PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (8): 1355-1370.doi: 10.18306/dlkxjz.2021.08.009
• Articles • Previous Articles Next Articles
JIANG Li(), YU Jia*(
), WEN Jiahong, TANG Jin, QI Manfei, WANG Luyang, ZHANG Min
Received:
2020-11-03
Revised:
2021-04-18
Online:
2021-08-28
Published:
2021-10-28
Contact:
YU Jia
E-mail:jiangli181995@hotmail.com;yujia@shnu.edu.cn
Supported by:
JIANG Li, YU Jia, WEN Jiahong, TANG Jin, QI Manfei, WANG Luyang, ZHANG Min. Risk assessment of extreme flood in the north bank of the Hangzhou Bay under land use change scenarios[J].PROGRESS IN GEOGRAPHY, 2021, 40(8): 1355-1370.
Tab.1
Main parameter setting and calibration results of the SLEUTH model
控制参数 | 粗校正 | 精校正 | 终校正 | 最优控制系数 | |||||
---|---|---|---|---|---|---|---|---|---|
蒙特卡洛迭代次数=5 | 蒙特卡洛迭代次数=8 | 蒙特卡洛迭代次数=10 | |||||||
范围 | 步长 | 范围 | 步长 | 范围 | 步长 | ||||
扩散系数 | 0~100 | 20 | 0~20 | 4 | 0~5 | 1 | 1 | ||
繁衍系数 | 0~100 | 20 | 1~20 | 4 | 1~17 | 4 | 4 | ||
蔓延系数 | 0~100 | 20 | 0~20 | 4 | 0~5 | 1 | 1 | ||
坡度阻碍系数 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | ||
道路引力系数 | 0~100 | 20 | 1~80 | 8 | 1~20 | 6 | 19 | ||
Lee-Sallee形状指数 | 0.48 | 0.48 | 0.48 |
Tab.3
Comparison between overlaps of simulated land use area in 2050 and planning area in 2035 in Fengxian District, Shanghai
土地利用 类型 | 2050年模拟 面积/km2 | 2035年规划 面积/km2 | 叠合度/% |
---|---|---|---|
农业用地 | 438.6276 | 476.6760 | 92.02 |
工矿仓储用地 | 105.2388 | 75.1356 | 71.40 |
公共设施用地 | 45.4860 | 31.6044 | 69.48 |
交通用地 | 22.1328 | 55.8324 | 39.64 |
居住用地 | 38.7576 | 44.6148 | 86.87 |
其他用地 | 49.6224 | 16.0452 | 32.33 |
Tab.4
Exposed assets of different land use types for different return periods under the current scenario
土地利用 类型 | 不同重现期下土地利用暴露资产/亿元 | |||
---|---|---|---|---|
200 a | 500 a | 1000 a | 5000 a | |
居住用地 | 81 | 133 | 204 | 517 |
工业用地 | 144 | 232 | 387 | 672 |
交通用地 | 42 | 68 | 115 | 245 |
公共设施用地 | 79 | 112 | 156 | 372 |
农业用地 | 306 | 471 | 682 | 1751 |
其他用地 | 73 | 100 | 133 | 289 |
合计 | 725 | 1116 | 1677 | 3846 |
Tab.5
Asset losses of different land use types for different return periods under the current scenario
土地利用 类型 | 不同重现期下土地利用资产损失/亿元 | |||
---|---|---|---|---|
200 a | 500 a | 1000 a | 5000 a | |
居住用地 | 4.7 | 9.0 | 14.3 | 38.4 |
工业用地 | 5.6 | 9.7 | 15.9 | 36.2 |
交通用地 | 0.6 | 1.1 | 1.9 | 4.9 |
公共设施用地 | 6.0 | 8.7 | 11.6 | 24.8 |
农业用地 | 37.5 | 76.8 | 121.5 | 321.1 |
其他用地 | 2.9 | 4.6 | 6.1 | 12.4 |
合计 | 57.2 | 109.9 | 171.3 | 437.9 |
Tab.6
Exposed assets of different land use types under various storm surge flood scenarios of different return periods in the future
土地利用 类型 | 未来不同重现期下土地利用暴露资产/亿元 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RCP4.5 | RCP8.5 | RCP8.5H | ||||||||||||
200 a | 500 a | 1000 a | 5000 a | 200 a | 500 a | 1000 a | 5000 a | 200 a | 500 a | 1000 a | 5000 a | |||
居住用地 | 294 | 528 | 849 | 1700 | 310 | 555 | 907 | 1739 | 347 | 603 | 1001 | 1782 | ||
工业用地 | 615 | 1083 | 1660 | 2321 | 654 | 1141 | 1704 | 2377 | 691 | 1274 | 1787 | 2417 | ||
交通用地 | 160 | 275 | 447 | 769 | 167 | 293 | 471 | 786 | 179 | 329 | 504 | 798 | ||
公共设施用地 | 272 | 388 | 615 | 1207 | 283 | 408 | 646 | 1237 | 302 | 456 | 698 | 1260 | ||
农业用地 | 1188 | 1889 | 3005 | 6434 | 1258 | 1987 | 3206 | 6673 | 1354 | 2208 | 3514 | 6925 | ||
其他用地 | 246 | 343 | 488 | 950 | 255 | 354 | 511 | 980 | 266 | 379 | 549 | 1013 | ||
合计 | 2774 | 4506 | 7065 | 13381 | 2926 | 4738 | 7445 | 13792 | 3139 | 5249 | 8053 | 14196 |
Tab.7
Asset losses of different land use types under various storm surge flood scenarios of different return periods in the future
土地利用 类型 | 不同重现期下土地利用资产损失/亿元 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RCP4.5 | RCP8.5 | RCP8.5H | ||||||||||||
200 a | 500 a | 1000 a | 5000 a | 200 a | 500 a | 1000 a | 5000 a | 200 a | 500 a | 1000 a | 5000 a | |||
居住用地 | 18 | 36 | 58 | 142 | 19 | 37 | 61 | 150 | 22 | 41 | 67 | 160 | ||
工业用地 | 25 | 44 | 71 | 144 | 26 | 47 | 75 | 151 | 29 | 53 | 81 | 159 | ||
交通用地 | 2 | 4 | 7 | 18 | 2 | 5 | 8 | 19 | 3 | 5 | 9 | 20 | ||
公共设施用地 | 21 | 30 | 42 | 88 | 21 | 31 | 43 | 92 | 23 | 33 | 46 | 97 | ||
农业用地 | 160 | 316 | 518 | 1262 | 173 | 334 | 552 | 1334 | 195 | 373 | 606 | 1427 | ||
其他用地 | 10 | 15 | 20 | 41 | 10 | 15 | 21 | 43 | 11 | 16 | 23 | 46 | ||
合计 | 236 | 445 | 716 | 1695 | 251 | 469 | 760 | 1789 | 283 | 521 | 832 | 1909 |
[1] | Diaz D B. Estimating global damages from sea level rise with the Coastal Impact and Adaptation Model (CIAM)[J]. Climatic Change, 2016,137(1/2):143-156. |
[2] | Wahl T, Haigh I D, Nicholls R J, et al. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis[J]. Nature Communications, 2017,8:16075. doi: 10.1038/ncomms16075. |
[3] | Chen X Y, Zhang X B, Church J A, et al. The increasing rate of global mean sea-level rise during 1993-2014[J]. Nature Climate Change, 2017,7(7):492-495. |
[4] | Nerem R S, Beckley B D, Fasullo J T, et al. Climate-change-driven accelerated sea-level rise detected in the altimeter era[J]. PNAS, 2018,115(9):2022-2025. |
[5] | Wong P P, Losada I J, Gattuso J P, et al. Coastal systems and low-lying areas [M]. Cambridge, UK: Cambridge University Press, 2014: 361-409. |
[6] | Seto K C, Fragkias M, Güneralp B, et al. A meta-analysis of global urban land expansion[J]. PLoS One, 2011,6(8):e23777. doi: 10.1371/journal.pone.0023777. |
[7] | 方佳毅, 史培军. 全球气候变化背景下海岸洪水灾害风险评估研究进展与展望[J]. 地理科学进展, 2019,38(5):625-636. |
[ Fang Jiayi, Shi Peijun. A review of coastal flood risk research under global climate change. Progress in Geography, 2019,38(5):625-636. ] | |
[8] | Cazenave A, Dieng H B, Meyssignac B, et al. The rate of sea-level rise[J]. Nature Climate Change, 2014,4(5):358-361. |
[9] | Rahmstorf S. Rising hazard of storm-surge flooding[J]. PNAS, 2017,114(45):11806-11808. |
[10] | Pesaresi M, Ehrlich D, Kemper T, et al. Atlas of the human planet 2017: Global exposure to natural hazards [R/OL]. EUR 28556 EN. Brussels, Belgium: European Commission, 2017. doi: 10.2760/19837. |
[11] | Brown S, Nicholls R J, Lowe J A, et al. Spatial variations of sea-level rise and impacts: An application of DIVA[J]. Climatic Change, 2016,134:403-416. |
[12] | Aerts J C J H, Emanuel K, et al. Evaluating flood resilience strategies for coastal megacities[J]. Science, 2014,344:473-475. |
[13] | Aerts J C J H, Lin N, Botzen W, et al. Low-probability flood risk modeling for New York City[J]. Risk Analysis, 2013,33(5):772-788. |
[14] | Hallegatte S, Green C, Nicholls R J, et al. Future flood losses in major coastal cities[J]. Nature Climate Change, 2013,3(9):802-806. |
[15] | Lin N, Shullman E. Dealing with hurricane surge flooding in a changing environment: Part I. Risk assessment considering storm climatology change, sea level rise, and coastal development[J]. Stochastic Environmental Research and Risk Assessment, 2017,31:2379-2400. |
[16] | Wang J, Gao W, Xu S Y, et al. Evaluation of the combined risk of sea level rise, land subsidence, and storm surges on the coastal areas of Shanghai, China[J]. Climatic Change, 2012,115(3/4):537-558. |
[17] | Li M Y, Wu W, Wang J, et al. Simulating and mapping the risk of surge floods in multiple typhoon scenarios: A case study of Yuhuan County, Zhejiang Province, China[J]. Stochastic Environmental Research and Risk Assessment, 2017,31(3):645-659. |
[18] | 施雅风, 朱季文, 谢志仁, 等. 长江三角洲及毗连地区海平面上升影响预测与防治对策[J]. 中国科学(地球科学), 2000,30(3):225-232. |
[ Shi Yafeng, Zhu Jiwen, Xie Zhiren, et al. Sea level rise influence forecast and prevention and cure countermeasure in the Yangtze River Delta and near region. Scientia Sinica Terrae, 2000,30(3):225-232. ] | |
[19] | Ke Q. Flood risk analysis for metropolitan areas: A case study for Shanghai [D]. Delft, Netherlands: Delft University of Technology, 2014. |
[20] | Ke Q, Jonkman S N, van Gelder P H A J M, et al. Frequency analysis of storm-surge-induced flooding for the Huangpu River in Shanghai, China[J]. Journal of Marine Science and Engineering, 2018,6(2):70. doi: 10.3390/jmse6020070. |
[21] | 王璐阳, 张敏, 温家洪, 等. 上海复合极端风暴洪水淹没模拟[J]. 水科学进展, 2019,30(4):546-555. |
[ Wang Luyang, Zhang Min, Wen Jiahong, et al. Simulation of extreme compound coastal flooding in Shanghai. Advances in Water Science, 2019,30(4):546-555. ] | |
[22] | 单薪蒙. 上海住宅建筑和室内财产的极端风暴洪水风险与适应措施研究[D]. 上海: 上海师范大学, 2020. |
[ Shan Xinmeng. Scenario-based extreme storm flood risk and adaptation measures of residential buildings and household properties in Shanghai. ShanghaiChina: Shanghai Normal University, 2020. ] | |
[23] | Sweet W V, Kopp R E, Weaver C P, et al. Global and regional sea level rise scenarios for the United States [R]. NOAA Technical Report NOS CO-OPS 083. Silver Spring, USA: National Oceanic and Atmospheric Administration, 2017. |
[24] | Hinkel J, Jaeger C, Nicholls R J, et al. Sea-level rise scenarios and coastal risk management[J]. Nature Climate Change, 2015,5(3):188-190. |
[25] | Shan X M, Wen J H, Zhang M, et al. Scenario-based extreme flood risk of residential buildings and household properties in Shanghai[J]. Sustainability, 2019,11(11):3202. doi: 10.3390/su11113202. |
[26] | 刘钦政, 石先武, 国志兴, 等. 风暴潮灾害风险评估和区划技术导则 [M]. 北京: 海洋出版社, 2015. |
[ Liu Qinzheng, Shi Xianwu, Guo Zhixing, et al. Guideline for risk assessment and zoning of storm surge disaster. Beijing, China: China Ocean Press, 2015. ] | |
[27] | de Moel H, Aerts J C J H, Koomen E. Development of flood exposure in the Netherlands during the 20th and 21st century[J]. Global Environmental Change, 2011,21(2):620-627. |
[28] | Jongman B, Ward P J, Aerts J C J H. Global exposure to river and coastal flooding: Long term trends and changes[J]. Global Environmental Change, 2012,22:823-835. |
[29] | 殷杰, 尹占娥, 于大鹏, 等. 风暴洪水主要承灾体脆弱性分析: 黄浦江案例[J]. 地理科学, 2012,32(9):1155-1160. |
[ Yin Jie, Yin Zhan'e, Yu Dapeng, et al. Vulnerability analysis for storm induced flood: A case study of Huangpu River Basin. Scientia Geographica Sinica, 2012,32(9):1155-1160. ] | |
[30] | Budiyono Y, Aerts J, Brinkman J J, et al. Flood risk assessment for delta mega-cities: A case study of Jakarta[J]. Natural Hazards, 2015,75(1):389-413. |
[31] | 殷杰. 中国沿海台风风暴潮灾害风险评估研究[D]. 上海: 华东师范大学, 2011. |
[ Yin Jie. Study on risk assessment of typhoon storm surge disaster in coastal China. ShanghaiChina: East China Normal University, 2011. ] | |
[32] | 李伟峰, 陈求稳, 毛劲乔. 北京奥运村洪水淹没风险模型研究[J]. 科学通报, 2009,54(3):321-328. |
[ Li Wei-feng, Chen Qiuwen, Mao Jinqiao. Study on flood inundation risk model of Beijing Olympic Village. Chinese Science Bulletin, 2009,54(3):321-328. ] | |
[33] | Muis S, Güneralp B, Jongman B, et al. Flood risk and adaptation strategies under climate change and urban expansion: A probabilistic analysis using global data[J]. Science of the Total Environment, 2015,538:445-457. |
[34] | Hinkel J, Lincke D, Vafeidis A T, et al. Coastal flood damage and adaptation costs under 21st century sea-level rise[J]. PNAS, 2014,111(9):3292-3297. |
[35] | 蔡玉梅, 刘彦随, 宇振荣, 等. 土地利用变化空间模拟的进展: CLUE-S模型及其应用[J]. 地理科学进展, 2004,23(4):63-71, 115. |
[ Cai Yumei, Liu Yansui, Yu Zhenrong, et al. Progress in spatial simulation of land use change: CLUE-S model and its application. Progress in Geography, 2004,23(4):63-71, 115. ] | |
[36] | 黄庆旭, 史培军, 何春阳, 等. 中国北方未来干旱化情景下的土地利用变化模拟[J]. 地理学报, 2006,61(12):1299-1310. |
[ Huang Qingxu, Shi Peijun, He Chunyang, et al. Modelling land use change dynamics under different aridification scenarios in northern China. Acta Geographica Sinica, 2006,61(12):1299-1310. ] | |
[37] | 韩会然, 杨成凤, 宋金平. 北京市土地利用空间格局演化模拟及预测[J]. 地理科学进展, 2015,34(8):976-986. |
[ Han Huiran, Yang Chengfeng, Song Jinping. Simulation and projection of land-use change in Beijing under different scenarios. Progress in Geography, 2015,34(8):976-986. ] | |
[38] | 吴健生, 冯喆, 高阳, 等. CLUE-S模型应用进展与改进研究[J]. 地理科学进展, 2012,31(1):3-10. |
[ Wu Jian-sheng, Feng Zhe, Gao Yang, et al. Recent progresses on the application and improvement of the CLUE-S Model. Progress in Geography, 2012,31(1):3-10. ] | |
[39] | 戴尔阜, 马良. 土地变化模型方法综述[J]. 地理科学进展, 2018,37(1):152-162. |
[ Dai Erfu, Ma Liang. Review on land change modeling approaches. Progress in Geography, 2018,37(1):152-162. ] | |
[40] | 涂小松, 濮励杰, 吴骏, 等. 基于SLEUTH模型的无锡市区土地利用变化情景模拟[J]. 长江流域资源与环境, 2008,17(6):860-865. |
[ Tu Xiaosong, Pu Lijie, Wu Jun, et al. Using SLUETH model to simulate land use change scenarios in Wuxi District. Resources and Environment in the Yangtze Basin, 2008,17(6):860-865. ] | |
[41] | Dietzel C, Clarke K C. Toward optimal calibration of the SLEUTH land use change model[J]. Transactions in GIS, 2007,11(1):29-45. |
[42] | 李志英, 刘涵妮, 田金欢, 等. 基于SLEUTH模型的滇池流域城市扩展模拟分析[J]. 长江流域资源与环境, 2014,23(10):1360-1366. |
[ Li Zhiying, Liu Hanni, Tian Jinhuan, et al. Simulation studies of urban growth in the Dianchi lake basin based on SLEUTH model. Resources and Environment in the Yangtze Basin, 2014,23(10):1360-1366. ] | |
[43] | 王丽妍. 生态空间质量约束下的城镇用地增长情景模拟: 以改进的SLEUTH模型为例[D]. 南京: 南京大学, 2016. |
[ Wang Liyan. Scenario simulation for urban land use growth under the constraint of ecological space quality: A case study of modified SLEUTH model. NanjingChina: Nanjing University, 2016. ] | |
[44] | 詹云军, 朱捷缘, 严岩. 基于元胞自动机的城市空间动态模拟[J]. 生态学报, 2017,37(14):4864-4872. |
[ Zhan Yunjun, Zhu Jieyuan, Yan Yan. Dynamic simulation of urban space based on the cellular automata model. Acta Ecologica Sinica, 2017,37(14):4864-4872. ] | |
[45] | 徐杰, 罗震东, 尹海伟, 等. 基于SLEUTH模型的昆山市城市扩展模拟研究[J]. 地理与地理信息科学, 2016,32(5):59-64. |
[ Xu Jie, Luo Zhendong, Yin Haiwei, et al. Simulation of urban expansion of Kunshan City based on SLEUTH model. Geography and Geo-information Science, 2016,32(5):59-64. ] | |
[46] | 朱飞鸽, 胡瀚文, 沈兴华, 等. 基于SLEUTH模型的上海城市增长预测[J]. 生态学杂志, 2011,30(9):2107-2114. |
[ Zhu Feige, Hu Hanwen, Shen Xinghua, et al. SLEUTH model-based prediction of urban growth of Shanghai. Chinese Journal of Ecology, 2011,30(9):2107-2114. ] | |
[47] | Clarke K C, Gaydos L J. Loose-coupling a cellular automaton model and GIS: Long-term urban growth prediction for San Francisco and Washington/Baltimore[J]. International Journal of Geographical Information Science, 1998,12(7):699-714. |
[48] | Akın A, Clarke K C, Berberoglu S. The impact of historical exclusion on the calibration of the SLEUTH urban growth model[J]. International Journal of Applied Earth Observation and Geoinformation, 2014,27:156-168. |
[49] | Ward P J, Jongman B, Kummu M, et al. Strong influence of El Niño Southern Oscillation on flood risk around the world[J]. PNAS, 2014,111(44):15659-15664. |
[50] | Bouwer L M, Bubeck P, Aerts J C J H. Changes in future flood risk due to climate and development in a Dutch polder area[J]. Global Environmental Change, 2010,20(3):463-471. |
[51] | Green C H. Coastal cities: Assets at risk and depth-damage curves [R]. London, UK: Middlesex University, 2010. |
[52] | Peduzzi P, Dao H, Herold C, et al. Assessing global exposure and vulnerability towards natural hazards: The disaster risk index[J]. Natural Hazards and Earth System Sciences, 2009,9(4):1149-1159. |
[53] | Nicholls R J, Hanson S, Herweijer C, et al. Ranking port cities with high exposure and vulnerability to climate extremes: Exposure estimates [M]. Paris, France: OECD Publishing, 2008. |
[54] | 李成帅, 杨建思, 田宝峰, 等. 四川芦山7.0级地震直接经济损失快速评估[J]. 自然灾害学报, 2013,22(3):9-17. |
[ Li Chengshuai, Yang Jiansi, Tian Baofeng, et al. Rapid assessment of direct economic loss caused by Ms 7.0 Lushan, Sichuan earthquake. Journal of Natural Disasters, 2013,22(3):9-17. ] | |
[55] | 国家统计局. 上海统计年鉴 [M]. 北京: 中国统计出版社, 2018. |
[ National Bureau of Statistics of China. Shanghai Statistics Yearbook. Beijing, China: China Statistics Press, 2018. ] | |
[56] | 姜彤, 赵晶, 曹丽格, 等. 共享社会经济路径下中国及分省经济变化预测[J]. 气候变化研究进展, 2018,14(1):50-58. |
[ Jiang Tong, Zhao Jing, Cao Lige, et al. Projection of national and provincial economy under the shared socioeconomic pathways in China. Climate Change Research, 2018,14(1):50-58. ] | |
[57] | 田义超, 任志远. 基于CLUE-S模型的黄土台塬区土地利用变化模拟: 以陕西省咸阳台塬区为例[J]. 地理科学进展, 2012,31(9):1224-1234. |
[ Tian Yichao, Ren Zhiyuan. Land use change simulations in loess hilly areas based on CLUE-S Model: A case study in Xianyang loess tablel and areas of Shaanxi Province. Progress in Geography, 2012,31(9):1224-1234. ] | |
[58] | Feinstein A R, Cicchetti D V. High agreement but low Kappa: I. The problems of two paradoxes[J]. Journal of Clinical Epidemiology, 1990,43(6):543-549. |
[1] | NING Jiachen, WU Jidong, TANG Rumei, CHEN Xiaojuan, XU Yingjun. Multi-hazard risk assessment methods: A comparative analysis based on five authoritative reports [J]. PROGRESS IN GEOGRAPHY, 2023, 42(1): 197-208. |
[2] | HE Peiting, LIU Danyuan, LU Siyan, HE Xiaoyu, LI Hua, YANG Liu, LIN Jinyao. Influencing factors of waterlogging and waterlogging risks in Shenzhen City based on MAXENT [J]. PROGRESS IN GEOGRAPHY, 2022, 41(10): 1868-1881. |
[3] | JIAO Qingyu, CHEN Xinfeng, ZHENG Zhigang, BAI Yiqin, LIU Yansi, ZHANG Zhengjuan, SUN Longni. Dynamic path planning of unmanned aerial vehicle based on crowd density prediction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1516-1527. |
[4] | WANG Jun, TAN Jinkai. Understanding the climate change and disaster risks in coastal areas of China to develop coping strategies [J]. PROGRESS IN GEOGRAPHY, 2021, 40(5): 870-882. |
[5] | MA Heng, ZHANG Gangfeng, SHI Peijun. Advances and prospects of livestock snow disaster mechanism research and risk assessment [J]. PROGRESS IN GEOGRAPHY, 2021, 40(12): 2116-2129. |
[6] | CHEN Xi, LI Ning, HUANG Chengfang, LIU Jiawei, ZHANG Zhengtao. Projection of heatwaves by the combined impact of humidity and temperature in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 36-44. |
[7] | Hui WANG, Changchun SONG. Regional ecological risk assessment of wetlands in the Sanjiang Plain [J]. PROGRESS IN GEOGRAPHY, 2019, 38(6): 872-882. |
[8] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[9] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[10] | Ning ZHANG, Dawei WANG. Drug-related crime risk assessment and predictive policing based on risk terrain modeling [J]. PROGRESS IN GEOGRAPHY, 2018, 37(8): 1131-1139. |
[11] | Hui MENG, Chunyan LI, Ruolin ZHANG, Yamin LI. Risk assessment of geological hazards for counties and districts of the Beijing-Tianjin-Hebei region [J]. PROGRESS IN GEOGRAPHY, 2017, 36(3): 327-334. |
[12] | Haibo HU. Research progress of surging urban flood risks [J]. PROGRESS IN GEOGRAPHY, 2016, 35(9): 1075-1086. |
[13] | Peng CUI, Qiang ZOU. Theory and method of risk assessment and risk management of debris flows and flash floods [J]. PROGRESS IN GEOGRAPHY, 2016, 35(2): 137-147. |
[14] | FANG Weihua, LIN Wei. A review on typhoon wind field modeling for disaster risk assessment [J]. PROGRESS IN GEOGRAPHY, 2013, 32(6): 852-867. |
[15] | LI Ying, FANG Weihua. Review on modeling of tropical cyclone rainfall [J]. PROGRESS IN GEOGRAPHY, 2013, 32(4): 606-617. |
|