[1] 王家耀, 魏海平, 成毅, 等. 时空GIS的研究与进展. 海洋测绘, 2004, 24(5): 1-4.
[2] Han J, Kamber M, Tung A K H. Spatial clustering methodsin data mining//Miller H J, Han J. Geographic DataMining and Knowledge Discovery. London: Taylor &Francis, 2001: 188 - 217.
[3] Han J, Kamber M. Data Mining: Concepts and Techniques.2th ed. San Francisco: Morgan Kaufmann, 2006:383.
[4] Li X, Han J, Kim S, et al. Roam: Rule- and motif-basedanomaly detection in massive moving object data sets//Proceedings of the Seventh SIAM International Conferenceon Data Mining. Philadelphia: SIAM, 2007.
[5] Nanni M. Clustering methods for spatio-temporal data. Pisa,Italy: University of Pisa[D], 2002.
[6] Theodoridis Y, Silva J R O, Nascimento MA. On the generationof spatiotemporal datasets. Advances in SpatialDatabases, 1999, 1651/1999: 147-164.
[7] Giannotti F, Mazzoni A, Puntoni S, et al. Synthetic generationof cellular network positioning data//Proceedings ofthe 13th annual ACM International Workshop on GeographicInformation Systems. New York, NY, USA:ACM, 2005: 12-20.
[8] Tzouramanis T, Vassilakopoulos M, Manolopoulos Y. Onthe generation of time-evolving regional data. Geoinformatica,2002, 6(3): 207-231.
[9] Saglio J M, Moreira J. Oporto: A realistic scenario generatorfor moving objects. Geoinformatica, 2001, 5(1):71-93.
[10] Saltenis S, Jensen C S, Leutenegger S T, et al. Indexingthe positions of continuously moving objects. Sigmod Record,2000, 29(2): 331-342.
[11] Tao Y, Papadias D. Time-parameterized queries in spatio-temporal databases//Proceedings of the 2002 ACMSIGMOD International Conference on Management ofdata. New York, NY, USA: ACM, 2002: 334-345.
[12] Li Y, Han J, Yang J. Clustering moving objects//Proceedingsof the tenth ACM SIGKDD International Conferenceon Knowledge Discovery and Data Mining. NewYork, NY, USA: ACM, 2004: 617-622.
[13] Hägerstrand T. What about people in regional science?Papers in Regional Science, 1970, 24(1): 6-21.
[14] Lenntorp B. Paths in space-time environments: Atime-geographic study of movement possibilities of individuals.Environment and Planning A, 1977, 9: 961-972.
[15] Miller H J. Modelling accessibility using space-timeprism concepts within geographical information systems.International Journal of Geographical Information Systems,1991, 5(3): 287-301.
[16] Kwan M, Hong X. Network-based constraints-orientedchoice set formation using GIS. Geographical Systems,1998, 5: 139-162.
[17] Yu H, Shaw S L. Exploring potential human activities inphysical and virtual spaces: A spatio-temporal GIS approach.International Journal of Geographical InformationScience, 2008, 22(4): 409-430.
[18] Shaw S L, Yu H B. A GIS-based time-geographic approachof studying individual activities and interactionsin a hybrid physical-virtual space. Journal of TransportGeography, 2009, 17(2): 141-149.
[19] Berezansky M, Greenspan H, Cohen-Or D, et al. Segmentationand tracking of human sperm cells using spa-tio-temporal representation and clustering. Medical Imaging2007: Image Processing, 2007, 6512: 65122M.1-65122M.12.
[20] Erez K, Goldberger J, Sosnik R, et al. Analyzing movementtrajectories using a markov bi-clustering method.Journal of Computational Neuroscience, 2009, 27(3):543-552.
[21] Gabarro-Arpa J, Revilla R. Clustering of a molecular dynamicstrajectory with a hamming distance. Computersand Chemistry, 2000, 24(6): 693-698.
[22] Cape J N, Methven J, Hudson L E. The use of trajectorycluster analysis to interpret trace gas measurements atMace Head, Ireland. Atmospheric Environment, 2000, 34(22): 3651-3663.
[23] Camargo S J, Robertson A W, Gaffney S J, et al. ClusterAanalysis of typhoon tracks. Part I: General properties.Journal of Climate, 2007, 20(14): 3635-3653.
[24] Camargo S J, Robertson A W, Gaffney S J, et al. Clusteranalysis of typhoon tracks. Part II: Large-scale circulationand Enso. Journal of Climate, 2007, 20(14):3654-3676.
[25] Kang C H, Hwang J R, Li K J. Trajectory analysis for soccerplayers//Proceedings of the Sixth IEEE InternationalConference on Data Mining Workshops. Washington,DC, USA: IEEE Computer Society, 2006: 377-381.
[26] Laube P, Imfeld S, Weibel R. Discovering relative motionpatterns in groups of moving point objects. InternationalJournal of Geographical Information Science, 2005, 19(6): 639-668.
[27] 蔡元龙. 模式识别. 西安: 西北电讯工程学院出版社,1986: 18.
[28] Tan P N, Steinbach M, Kumar V. Introduction to DataMining. Boston: Pearson Addison-Wesley, 2006: 60-65.
[29] Agrawal R, Faloutsos C, Swami A. Efficient similaritysearch in sequence databases. Foundations of Data Organizationand Algorithms, 1993, 730: 69-84.
[30] Chen L, Özsu M, Oria V. Robust and fast similaritysearch for moving object trajectories//Proceedings of the2005 ACM SIGMOD International Conference on Managementof Data. New York, NY, USA: ACM, 2005:491-502.
[31] Lee S, Chun S, Kim D, et al. Similarity search for multidimensionaldata sequences//Proceedings of the 16th InternationalConference on Data Engineering. Washington D.C. USA: IEEE Computer Society, 2000: 599-608.
[32] Elnekave S, Last M, Maitnon O. Incremental clusteringof mobile objects//Proceedings of the 2007 IEEE 23rd InternationalConference on Data Engineering Workshop.Washington, DC, USA: IEEE Computer Society, 2007:585-592.
[33] Sankoff D, Kruskal J. Time Warps, String Edits, and Macromolecules:The Theory and Practice of Sequence Comparison.MA, USA: Addison-Wesley, 1983.
[34] Agrawal R, Lin K I, Sawhney H S, et al. Fast similaritySsearch in the presence of noise, scaling, and translationin time-series databases//Proceedings of the 21th InternationalConference on Very Large Data Bases. San Francisco,CA, USA: Morgan Kaufmann Publishers Inc., 1995:490-501.
[35] Crochemore M, Rytter W. Text Algorithms. New York,NY, USA: Oxford University Press, 1994.
[36] Lee J G, Han J, Whang K Y. Trajectory clustering: A partition-and-group framework//Proceedings of the 2007ACM SIGMOD International Conference on Managementof Data. New York, NY, USA: ACM, 2007:593-604.
[37] Nanni M, Pedreschi D. Time-focused clustering of trajectoriesof moving objects. Journal of Intelligent InformationSystems, 2006, 27(3): 267-289.
[38] Kalnis P, Mamoulis N, Bakiras S. On discovering movingclusters in spatio-temporal data//Medeiros C B,EgenhoferM, Bertino E. Proceedings of the 9th InternationalSymposium on Advances in Spatial and Temporal Databases.Berlin: Springer-Verlag, 2005: 364-381.
[39] Gao Y, Zheng B, Chen G, et al. Algorithms for constrainedK-nearest neighbor queries over moving objecttrajectories. Geoinformatica, 2010, 14(2): 241-276.
[40] Alt H, Godau M. Computing the fréchet distance betweentwo polygonal curves. International Journal of ComputationalGeometry and Applications, 1995, 5(1): 75-91.
[41] Lin B, Su J. One way distance: For shape based similaritysearch of moving object trajectories. Geoinformatica,2008, 12(2): 117-142.
[42] Perng C S, Wang H, Zhang S R, et al. Landmarks: A newmodel for similarity-based pattern querying in time seriesdatabases//Proceedings of the 16th International Conferenceon Data Engineering, 2000: 33-42.
[43] Faloutsos C, Jagadish H, Mendelzon A, et al. A signaturetechnique for similarity-based queries//Proceedings ofthe Compression and Complexity of Sequences 1997.Washington, DC, USA: IEEE Computer Society, 1997:2-20.
[44] Pelekis N, Kopanakis l, Ntoutsi I, et al. Mining trajectorydatabases via a suite of distance operators//Proceedingsof the 2007 IEEE 23rd International Conference on DataEngineering Workshop. Washington, DC, USA: IEEEComputer Society, 2007: 575-584.
[45] Faloutsos C, Ranganathan M, Manolopoulos Y. Fast sub-sequence matching in time-series databases. ACM SIGMODRecord, 1994, 23(2): 419-429.
[46] Chan K. Efficient time series matching by wavelets//Proceedingsof the 15th International Conference on DataEngineering. Washington, DC, USA: IEEE Computer Society,1999: 126-133.
[47] Chakrabarti K, Keogh E, Mehrotra S, et al. Locally adaptivedimensionality reduction for indexing large time seriesdatabases. ACM Transactions on Database Systems(TODS), 2002, 27(2): 188-228.
[48] Yanagisawa Y, Akahani J, Satoh T. Shape-based similarityquery for trajectory of mobile objects//Proceedings ofthe 4th International Conference on Mobile Data Management.London, UK: Springer-Verlag, 2003: 63-77.
[49] Keogh E, Palpanas T, Zordan V, et al. Indexing large human-motion databases//Proceedings of the Thirtieth InternationalConference on Very Large Data Bases. VLDBEndowment, 2004: 780-791.
[50] Berndt D, Clifford J. Using dynamic time warping to findpatterns in time series//Proceedings of KDD-94 Work-Shop, 1994: 359-370.
[51] Sakurai Y, Yoshikawa M, Faloutsos C. FTW: Fast similaritysearch under the time warping distance//Proceedingsof the Twenty-fourth ACM SIGMOD-SIGACT-SIGARTSymposium on Principles of Database Systems. NewYork, NY, USA: ACM, 2005: 326-337.
[52] Vlachos M, Hadjieleftheriou M, Gunopulos D, et al. Indexingmulti-dimensional time-series with support formultiple distance measures//Proceedings of the NinthACM SIGKDD International Conference on KnowledgeDiscovery and Data Mining. New York, NY, USA: ACM,2003: 216-225.
[53] Little J, Gu Z. Video retrieval by spatial and temporalstructure of trajectories//Proceedings of SPIE, the InternationalSociety for Optical Engineering SPIE, 2001:545-552.
[54] Vlachos M, Gunopulos D, Das G. Rotation invariant distancemeasures for trajectories//Proceedings of the TenthACM SIGKDD International Conference on KnowledgeDiscovery and Data Mining. New York, NY, USA: ACM,2004: 707-712.
[55] Vlachos M, Kollios G, Gunopulos D. Discovering similarmultidimensional trajectories//Agrawal R, Dittrich K,Ngu A H H. Proceedings of the 18th International Conferenceon Data Engineering. Washington, DC, USA: IEEEComputer Society, 2002: 673-684.
[56] Bozkaya T, Yazdani N, Özsoyoglu M. Matching and indexingsequences of different lengths//Proceedings of theSixth International Conference on Information andKnowledge Management. New York, NY, USA: ACM,1997: 128-135.
[57] Chen L, Ng R. On the marriage of lp-norms and edit distance//Proceedings of the Thirtieth International Conferenceon Very Large Data Bases. VLDB Endowment,2004: 792-803.
[58] Liu J P, Zhang Y L, Liu G. Partition and density-basedclustering for moving objects Trajectories//Proceedingsof the Third International Conference on Computer Science& Education. Xiamen: Xiamen University Press,2008: 182-187.
[59] Lee J G, Han J, Li X, et al. Traclass: Trajectory classificationusing hierarchical region-based and trajectory-Basedclustering//Proceedings of International Conference onVery Large Data Base(VLDB'08). VLDB Endowment,2008: 1081-1094.
[60] Ankerst M, Breunig M M, Kriegel H P, et al. Optics: Orderingpoints to identify the clustering structure//Proceedingsof the 1999 ACM SIGMOD International Conferenceon Management of Data. New York, NY, USA:ACM, 1999: 49-60.
[61] Zhang T, Ramakrishnan R, Livny M. Birch: An efficientdata clustering method for very large databases. ACMSIGMOD Record, 1996, 25(2): 103-114.
[62] Nanni M, Kuijpers B, Körner C, et al. Spatiotemporal datamining//Giannotti F,Pedreschi D. Mobility, Data Mining,and Privacy: Geographic Knoweledge Discovery.Berlin: Springer-Verlag, 2008: 267-296.
[63] Brakatsoulas S, Pfoser D, Salas R, et al. On map-matchingvehicle tracking data//Proceedings of the 31st InternationalConference on Very Large Data Bases. VLDB Endowment,2005: 853-864.
[64] Schreck T, Bernard J, Tekusova T, et al. Visual clusteranalysis of trajectory data with interactive kohonen maps.Information Visualization, 2009, 8: 14-29.
[65] Yu W, Gertz M. Constraint-based learning of distancefunctions for object trajectories//Proceedings of the 21stInternational Conference on Scientific and Statistical DatabaseManagement. Berlin, Heidelberg: Springer-Verlag,2009: 627-645.
[66] Gaffney S, Smyth P. Trajectory clustering with mixturesof regression models//Proceedings of the Fifth ACM SIGKDDInternational Conference on Knowledge Discoveryand Data Mining. New York, NY, USA: ACM, 1999:63-72.
[67] Chudova D, Gaffney S, Mjolsness E, et al. Translation-invariantmixture models for curve clustering//Proceedingsof the Ninth ACM SIGKDD International Conference onKnowledge Discovery and Data Mining. New York, NY,USA: ACM, 2003: 79-88.
[68] Alon J, Sclaroff S, Kollios G, et al. Discovering clustersin motion time-series data//Proceedings of IEEE ComputerSociety Conference on Computer Vision and PatternRecognition (CVPR'03). Washington, DC, USA: IEEEComputer Society, 2003: 375-381.
[69] Ketterlin A. Clustering sequences of complex objects//Proceeding of the 3rd Interernational Conference onKnowledge Discovery and Data Mining (KDD-97).AAAI Press, 1997: 215-218.
[70] Agrawal R, Psaila G, Wimmers E L, et al. Queryingshapes of histories//Proceedings of the 21th InternationalConference on Very Large Data Bases. San Francisco,CA, USA: Morgan Kaufmann Publishers Inc., 1995:502-514.
[71] Kim S W, Yoon J, Park S, et al. Shape-based retrieval ofsimilar subsequences in time-series databases//Proceedingsof the 2002 ACM Symposium on Applied Computing.New York, NY, USA: ACM, 2002: 438-445.