Original Articles

Improved Priestley-Taylor Method and Its Application in Complementary Relationship Evapotranspiration Model

  • 1. Institute of Geographic Sciences National Resources Research, CAS, Beijing 100101, China;
    2. Institute of Hydrological Hehai University, Nanjing 210098, China

Received date: 2011-03-01

  Revised date: 2011-06-01

  Online published: 2011-07-25


Priestley-Taylor method is developed under the condition of non advection water vapour transport, however, this assumption is hardly satisfied in reality. Some researches introduced the parameter in order to eliminate the error brought by the non-advection assumption. According to many researches, the value of parameter has some uncertainty. This paper tries to introduce an advection coefficient to reflect the influence of advection on evaporation. The case analyses suggest that this method could provide the minimum energy for calculating evaporation in winter. Compared with the original formula, the calculation accuracy of evaporation has been effectively improved, especially in winter and summer.

Cite this article

ZHAO Lingling, WANG Zhonggen, XIA Jun, CHEN Xi, QIN Nianxiu . Improved Priestley-Taylor Method and Its Application in Complementary Relationship Evapotranspiration Model[J]. PROGRESS IN GEOGRAPHY, 2011 , 30(7) : 805 -810 . DOI: 10.11820/dlkxjz.2011.07.004


[1] Priestley C H B, Taylor R J. On the assessment of surface heat flux and evaporation using large-scale parameters. MonthlyWeather Review, 1972, 100(2): 81-92.

[2] 邱新法, 曾燕, 缪启龙, 等. 用常规气象资料计算陆面年实际蒸散发量. 中国科学, 2003, 33(33): 81-288.

[3] 刘绍民, 孙睿, 孙中平, 等. 基于互补相关原理的区域蒸散量估算模型比较. 地理学报, 2004, 59(3): 331-340.

[4] 曾燕, 邱新法, 刘昌明, 等. 1960-2000 年中国蒸发皿蒸发量的气候变化特征. 水科学进展, 2005, 18(3): 311-318.

[5] 马耀明. 非均匀陆面上区域蒸发(散)研究概况. 高原气象, 1997, 16(4): 446-452.

[6] Xu C Y, Singh V P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions. Journal of Hydrology, 2005, 308(1-4):105-121.

[7] Brutsaert W, Chen D. Desorption and the two stages of dying of natural tallgrass prairie. Water Resources Research, 1995,31(5): 1305-1313.

[8] Hobbins M T, Ramirez J A, Brown T C. The complementary relationship in estimation of regional evapotranspiration: An enhanced advection-aridity model. Water Resour Res, 2001, 37(5): 1389-1403.

[9] 莫兴国. 引入平流影响的蒸散发估算. 生态农业研究, 1995, 12(3): 49-53.

[10] 杨汉波, 杨大文, 等. 蒸发互补关系在不同时间尺度上的变化规律及其机理. 中国科学: E 辑, 2009, 39(2): 333-340.

[11] 杨汉波, 杨大文, 雷志栋, 等. 蒸发互补关系的区域变异性. 清华大学学报: 自然科学版, 2008, 48(9): 33-36.

[12] 莫兴国. 用平流-干旱模型估算麦田潜热及平流. 中国农业气象, 1995, 16(6): 1-4.

[13] Bouchet R J. Evapotranspiration reele at potentielle, signification climatique. General Assembly Berkeley, Int.Ass. Sci.Hydrol. Gentbrugge, Belgium, Pub1, 1963, 62: 134-142.

[14] Brutsaert W, Stricker H. An advection-aridity approach to estimate actual regional evapotranspiration.Water Resource Research, 1979, 15(2): 443-449.

[15] Morton F I. Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology. Journal of Hydrology, 1983, 66(1-4): l-76.

[16] Granger R J. An examination of the concept of potentia1. Journal of Hydrology, 1989, 11(1): 9-19.

[17] Granger R J, Gray D M. Evaporation from natural no-saturated surfaces. Journal of Hydrology, 1989, 111(1-4): 21-29.

[18] 熊立华, 郭生练, 付小平, 等. 两参数月水量平衡的研制和应用. 水科学进展, 1996, 7(增刊): 80-86.