

[6] 郭廷辅, 段巧甫. 径流调控理论是水土保持的精髓: 水土保持的特殊性. 中国水土保持, 2001(11): 1-6.

[7] 陆鼎言. 小流域综合治理开发技术初探. 水土保持, 1999, 19(1): 33-37.

[8] 韦洁诚, 朱泽亮, 李晖, 等. 柳江县开发红壤的途径. 农学通报, 1994, 10(5): 45-46.

[9] 代全厚. 东北低山丘陵区小流域生态经济系统模式价[D]. 西安: 西北农林科技大学, 2003.

[10] 张金池. 流域农林复合经营类型与技术. 林业科技, 1998, 5: 51-54.

[11] 李妍彬. 北京山区小流域经济开发与管理探讨[D]. : 首都师范大学, 2008.

[12] 顾慰祖, 吴学鹏. 实验流域[2008-01-10]. http://www.chinabaike.com/article/baike/wli/2008/200801101128157.html.

[13] 顾慰祖, 陆家驹, 唐海行, 等. 水文实验求是传统水文—纪念中国水文流域研究50 年、滁州水文实验20 年. 水科学进展, 2003, 14(3): 368-37.

[14] 水利部水文司. 中国水文志. 北京: 中国水利水电出, 1997: 278-281.

[15] International Workshop on Status and Perspectives of Hydrology in Small Basins[M]. Goslar-hahnenklee, Federal Republic of Germany. 2009, 3. Ihp&HWRP

[16] Baudena M, D'Andrea F, Provenzale A. A model for soil-vegetation-atmosphere interactions in water-limited ecosystems. Water Resource Research, DOI: 10.1029/2008WR007172.

[17] VanderVelde Y, deRooij GH, Torfs PJJF. Catchment-scale non-linear groundwater-surface water interactions in densely drained lowland catchments. Hydrology and Earth System Sicence, 2009, 13(10): 1867-1885.

[18] Sun G, Amatya D M, McNulty S G, et al. Climate change impacts on the hydrology and productivity of a pine plantation . Journal of the American Water Resources Association, 2000, 36(2): 367-374.

[19] Germer S, Neill C, Vetter T, et al. Implications of long-term land-use change for the hydrology and solute budgets of small catchments in Amazonia. Journal of Hydrology, 2009, 364(3-4): 349-363.

[20] Sivapalan M, Takeuchi K, Franks SW, et al. IAHS decade on Predictions in Ungauged Basins (PUB), 2003-2012: Shaping an exciting future for the hydrological sciences. Hydrological Sciences Journal / Journal des Sciences Hydrologiques, 2003, 48(6): 857-880.

[21] McKnight D M, Bencala K E. The Chemistry of Iron, Aluminum, and Dissolved Organic Material in Three Acidic, Metal-Enriched, Mountain Streams, as Controlled by Watershed and in-Stream Processes. Water Resource Research, 1990, 26(12): 3087-3100.

[22] Gambillara R, Terrana S, Monticelli D, et al. Chemical features of the springs and correlations with faults in north-western area of Como Lake basin (Northern Italy). Proceedings of the“European Geosciences Union General Assembly”Vienna, Austria Center Vienna, Austria, 2005: 24-29.

[23] Raczak J, Zelazny M. Diurnal fluctuation in stream-water chemical composition in small Carpathian Foothills’ catchments (Southern Polland). Proceedings of the“Progress in surface and subsurface water studies at the plot and small basin scale”Turin, Italy, 200-203, October 13-17, 2004.

[24] Mullinger N J, Pates J M, Binley A M, et al. Controls on the spatial and temporal variability of Rn-222 in riparian groundwater in a lowland Chalk catchment. Journal of Hydrology, 2009, 376(1-2): 58-69.

[25] Yu G A, Wang Z Y, Zhang K, et al. Effect of incoming sediment on the transport rate of bed load in mountain streams. International Journal of Sediment Research, 2009, 24(3): 260-273.

[26] Schlunegger F, Badoux A, McArdell B W, et al. Limits of sediment transfer in an alpine debris-flow catchment, Illgraben, Switzerland. Quaternary Science Reviews, 2009, 28(11-12): 1097-1105.

[27] Manley R. The soil moisture component of mathematical catchment simulation models. Journal of Hydrology, 1977, 35(3-4): 341-356.

[28] Chiew F, Whetton P, McMahon T, et al. Simulation of the impacts of climate change on runoff and soil moisture in Australian catchments. Journal of Hydrology, 1995, 167(1-4): 121-147.

[29] Fitzjohn C, Ternan J, Williams A. Soil moisture variability in a semi-arid gully catchment: implications for runoff and erosion control. Catena, 1998, 32(1): 55-70.

[30] Schuurmans J, Bierkens M. Effect of spatial distribution of daily rainfall on interior catchment response of a distributed hydrological model. Hydrology and Earth System Sciences, 2007, 11(2): 677-693.

[31] Evans J, Jakeman A. Development of a simple, catchment-scale, rainfall evapotranspiration-runoff mode. Environmental Modelling & Software, 1998, 13(3-4): 385-393.

[32] Croke B, Jakeman A. A catchment moisture deficit module for the IHACRES rainfall runoff model. Environmental Modeling & Software, 2004, 19(1): 1-5.

[33] Molénat J, Gascuel-Odoux C, Davy P, et al. How to model shallow water-table depth variations: the case of the Kervidy-Naizin catchment, France. Hydrological Processes, 2005, 19(4): 901-920.

[34] Schuurmans J, Bierkens M. Effect of spatial distribution of daily rainfall on interior catchment response of a distributed hydrological model. Hydrology and Earth System Sciences, 2007, 11(2): 677-693.

[35] Ludwig R, Taschner S, Mauser W. Modelling floods in the Ammer catchment: limitations and challenges with a coupled meteo-hydrological model approach. Hydrology and Earth System Sciences, 2003, 7(6): 833-847.

[36] Shrestha R, Bárdossy A, Rode M. A hybrid deterministic –fuzzy rule based mode for catchment scale nitrate dynamics. Journal of Hydrology, 2007, 342(1-2): 143-156.

[37] Daldorph P, Lees M, Wheater H, et al. Integrated lake and catchment phosphorus mode-A eutrophication management tool. I: Model theory. Journal of the Chartered Institution of Water and Environmental Management, 2001, 15(3): 174-181.

[38] Haydon S, Deletic A. Model output uncertainty of a coupled pathogen indicator-hydrologic catchment model due to input data uncertainty. Environmental Modeling & Software, 2009, 24(3): 322-328.

[39] Fiener P, Govers G, Oost K. Evaluation of a dynamic multi-class sediment transport model in a catchment under soil conservation agriculture. Earth Surface Processes and Landforms, 2008, 33(11): 1639-1660.

[40] Lufafa A, Tenywa M, Isabirye M, et al. Prediction of soil erosion in a Lake Victoriabasin catchment using a GIS-based Universal Soil Loss model. Agricultural Systems, 2003, 76(3): 883-894.

[41] Maréchal D, Holman I. Development and application of a soil classification-based conceptual catchment-scale hydrological model. Journal of Hydrology, 2005, 312(1-4): 277-293.

[42] Hessel R, Tenge A. A pragmatic approach to modelling soil and water conservation measures with a catchment scale erosion model. Catena, 2008, 74(2): 119-126.

[43] Pei T, Liu J, Li J, et al. A modified subsurface stormflow model of hillsides in forest catchment. Hydrological Processes, 2005, 19(13): 2609-2624.

[44] Eckhardt K, Arnold G. Automatic calibration of a distributed catchment model. Journal of Hydrology, 2001, 251 (1-4): 103-109.

[45] Merz S, Bl?schl G. Regionalisation of catchment model parameter. Journal of Hydrology, 2004, 287(1-2): 95-123.

[46] Francos, Elorza F, Bouraoui F, et al. Sensitivity analysis of distributed environmental simulation models: understanding the model behaviour in hydrological studies at the catchment scale. Reliability Engineering and System Safety, 2003, 79(2): 205-218.

[47] Haydon S, Deletic A. Development of a coupled pathogen-hydrologic catchment model. Journal of Hydrology, 2006, 328(3-4): 467-480.

[48] Davis H, Vertessy R, Silberstein R. The sensitivity of a catchment model to soil hydraulic properties obtained by using different measurement techniques. Hydrological Processes, 1999, 13(5): 677-688.

[49] Hansen J, Ernstsen V, Refsgaard J, et al. Field scale heterogeneity of redox conditions in till-upscaling to a catchment nitrate model. Hydrogeology Journal, 2008, 16(7): 1251-1266.

[50] Zhang J, Zhuang J, Su J, et al. Development of GIS-based FUSLE model in a Chinese fir forest sub-catchment with a focus on the litter in the Dabie Mountains, China. Forest Ecology and Management, 2008, 255(7): 2782-2789.

[51] Immerzeel W W, Gaur A, Zwart S J. Integrating remote sensing and a process-based hydrological model to evaluate water use and productivity in a south Indian catchment. Agricultural Water Management, 2008, 95(1): 11-24.

[52] Thiessen K, Sazykina T, Apostoae A, et al. Model testing using data on 137Cs from Chernobyl fallout in the Iput River catchment area of Russia. Journal of Environmental Radioactivity, 2005, 84(2): 225-244.

[53] H?rmann G, Zhang X, Fohrer N. Comparison of a simple and a spatially distributed hydrologic model for the simulation of a lowland catchment in Northern Germany. Ecological Modeling, 2007, 209(1): 21-28.

[54] Varanou E, Gkouvatsou E, Baltas E, et al. Quantity and Quality Integrated Catchment Modeling under Climate Change with use of Soil andWater Assessment Tool Model. Journal of Hydrologic Engineering, 2002, 7(3): 228-254.

[55] 王振龙, 赵晖. 淮河流域水文实验现状与新时期水资究重点. 地下水, 2009, 31(141): 65-67.

[56] 王振龙, 郑三元, 章启兵. 安徽省水文水资源科学实网规划研究. 中国农村水利水电, 2007, (8): 13-15.

[57] 王振龙, 赵晖. 淮河流域水文实验现状与新时期水资究重点. 地下水, 2009, 31(141): 65-67.

[58] 谢时和, 韩承荣. 水文实验研究[A]. 长江志·水文. 北京: 中国大百科全书出版社, 2000: 289-341.

[59] 马秀峰. 对子洲径流实验站分析研究工作的初步总结//径流实验经验汇编. 1980: 153-171.

[60] 水利电力部水文局. 全国水文实验调查报告. 1987: 1-19.

[61] 顾慰祖, 梁士廉. 青沟径流实验站近况. 水文, 1965, (6): 43-43.

[62] 高建峰, 于玲. 五道沟地区“三水”转化水文模型. 地, 1996, 18(4): 167-171.

[63] 顾卫明, 刘金涛. 山丘区小流域地形空间分析及数字提取. 水文, 2009, 29(4): 34-37.

[64] 施雅风, 康尔泗, 张国威, 等. 乌鲁木齐河山区水资源和估算. 北京: 科学出版社, 1992.

[65] 周圣杰, 张俊. 叶柏寿径流实验小流域暴雨产流规律步探讨. 水文, 1990, (1): 19-26.

[66] 何进知, 李舒宝, 张永江, 等. 森林植被对流域产汇流的影响效应分析. 水文, 2000, 20(2): 11-13.

[67] 顾慰祖. 集水区降雨径流响应的环境同位素实验研究. 水科学进展, 1992, 3(4): 246-254.

[68] 杨聪, 于静洁, 刘昌明, 等. 华北山区坡地产流规律试究. 地理学报, 2005, 60(6): 1021-1028.

[69] Yu J J, Yang C, Liu C M, et al. Slope runoff study in situ using rainfall simulator in mountainous area of North China. Journal of Geographical Sciences, 2009, 19(4): 461-470.

[70] 付丛生, 陈建耀, 曾松青, 等. 滨海地区潮汐对地下水化影响的统计学分析. 水利学报, 2008, 39(12): 1365-1376.

[71] 王孟楼, 张仁. 陕北岔巴沟流域次暴雨产沙模型的. 水土保持学报, 1990, 4(2): 11-18.

[72] 乔光建, 王春泽, 李哲强. 河北省坡底、西台峪小流域流失影响因素分析. 水文, 2008, 28(6): 93-96.

[73] 乔光建, 檀领革, 陈峨印. 流域植被对减缓土壤侵蚀的实验研究. 水资源保护, 2009, 25(3): 52-57.

[74] 张丽萍, 张登荣, 张锐波, 等. 小流域土壤水蚀强度生测模型及实验模拟: 以神木六道沟流域为例. 自然学报, 2007, 16(2): 55-59.

[75] 胡明鉴, 张平仓, 汪稔. 降雨对滑坡的激发作用实验: 以蒋家沟流域滑坡堆积坡地为例. 水土保持学报, 2001, 15(5): 116-119.

[76] 杨劼, 高清竹, 李国强, 等. 皇甫川流域几种主要植物生态特征. 生态学报, 2004, 24(11): 2387-2394.

[77] 黎坤. 华南地区坡面溶解氮流失机理及流域非点源解析方法研究[D]. 广东: 中山大学, 2009.

[78] 黄小兰, 陈建耀, 周世宁, 等. 珠海市海陆交错带水环核生物多样性. 应用生态学报, 2010, 21(2): 452-457.