Original Articles

The Spatial Pattern of Soil Moisture in Northern Tibet Based on TVDI Method

  • 1. Institute of Geographic Sciences and Natural Resources Research, State Key Lab of Resources and Environmental Information System, Chinese Academy of Sciences, Beijing, 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing, 100049, China;
    3. The Department of Geography and Resource Management, The Chinese University of Hong Kong, Hong Kong;
    4. Institute of Environment and Sustainable Development in Agriculture;Chinese Academy of Agricultural Sciences, Beijing, 100081, China

Received date: 2011-01-01

  Revised date: 2011-04-01

  Online published: 2011-05-25


Using enhanced vegetation index (EVI) and land surface temperature (LST) dataset derived from TERRA/MODIS synthetic products MOD13 A2 (16-day composite, DOY 209 in 2010) and MOD11 A2 (8-day composite, DOY 209 and 217 in 2010), the LST-EVI two-dimensional characteristic space was constructed, and then TVDI (temperature-vegetation drought index) was extracted to indicate the top-soil moisture of northern Tibet. Furthermore, the simulated soil moisture was verified by synchronously measured data in the field. The two groups of data showed a strong relationship and the correlation coefficient got through the 0.05 significance level. Then the spatial pattern and heterogeneity of soil moisture in the studied area were further analyzed, and the results showed: (1) the TVDI values of pixels in northern Tibet proved to have a statistically normal distribution, and the soil moisture in eastern region, central region and western region respectively showed wet, normal and dry situations; (2) evident difference in soil moisture existed in different climatic zones, and the soil moisture in the mountain and valley-in-valley structured Nagqu sub-arctic and sub-humid zone was the highest and that in southern Qinghai sub arctic and semiarid zone was the lowest; (3) the spatial distribution of soil moisture in the area was obviously affected by the altitude. The soil moisture in the region below 4500 m showed a negative correlation with the altitude and the correlation was positive in the region higher than 4500 m.

Cite this article

SSONG Chunqiao, YOU Songcai, LIU Gaohuan, KE Linghong, ZHONG Xinke . The Spatial Pattern of Soil Moisture in Northern Tibet Based on TVDI Method[J]. PROGRESS IN GEOGRAPHY, 2011 , 30(5) : 569 -576 . DOI: 10.11820/dlkxjz.2011.05.008


[1] 吴险峰, 刘昌明. 流域水文模型研究的若干进展. 地理科学进展, 2002, 21(4): 341-348.

[2] 刘志明, 张柏, 晏明, 等. 土壤水分与干旱遥感研究的进展与趋势. 地球科学进展, 2003, 18(4): 576-583.

[3] 刘昌明, 孙睿. 水循环的生态学方面: 土壤-植被-大气系统水分能量平衡研究进展. 水科学进展, 1999, 10(3):251-259.

[4] 邓辉, 周清波. 土壤水分遥感监测方法进展. 中国农业资源与区划, 2004, 25(3): 46-49.

[5] 余涛, 田国良. 热惯量法在监测土壤表层水分变化中的研究. 遥感学报, 1997, 1(1): 24-32.

[6] 隋洪志, 田国良, 李付琴. 农田蒸散双层模型及其在干旱遥感监测中的应用. 遥感学报, 1997, 1(3): 220-224.

[7] 夏虹, 武建军, 刘雅妮, 等. 中国用遥感方法进行干旱监测的研究进展. 遥感信息, 2005(1): 55-57

[8] 孙丽, 陈焕伟, 赵立军. 遥感监测旱情的研究进展. 农业环境科学学报, 2004, 23(1): 202-206.

[9] Nemani R R, Pierce L, Running S, et al. Developing satellitederived estimates of surface moisture status. Journalof Applied Meteorology, 1993, 32(3): 548-557.

[10] Price J C. Using spatial context in satellite data to infer regionalscale evapotranspiration. IEEE Transactions onGeoscience and Remote Sensing, 1990, 28(5): 940-948.

[11] Carlson T N, Gillies R R, Perry E M. A method to makeuse of thermal infrared temperature and NDVI measurementsto infer surface soil water content and fractionalvegetaional cover. Remote Sensing Review, 1994, 9(1-2):45-59.

[12] Sandholt I, Rasmussen K, Andersen J. A simple interpretationof the surface temperature-vegetation index spacefor assessment of surface moisture status. Remote Sensingof Environment. 2002, 79(2-3): 213-224.

[13] Wan Z M, Wang P X, Li X W. Using MODIS land surfacetemperature and Normalized Difference VegetationIndex products for monitoring drought in the southernGreat Plains. USA. International Journal of Remote Sensing,2003, 25(1): 1-12.

[14] Gillies R R, Carlson T N, KustasW P. A Verification ofthe 'riangle' method for obtaining surface soil water contentand energy fluxes from remote measurements of theNormalized Difference Vegetation Index (NDVI) and surfaceradiant temperature. International Journal of RemoteSensing, 1997, 18(15): 3145-3166.

[15] Goetz S J. Multi-sensor analysis of NDVI, surface temperatureand biophysical variables at a mixed grasslandsite. International Journal of Remote Sensing, 1997, 18(1): 71-94.

[16] Goward S N , Xue Y, Czajkow ski K P. Evaluating landsurface moisture conditions from the remotely sensedtemperature/vegetation index measurements: An explorationwith the simplified simple biosphere model. RemoteSensing of Environment, 2002, 79(223): 225 - 242.

[17] 齐述华, 王长耀, 牛铮. 利用温度植被旱情指数(TVDI)进行全国旱情监测研究. 遥感学报, 2003, 7(5): 420-427.

[18] 李正国, 王仰麟, 吴健生, 等. 基于植被/温度特征的黄土高原地表水分季节变化. 生态学报, 2007, 27(11): 4563-4575.

[19] 杨曦, 武建军, 闫峰, 等. 基于地表温度-植被指数特征空间的区域土壤干湿状况. 生态学报, 2009, 29(3):1205-1216.

[20] 甘肃草原生态研究所草地资源室和西藏自治区那曲地区畜牧局. 西藏那曲地区草地畜牧业资源. 兰州: 甘肃科学技术出版社, 1991: 12-68.

[21] 闫峰, 王艳娇. 基于Ts-EVI 特征空间的土壤水分估算.生态学报, 2009, 29(9): 4884-4891.

[22] 刘庆生, 李集生, 刘高焕, 等. Hydra 土壤测试仪测定现代黄河三角洲的土壤水分与盐分试验. 现代科技,2009, 15(1): 161-162.

[23] 郑景云, 尹云鹤, 李炳元. 中国气候区划新方案. 地理学报, 2010, 65(1): 3-12.