Original Articles

Review of Eco-hydrological Models of Watershed Scale

Expand
  • 1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China;
    2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China;
    3. Department of Geography, University ofWisconsin-Madison, Madison, WI 53706, USA

Received date: 2011-01-01

  Revised date: 2011-04-01

  Online published: 2011-05-25

Abstract

Eco-hydrological model of watershed scale is an essential tool to assess the impact of environmental change on watershed hydrological and ecological processes. This has made eco-hydrological model a hot research focus, and significant advances have been achieved during recent years. This paper provides a perspective on the current state of the research on eco-hydrological modeling. Firstly we elaborate the characteristics of the interaction between vegetation and hydrological processes and the requirements for watershed eco-hydrological modeling. Then the existing models are classified according to the detail levels of their description of the eco-hydrological interaction. Different types of eco-hydrological models and their respective advantage and disadvantage are summarized. Finally, the key problems and research issues (i.e,eco-hydrological interaction, parameters estimation and the problem of uncertainty) for eco-hydrological modeling are addressed.

Cite this article

CHEN Lajiao, ZHU Axing, QIN Chengzhi, LI Runkui, LIU Jing, LIU Junzhi . Review of Eco-hydrological Models of Watershed Scale[J]. PROGRESS IN GEOGRAPHY, 2011 , 30(5) : 535 -544 . DOI: 10.11820/dlkxjz.2011.05.003

References

[1] Zalewski M. Ecohydrology: The scientific background touse ecosystem properties as management tools towardsustainability of water resources. Ecological Engineering,2000, 16(1): 1-8.



[2] Gurnell A M, Hupp C R, Gregory S V. Preface: Linkinghydrology and ecology. Hydrological Processes, 2000, 14(16-17): 2813-2815.



[3] Bonnell M. Ecohydrology-a completely new idea? HydrologicalSciences Journal, 2002, 47(6): 809-810.



[4] Bond B. Hydrology and Ecology Meet? And the Meetingis good. Hydrological Processes, 2003, 17(10): 2087-2089.



[5] 王根绪, 刘桂民, 常娟. 流域尺度生态水文研究评述, 生态学报, 2005, 25 (4): 892-903.



[6] Newman B D, Wilcox B P, Archer S R, et al. Ecohydrologyof water-limited environments: A scientific vision. WaterResources Research, 2006, 42: W06302, doi: 10.1029/2005WR004141.



[7] 夏军, 左其亭. 国际水文科学研究的新进展. 地球科学进展, 2006, 21(3): 256-261.



[8] ICWE. Development Issues for the 21st Century. TheDublin statement and report of the conference, Dublin,Ireland, 26-31 January 1992. Geneva:World MeteorologicalOrganization.



[9] Rodriguez-Iturbe I. Ecohydrology: A hydrologic perspectiveof climate-soil-vegetation dynamics. Water ResourcesResearch, 2000, 36(1): 3-9.



[10] Arora V. Modeling vegetation as a dynamic component insoil-vegetation-atmosphere transfer schemes and hydrologicalmodels. Reviews of Geophysics, 2002, 40(2):1-26.



[11] 孙晓敏, 袁国富, 朱致林, 等. 生态水文过程观测与模拟的发展与展望. 地理科学进展, 2010, 29(11): 1293-1300.



[12] 杨大文, 雷慧闽, 丛振涛. 流域水文过程与植被相互作用研究现状评述, 水利学报, 2010, 41(10): 1142-1149.



[13] Rodriguez-Iturbe I, D'Odorico P. On the Spatial and temporallinks between vegetation, climate, and soil moisture,Water Resources Research, 1999, 35(12): 3709-3722.



[14] Waring R H, Running S W. Forest Ecosystems: Analysisat Multiple Scales. 2nd Edition. San Diego: AcademicPress, 1998.



[15] 黄奕龙, 傅伯杰, 陈利顶. 生态水文过程研究进展. 生态学报, 2003, 23(3): 580-587.



[16] Chapin S F, Matson P, Mooney H A. Principles of TerrestrialEcosystem Ecology. New York: Springer-VerlagPress, 2002.



[17] Eagleson P S. Ecohydrology: Darwinian Expression ofVegetation Form and Function. Cambridge: CambridgeUniversity Press, 2002.



[18] Harris P P, Huntingford C, Cox P M, et al. Effect of soilmoisture on canopy conductance of Amazonian rainforest.Agricultural and Forest Meteorology, 2004, 122(3/4):215-227.



[19] Rodriguez-Iturbe I, Porporato A, Laio F, et al. Plants inwater-controlled ecosystems: Active role in hydrologicprocesses and response to water stress -I. Scope and generaloutline, Advances in Water Resources, 2001, 24(7):695-705.



[20] Rodriguez-Iturbe I, Porporato A. eds. Ecohydrology ofWater Controlled Ecosystems: Soil Moisture and PlantDynamics. London: Cambridge University Press, 2005.



[21] 于贵瑞, 王秋凤, 王绍强, 等. 陆地生态系统水-碳耦合循环与过程管理研究. 地球科学进展, 2004, 19(51):831-839.



[22] 刘昌明, 孙睿. 水循环的生态学方面:土壤-植被-大气系统水分能量平衡研究进展, 水科学进展, 1999, 10(3):251-259.



[23] 曹明奎, 李克让. 陆地生态系统与气候相互作用的研究进展, 地球科学进展, 2000, 15(4): 446 -451.



[24] Charney J R. Dynamics of deserts and drought in Sahel.Quarterly Journal of the Royal Meteorological Society,1975, 101(428): 193-202.



[25] Soulis E D, Snelgrove K R, Kouwen N, et al. Towardsclosing the vertical water balance in Canadian atmosphericmodels: coupling of the land surface scheme class withthe distributed hydrological model Watflood. Atmosphere-Ocean, 2000, 38(1): 251-269.



[26] Wigmosta M S, Vail L W, Lettenmaier D P. A Distributedhydrology-vegetation model for complex terrain. WaterResources Research, 1994, 30(6): 1665-1679.



[27] Abbott M B, Bathurst J C, Cunge J A, et al. An introductionto the European hydrological system——System HydrologiqueEuropeen, “SHE”, 2: Structure of a physically-based, distributed modelling system. Journal of Hydrology,1986, 87(1-2): 61-77.



[28] Liang X, Lettenmaier D P, Wood E F, et al. A simple hydrologicallybased model of land surface water and energyfluxes for general circulation models. Journal of GeophysicalResearch, 1994, 99(D7): 14415-14428.



[29] Arnold J G, Srinivasan R, Muttiah R S, et al. Large-areahydrologic modeling and assessment: Part I. model development.Journal of the AmericanWater Resources Association,1998, 34(1): 73-89.



[30] Arnold J G, Fohrer N. SWAT 2000: Current capabilititiesand research opportunities in applied watershed modeling.Hydrological Processes, 2005, 19(3): 563-572.



[31] Krysanova V, Muller-Wohlfeil D, Becker A. Developmentof the ecohydrological model SWIM for RegionalImpact Studies and Vulnerability Assessment. HydrologicalProcesses, 2005, 19(3): 763-783.



[32] 刘昌明, 杨胜天, 温志群, 等. 分布式生态水文模型Eco-HAT 系统开发及应用. 中国科学: E 辑, 2009, 39(6):1112-1121.



[33] Kirby J T, Durrans S R. PnET-II3SL/SWAT: Modelingthe combined effects of forests and agriculture on wateravailability. Journal of Hydrological Engineering, 2007,12(3): 319-326.



[34] Vertessy R A, Dawes W R, Zhang L, et al. Catchment-scale Hydrologic Modelling to Assess the Waterand salt balance behavior of Eucalypt plantations. TechnicalMemorandum No.96/2, CSIRO Division Water Resources,1996.



[35] Band L E, Patterson P, Nemani R, et al. Forest Ecosystemprocesses at the watershed scale: Incorporating hillslopehydrology. Agricultural and Forest Meteorology, 1993, 63(1-2): 93-126.



[36] Tague C L, Band L E. RHESSys: regional hydro-ecologicsimulation system: An object-oriented approach to spatiallydistributed modeling of carbon, water and nutrientcycling. Earth Interactions. 2004, 8(19): 1-42.



[37] Watson F G R, Vertessy R A, Grayson R B. Large scalemodelling of forest hydrological processes and theirlong-term effect on water yield, Hydrological Processes,1999, 13(5): 689-700.



[38] Mo X G, Liu S X, Lin Z H, et al. Simulating temporaland spatial variation of evapotranspiration over Lushi Basin.Journal of Hydrology, 2004, 285(1-4): 125-142.



[39] 莫兴国, 林忠辉, 刘苏峡. 气候变化对无定河流域生态水文过程的影响. 生态学报, 2007, 27(12): 4999-5007.



[40] Ivanov V Y, Bras R L, Vivoni E R. Vegetation-hydrologydynamics in complex terrain of semiarid areas: 1. Amechanistic approach to modeling dynamic feedbacks.Water Resources Research, 2008, 44, W03430, doi:10.1029/2006WR005595.



[41] Ivanov V Y, Bras R L, Vivoni E R. Vegetation-hydrologydynamics in complex terrain of semiarid areas: 2. Energy-water controls of vegetation spatiotemporal dynamicsand topographic niches of favorability. Water ResourcesResearch, 2008, 44, W03430, doi: 10.1029/2006WR005595.



[42] Chen J M, Chen X F, Ju W M, et al. Distributed hydrologicalmodel for mapping evapotranspiration using remotesensing inputs. Journal of Hydrology, 2005, 305(1-4):15-39.



[43] Govind A, Chen J M, Margolis H, et al. A Spatially ExplicitHydro-ecological modeling framework (BEPS-TerrainLabV2.0): Model description and test in a boreal ecosystemin eastern north America. Journal of Hydrology,2009, 367(3-4): 200-216.



[44] Kiniry J R, MacDonald J D, Kemanian A R, et al. 2008.Plant growth simulation for landscape-scale hydrologicalmodelling. Hydrological Sciences Journal, 2008, 53(5):1030-1042.



[45] 罗毅, 郭伟. 作物模型研究与应用中存在的问题. 农业工程学报, 2008, 24 (5): 307-312.



[46] Luo Y, He C, Sophocleous M, et al. Assessment of cropgrowth and soil water modules in SWAT2000 using extensivefield experiment data in an irrigation district ofthe Yellow River Basin. Journal of Hydrology, 2008, 352(1-2): 139-156.



[47] 邬定荣. 流域水循环的作物模块耦合与改进及流域环境影响评价. 中国科学院博士后研究报告, 2008.



[48] Valentina K, Arnold J G. Advances in ecohydrologicalmodelling with SWAT: A review. Hydrological SciencesJournal, 2008, 53(5): 939-947.



[49] Mackay D S, Band L E. Forest ecosystem processes atthe watershed scale: Dynamic coupling of distributed hydrologyand canopy growth. Hydrological Processes,1997, 11(9): 1197-1217.



[50] Band L E, Tague C L, Groffman P, et al. Forest ecosys-tem processes at the watershed scale: Hydrological andecological controls of nitrogen export. Hydrological Processes,2001, 15(10): 2013-2028.



[51] Schymanski S J. Transpiration as the leak in the carbonfactory: A model of self-optimising vegetation [D]. Perth:The University ofWestern Australia, 2007.



[52] Van der Tol C, Meesters A, Dolman A J, et al. Optimumvegetation characteristics, assimilation, and transpirationduring a dry season: 1. Model description.Water ResourcesResearch, 2008, 44(3): W03421. doi:10.1029/2007WR006241.



[53] Tague C L, McMichael C, Hope A, et al. Application ofthe RHESSys model to a California semiarid shrub landwatershed. Journal of the American Water Resources Association,2004, 40(3): 575-589.



[54] Vettessy R A, Hatton T J,Benyon R G,et al. Long-termgrowth and water balance for a mountain ash (Eucalyptusregnans) forest catchment subject to clear-felling and regeneration.Tree Physiology, 1996, 16(11-12): 221-232.



[55] Rodriguez-Iturbe I, Porporato A, eds. Ecohydrology ofwater controlled ecosystems: soil moisture and plant dynamics.London: Cambridge University Press, 2005.



[56] Rodriguez-Iturbe, I, Porporato A, Laio F, et al. Plants inwater-controlled ecosystems: active role in hydrologicprocesses and response to water stress -I. Scope and generaloutline. Advances in Water Resources, 2001, 24(7):695-705.



[57] Mo X, Liu S. Simulating evapotranspiration and photosynthesisof winter wheat over the growing season. Agriculturaland Forest Meteorology, 2001, 109(3): 203-222.



[58] 王永芬, 莫兴国, 王艳芬, 等. 基于VIP 模型对内蒙古草原蒸散季节和年际变化的模拟. 植物生态学报, 2008,32(5): 1052-1060.



[59] Sivapalan M. The Secret to 'Doing Better HydrologicalScience': change the question! Hydrological Processes,2009, 23(9): 1391-1396.



[60] Eagleson P S, 著. 杨大文, 丛振涛, 译. 生态水文学. 北京:水利水电出版社, 2008.



[61] 杨大文, 丛振涛, 雷志栋. 生态水文学: 植被形态与功能的达尔文表达, 冰川冻土, 2008, 30(5): 903-905.



[62] Van der Tol C, Dolman A J, Waterloo M J, et al. Meestersoptimum vegetation characteristics, assimilation, andtranspiration during a dry season: 2. Model evaluation.Water Resources Research, 2008, 44(3): W03422, doi:10.1029/2007WR006243.



[63] Schymanski S J. Optimality as a concept to understandand model vegetation at different scales. GeographyCompass, 2008, 2(5): 1580-1598.



[64] Schymanski S J, Sivapalan M, Roderick M L, et al. Anoptimality-based model of the coupled soil moisture androot dynamics. Hydrology and Earth System Sciences,2008, 12(3): 913-932.



[65] Schymanski S J, Sivapalan M, Roderick M L, et al. Anoptimality-based model of the dynamic feedbacks betweennatural vegetation and the water balance. Water ResourcesResearch, 2009, doi: 10.1029/2008WR006841.



[66] Caylor K K, Scanlon T M, Rodriguez-Iturbe I. Ecohydrologicaloptimization of pattern and processes in water-limited ecosystems: A trade-off-based hypothesis. WaterResources Research, 2009, 45, W08407, doi:10.1029/2008WR007230.



[67] Wang J, Bras R L, Lerdau M, et al. A maximum hypothesisof transpiration. Journal of Geophysical Research,2007, 112. doi: 10.1029/2006JG000255.



[68] Pauwels V R N, Verhoest N E C, De Lannoy G J M, et al.Optimization of a coupled hydrology-crop growth modelthrough the assimilation of observed soil moisture andleaf area index values using an ensemble Kalman filter.Water Resources Research, 2007, 43, doi: 10.1029/2006WR004942.



[69] Lei H, Yang D, Schymanski S J, et al. Modeling the CropTranspiration using an optimality-based approach. Sciencein China: Series E, 2009, 51(S2): 60-75.



[70] Band L E, Moore I D. Scale: Landscape attributes andgeographical information systems. Hydrological Process,1995, 9(3-4): 401-422.



[71] Band, L E, Tague C L, et al. Modeling watersheds as spatialobject hierarchies: structure and dynamics. Transactionsin GIS, 2000, 4(3): 181-196.



[72] Chen X F, Chen J M. An S Q, et al. Effects of topographyon simulated net primary productivity at landscape scale.Journal of Environmental Management, 2007, 85(3):585-596.



[73] Bloschl G, Sivapalan M. Scale issues in hydrologicalmodelling: A review. Hydrological Processes, 1995, 9(3-4): 251-290.



[74] Beven K J, Binley A M. The future of distributed models:model calibration and uncertainty prediction. HydrologicalProcesses, 1992, 6(3): 279-298.



[75] Beven K J. Rainfall-runoff Modelling: The Primer. Chichester:Willey, 2001.



[76] 梁忠民, 戴荣, 李彬权. 基于贝叶斯理论的水文不确定性分析研究进展. 水科学进展, 2010, 21(2): 274-281.



[77] Duan Q, Ajamin K, Gao X, et al. Multi-mode ensemblehydrologic prediction using Bayesian model averaging.Advances inWater Resources, 2007, 30(5): 1371-1386.



[78] 赵英时. 遥感应用分析原理与方法. 北京: 科学出版社,2003.



[79] Pauwels V R N, Verhoest N E C, De Lannoy, et al. Optimizationof a coupled hydrology-crop growth modelthrough the assimilation of observed soil moisture andleaf area index values using an ensemble Kalman filter.Water Resources. Research, 2007, 43, W04421, doi:10.1029/2006.WR004942.



[80] Pellenq J, Boulet G. A methodology to test the pertinenceof remote-sensing data assimilation into vegetation modelsfor water and energy exchange at the land surface.Agronomie, 2004, 24(4): 197-204.



[81] Pastres R,Ciavatta S,Solidoro C. The extended Kalmanfilter (EKF) as a tool for the assimilation of high frequencywater quality data. Ecological Modeling, 2003, 170(2-3): 227-235.



[82] Mo X, Chen J M, Ju W, et al. Optimization of ecosystemmodel parameters through assimilating eddy covarianceflux data with an ensemble Kalman filter. EcologicalModelling, 2008, 217(1-2): 157-173.
Outlines

/