Original Articles

Current Status and Prospect of Researches on Wetland Monitoring Based on Remote Sensing

Expand
  • 1. Northeast Institute of Geography and Agriculture Ecology, CAS, Changchun 130012, China|
    2. Geo- information Engineering Institute of Jilin province, Changchun 130061, China|
    3. Graduate University of Chinese Academy of Sciences, Beijing 100039, China

Received date: 2006-07-01

  Revised date: 2006-11-01

  Online published: 2007-02-20

Abstract

Wetland is one of the most important ecosystems, and it has high social benefit, economic benefit and scientific research value. Global wetland degraded and its amount decreased in the past several decades. Wetland resources are taking on a heavy pressure, and romote sensing technique plays an important role in real- time monitoring of dynamic changes of wetlands. In this paper, wetland monitoring mainly means classification and recognition of wetland based on remote sensing technique. Current status of researches on wetland monitoring based on remote sensing technique in China and abroad was systematically discussed from multiple aspects, including classification systems of wetland, pre - processing of images, remote sensing data sources of multi - resolution (multi - spatial resolution, multi - spectral resolution,multi - temporal resolution), methods of information extraction for wetlands(visual interpretation and computer auto- interpretation) and so on. Finally, three current shortcomings and six future keys of wetland monitoring based on remote sensing were presented.

Cite this article

LI Jianping, ZHANG Bai, ZHANG Ling,WANG Zongming, SONG Kaishan . Current Status and Prospect of Researches on Wetland Monitoring Based on Remote Sensing[J]. PROGRESS IN GEOGRAPHY, 2007 , 26(1) : 33 -43 . DOI: 10.11820/dlkxjz.2007.01.004

References


[1] Mitsch W J, Gosselink J M. Wetlands. New York:Van Nostrand Reinhold Company Inc., 1986.

[2] 刘红玉,李兆富. 三江平原典型湿地流域水文情势变化过程及其影响因素分析. 自然资源学报, 2005, 20(4):493~501.

[3] 王伟, 陆健健. 三垟湿地生态系统服务功能及其价值. 生态学报, 2005, 25(3):404~408.

[4] 李天宏,赵智杰,韩鹏. 深圳河河口红树林变化的多时相遥感分析. 遥感学报,2002,6(5):364~370.

[5] Barbara J Kent, Joy Nystrom Mast. Wetland change analysis of San Dieguito Lagoon, California,USA:1928~1994. Wetlands, 2005,25(3):780~787.

[6] L L Bourgeau- chavez, E S Kasischke, S M Brunzell,et al. Analysis of space- borne SAR data for wetland mapping in Virginia riparian ecosystems.International Journal of Remote Sensing,2001, 22(18):3665~3687.

[7] Wataru Takeuchi, Masayuki Tamura, Yoshifumi Yasuoka. Estimation of methane emission from West Siberian wetland by scaling technique between NOAA AVHRR and SPOT HRV.Remote Sensing of Environment, 2003, 85( 1) : 21~29.

[8] Bounlom Vinliam, 卞建民, 林年丰. 3S 技术在霍林河流域下游湿地景观演变中的应用. 吉林大学学报(地球科学版), 2005, 35(2):221~225.

[9] R Chopra, V K Verma, P K Sharma. Mapping, monitoring and conservation of Harike wetland ecosystem,Punjab, India, through remote sensing.International Journal of Remote Sensing, 2001, 22(1):89~98.

[10] Jessika Tb#yr#, Alain Pietroniro. Towards operational monitoring of a northern wetland using geomatics- based techniques. Remote Sensing of Environment, 2005, 97(2):174~191.

[11] 刘红玉, 吕宪国, 张世奎. 三江平原流域湿地景观多样性及其50 年变化研究. 生态学报, 2004, 24(7):1472~1480.

[12] 杨永兴. 国际湿地科学研究进展和中国湿地科学研究优先领域与展望. 地球科学进展, 2002,17(4):508~514.

[13] Bronge L B, Naslund- Landenmark B. Wetland classification for Swedish CORINE Land Cover adopting a semi- automatic interactive approach.Canadian Journal of Remote Sensing,2002,28(2): 139~155.

[14] Rebecca L.Phillips,Ofer Beeri,Edward Shawn DeKeyser. Remote wetland assessment for Missouri coteau prairie glacial basins. Wetlands, 2005,25(2):335~349.

[15] 唐小平,黄桂林. 中国湿地分类系统的研究. 林业科学研究,2003,16(5):531~539.

[16] 杜红艳, 张洪岩, 张正祥. GIS 支持下的湿地遥感信息高精度分类方法研究. 遥感技术与应用,2004,19(4):244~248.

[17] 衣伟宏,杨柳,张正祥. 基于ETM+影像的扎龙湿地遥感分类研究. 湿地科学, 2004,2(3):208~212.

[18] Julie Noriega Rivera Rio, Diego Fabián Lozano~García. Spatial Filtering of Radar Data (RADARSAT)for Wetlands (Brackish Marshes) Classification. Remote Sensing of Environment,2000, 73( 2) : 143~151.

[19] K S Schmidt, A K Skidmore. Spectral discrimination of vegetation types in a coastal wetland. Remote Sensing of Environment, 2003, 85( 1) : 92~108.

[20] Brian L. Becker, David P. Lusch, Jiaguo Qi.Identifying optimal spectral bands from in situ measurements of Great Lakes coastal wetlands using second- derivative analysis. Remote Sensing of Environment, 2005, 97(2): 238~248.

[21] S P S Kushwaha, R S Dwivedi, B R M Rao. Evaluation of various digital image processing techniques for detection of coastal wetlands using ERS- 1 SAR data. International Journal of Remote Sensing, 2000, 21(3):565~579.

[22] 童庆禧,郑兰芬,王晋年等. 湿地植被成像光谱遥感研究. 遥感学报, 1997,1(1):50~57.

[23] 杜春英,王育光,高永刚等. 黑龙江省湿地资源遥感信息解译分析. 黑龙江气象, 2003,3(1):1~3.

[24] 张云霞,李晓兵,陈云浩. 草地植被盖度的多尺度遥感与实地测量方法综述. 地球科学进展, 2003, 18(1):85~93.

[25] 牛明香, 赵庚星. 南四湖区湿地信息遥感提取技术研究. 国土与自然资源研究, 2004,(1):51~53.

[26] T X YUE, B XU, J Y LIU. A patch connectivity index and its change in relation to new wetland at the Yellow River Delta. International Journal of Remote Sensing, 2004,25(21):4617~4628.

[27] 张志锋,赵文吉,贾萍等. 北京湿地分析与监测. 地球信息科学, 2004, 6(1):53~57.

[28] Miyamoto M, Yoshino K, Nagano T,et al. Use of balloon aerial photography for classification of Kushiro wetland vegetation, Northeastern Japan. Wetlands, 2004, 24(3):701~710.

[29] Dechka J A, Franklin S E, Watmough M D, et al. Classification of wetland habitat and vegetation communities using multi- temporal Ikonos imagery in southern Saskatchewan. Canadian Journal of Remote Sensing, 2002, 28(5):679~685.

[30] 张翊涛, 陈洋, 王润生. 结合自动分区与分层分析的多光谱遥感图像地物分类方法. 遥感技术与应用, 2005, 209(3): 322~327.]

[31] Paula F. Houhoulis,William K. Michener. Detecting wetland change: a rule- based approach using NWI and SPOT- XS data. Photogrammetric Engineering and Remote Sensing, 2000, 66(2): 205~211.

[32] Munyati C. Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. International Journal of Remote Sensing, 2000, 21(9): 1787~1806.

[33] 陈水森,付尔林. 鄱阳湖湿地环境及其MOS- 1 MESSR 遥感影像分析. 生态科学,1998,17(2):118~120.

[34] 邓劲松,王坷,李君等. 决策树方法从SPOT- 5 卫星影像中自动提取水体信息研究. 浙江大学学报(农业与生命科学 版), 2005,31(2): 171~174.

[35] 刘凯,黎夏,王树功等. 珠江口近20 年红树林湿地的遥感动态监测. 热带地理,2005, 25(2):111~116.

[36] Li Deren. 李德仁.数字地球与“三S”技术. 中国测绘, 2003,(2):28~31.

[37] Neuenschwander,A.L.,M.M.Crawford,M.J.Provancha.Mapping of coastal wenlands via hyperspectral AVIRIS data. IEEE International Geoscience and Remote Sensing Symposium Proceedings,1998,189~191,USA.

[38] Foudan Salem, Menas Kafatos, Tarek EL- Ghazawi,et al. Hyperspectral image assessment of oil- contaminated wetland.International Journal of Remote Sensing, 2005, 26(4):811~821.

[39] Akira Hirano,Marguerite Madden,Roy Welch. Hyperspectral Image Data for Mapping Wetland Vegetation.Wetlands, 2003,23(2):436~448.

[40] T Schmid, M Koch, J Gumuzzio, et al. A spectral library for a semi- arid wetland and its application to studies of wetland degradation using hyperspectral and multispectral data. International Journal of Remote Sensing, 2004, 25(13):2485~2496.

[41] 张红, 舒宁, 刘刚. 多时相组合分类法在土地利用动态监测中的应用. 武汉大学学报(信息科学版), 2005, 30(2): 131~134.

[42] 张树清, 陈春. 三江平原湿地遥感分类模式研究. 遥感技术与应用, 1999, 14( 1) : 54~58.

[43] Lunetta R S,Balogh M E.Application of multi- temporal Landsat 5 TM imagery for wetland identification.Photogrammetric Engineering and Remote Sensing, 1999,65(11):1303~1310.

[44] Maria Gabriela Parmuchi, Haydee Karszenbaum, Patricia Kandus. Mapping wetlands using multi- temporal RADARSAT- 1 data and a decision- based classifier. Canadian Journal of Remote Sensing, 2002, 28(2):175~186.

[45] Ormsby J P, Blanchard B J. Detection of lowland flooding using active micro- wave systems.Photogrammetric Engineering and Remote Sensing, 1985, 51( 3) : 317~328.

[46] Philip A. Townsend. Estimating forest structure in wetlands using multitemporal SAR. Remote Sensing of Environment, 2002, 79( 2~3): 288~304.

[47] Augusteijn MF, Warrender CE. Wetland classification using optical and radar data and neural network classification.International Journal of Remote Sensing,1998,19(8): 1545~1560.

[48] R S Dwivedi, B R MRao. Mapping wetlands of the Sundaban Delta and it’s environs using ERS- 1 SAR data. International Journal of Remote Sensing, 1999,20(11):2235~2247.

[49] D A Roshier, R MRumbachs. Broad- scale mapping of temporary wetlands in arid Australia. Journal of Arid Environments, 2004, 56(2): 249~263.

[50] Haack B. Monitoring wetland changes with remote sensing: an East African example.Environmental Management, 1996, 20 ( 3) : 411~419.

[51] 雍国玮, 石承苍, 邱鹏飞. 川西北高原若尔盖草地沙化及湿地萎缩动态遥感监测. 山地学报, 2003, 21( 6) : 758~762.

[52] Bridget Schulte- Hostedde, D Walters, C Powell, D Shrubsole. Wetland management: An analysis of past practice and recent policy changes in Ontario. Journal of Environmental Management, In Press,Available online 20 March 2006.

[53] 沈松平,王军,游丽君等. 若尔盖沼泽湿地遥感动态监测. 四川地质学报, 2005, 25(2):119~121.

[54] 骆剑承, 王钦敏, 马江洪等. 遥感图像最大似然分类方法的EM改进算法. 测绘学报, 2002, 31(3): 234~239.

[55] 王圆圆, 李京. 遥感影像土地利用/覆盖分类方法研究综述. 遥感信息, 2004, ( 1) : 53~59.

[56] Peter M. Atkinson. Spatially weighted supervised classification for remote sensing. International Journal of Applied Earth Observation and Geoinformation, 2004,5( 4) : 277~291.

[57] Min Xu, Pakorn Watanachaturaporn, Pramod K. Varshney et al. Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment,97( 3): 2005: 322~336.

[58] 汪闽, 骆剑承, 周成虎等. 结合高斯马尔可夫随机场纹理模型与支撑向量机在高分辨率遥感图像上提取道路网. 遥 感学报, 2005,9(3):271~276.

[59] 韩敏, 程磊, 唐晓亮等. 向海自然保护区土地覆盖分类研究. 应用生态学报, 2005, 16( 2) : 296~300.

[60] 韩敏, 孙燕楠等. 基于RS、GIS 技术的扎龙沼泽湿地景观格局变化分析. 地理科学进展, 2005, 24( 6) : 42~49.

[61] Steven A. Sader, Douglas Ahl, et al. Accuracy of landsat- TM and GIS rule- based methods for forest wetland classification in Maine.Remote Sensing of Environment, 1995,53(3):133~144.

[62] 骆剑承. 遥感影像智能图解及其地学认知问题探索. 地理科学进展, 2000, 19(4): 289~296.

[63] Vapnik V N. The Nature of Statistical Learning Theory. New York: Springer- Verlag,1995.

[64] G Fung O L. Mangasarian.Proximal support vector machine classifiers, D. Lee, et al. (Eds.),Proceedings of the KDD- 2001: Knowledge Discovery and Data Mining, New York:ACMpress,2001, 77~86.

[65] O L Mangasarian, D R Musicant. Lagrangian support vector machines. Journal of Machine Learning Research, 2001, (1): 161~177.

[66] O L Mangasarian, D R Musicant. Active support vector machine classification. Todd K. Leen, Thomas G. Dietterich, and Volker Tresp(Eds.), Advances in Neural Information Processing Systems 13, 2000, 577~583.

[67] Yuh- Jye Lee O L. Mangasarian.SSVM: A smooth support vector machine. Computational Optimization and Applications, 2001, 20(1): 5~22.

[68] C Huang L S. Davis J R G. Townshend. An assessment of support vector machine for land cover classification. International Journal of Remote Sensing, 2002,23(4):725~749.

Outlines

/