PROGRESS IN GEOGRAPHY ›› 2019, Vol. 38 ›› Issue (8): 1196-1205.doi: 10.18306/dlkxjz.2019.08.008
• Special Column: Watershed Geography • Previous Articles Next Articles
MA Mingguo1,2,TANG Xuguang1,2,HAN Xujun1,2,SHI Weiyu1,2,SONG Lisheng1,2,HUANG Jing1,2
Received:
2018-08-09
Revised:
2019-04-27
Online:
2019-08-25
Published:
2019-08-25
Supported by:
MA Mingguo,TANG Xuguang,HAN Xujun,SHI Weiyu,SONG Lisheng,HUANG Jing. Research progress and prospect of observation and simulation of carbon cycle in the karst areas of Southwest China[J].PROGRESS IN GEOGRAPHY, 2019, 38(8): 1196-1205.
Tab. 1
Comparison of model characteristics of carbon cycle
模型类型 | 代表性模型 | 优点 | 缺陷 | 参考文献 |
---|---|---|---|---|
地球化学过程模型 | CENTURY模型 | 综合考虑生物、土壤、水分,结合气候、人类活动、土壤性状等驱动因子 | 难以模拟短时间尺度内的极端气候,缺乏对光合作用过程的精细化模拟 | Parton et al, 1993 Molina et al, 1997 |
Biome-BGC模型 | 模拟植被的动态变化与气候变化的响应 | 未考虑干扰因子,不适用于大尺度范围 | Running et al, 1993 Thornton et al, 2002 | |
BEPS模型 | 适用于大尺度范围,不同类型的数据兼容性强 | 未考虑各种扰动因子对森林生态系统生产力的影响 | Stéphanie et al, 2006 Wang et al, 2014 | |
InTEC模型 | 同时考虑气候、林分年龄及森林扰动对碳循环的影响,时间分辨率为30 d | 未考虑土壤湿度变化造成植被冠层传导率对碳循环的影响 | Chen et al, 2000 Ju et al, 2007 | |
DLEM模型 | 综合考虑地球化学过程和植被动态过程,时间分辨率为1 d | 模型所需参数类型多,限制其广泛的应用 | Chen et al, 2000 Xu et al, 2010 | |
生物过程模型 | CASA模型 | 侧重考虑光合作用过程,能通过光合有效辐射和光能利用率等估算植被生产力 | 未考虑散射辐射、直接辐射等其他因素而导致模型在阴天时存在低估的现象 | Potter et al, 1993 Li et al, 2012 |
MPASS模型 | 侧重于植被冠层辐射传输和水分传输等过程,用于模拟全球潜在植被的分布状况 | 该模型主要依据于北美与欧洲的气候和植被的分布关系所创建,用于我国西南岩溶区会有一定的误差 | Neilsonet al, 2010 赵茂盛等, 2002 | |
陆面物理过程模型 | LPJ-GUESS模型 | 可以模拟多种尺度的陆地生态系统的结构和功能 | 未涉及氮循环、人类活动及土地利用变化的干扰 | Smith et al, 2001 Sitch et al, 2003 |
AVIM模型 | 能够较好的模拟区域尺度陆地生态系统能量传输过程 | 忽略植被类型间的竞争关系以及植被季节演替过程中对模型参数的影响 | Ji et al 1995 | |
SiB系列模型 | 重点考虑了生物物理反馈过程CO2,对温度、蒸散发及能量平衡的模拟效果较好 | 忽略了土壤呼吸、土壤水分、局部小气候以及植被叶片到冠层的尺度变化 | Sellers, 1985 Hanan et al, 2005 | |
IBIS模型 | 综合考虑了地球物理、化学和生物过程,能够耦合大气环流模式,能够模拟复杂的、时间跨度大的碳循环过程,在区域尺度和全球尺度都能得到广泛的应用 | 不适用于模拟精确的生态学过程,其温度函数和呼吸系数容易造成计算结果的误差 | Kuchariket al, 2000 Yuan et al, 2014 Christopher et al, 2006 |
1 |
董泰锋, 蒙继华, 吴炳方 , 等. 2011. 光合有效辐射(PAR)估算的研究进展[J]. 地理科学进展, 30(9):1125-1134.
doi: 10.11820/dlkxjz.2011.09.007 |
[ Dong T F, Meng J H, Wu B F , et al. 2011. Overview on the estimation of photosynthetically active radiation. Progress in Geography, 30(9):1125-1134. ]
doi: 10.11820/dlkxjz.2011.09.007 |
|
2 | 方精云, 朱江玲, 王少鹏 , 等. 2011. 全球变暖、碳排放及不确定性[J]. 中国科学(地球科学), 41(10):1385-1395. |
[ Fang J Y, Zhu J L, Wang S P , et al. 2011. Global warming, hunman-induced carbon emmissions, and their uncertainties. Science China (Earth Sciences), 41(10):1385-1395. ] | |
3 | 李新, 摆玉龙 . 2010. 顺序数据同化的 Bayes 滤波框架[J]. 地球科学进展, 25(5):515-522. |
[ Li X, Bai Y L . 2010. A Bayesian filter framework for sequential data assimilation. Advances in Earth Science, 25(5):515-522. ] | |
4 | 刘再华 . 2001. 一种特殊的碳酸盐沉积及其环境意义: “贵州乌江渡水电站灌浆帷幕老化问题的研究”中的发现[J]. 地学前缘, 8(1):197-201. |
[ Liu Z H . 2001. A special kind of carbonate deposit and its environmental significance- findings from the study "on the aging of cement-grouting curtains at Wujiangdu hydropower station of Guizhou". Earth Science Frontiers, 8(1):197-201. ] | |
5 | 刘再华 . 2012. 岩石风化碳汇研究的最新进展和展望[J]. 科学通报, 57(2):95-102. |
[ Liu Z H . 2012. New progress and prospects in the study of rock-weathering-related carbon sinks. Chinese Science Bulletin, 57(2):95-102. ] | |
6 |
罗维均, 王世杰, 刘秀明 . 2014. 喀斯特洞穴系统碳循环的烟囱效应研究现状及展望[J]. 地球科学进展, 29(12):1333-1340.
doi: 10.11867/j.issn.1001-8166.2014.12.1333 |
[ Luo W J, Wang S J, Liu X M . 2014. Research progresses and prospect of chimney effect about carbon cycle in the karst cave system. Advances in Earth Science, 29(12):1333-1340. ]
doi: 10.11867/j.issn.1001-8166.2014.12.1333 |
|
7 | 裴建国, 章程, 张强 , 等. 2012. 典型岩溶水系统碳汇通量估算[J]. 岩矿测试, 31(5):884-888. |
[ Pei J G, Zhang C, Zhang Q , et al. 2012. Flux estimation of carbon sink in typical karst water systems. Rock and Mineral Analysis, 31(5):884-888. ] | |
8 |
蒲俊兵, 蒋忠诚, 袁道先 , 等. 2015. 岩石风化碳汇研究进展: 基于IPCC第五次气候变化评估报告的分析[J]. 地球科学进展, 30(10):1081-1090.
doi: 10.11867/j.issn.1001-8166.2015.10.1081. |
[ Pu J B, Jiang Z C, Yuan D X , et al. 2015. Some opinions on rock-weathering-related carbon sinks from the IPCC fifth assessment report. Advances in Earth Science, 30(10):1081-1090. ]
doi: 10.11867/j.issn.1001-8166.2015.10.1081. |
|
9 | 任扬航, 马明国, 张霞 , 等. 2016. 典型喀斯特石漠化地区植被动态监测与土地利用变化的影响分析[J]. 中国岩溶, 35(5):550-556. |
[ Ren Y H, Ma M G, Zhang X , et al. 2016. Dynamic monitoring of vegetation and the impact of land use/cover change in the topical karst rocky desertification areas. Carsologica Sinica, 35(5):550-556. ] | |
10 | 王世杰, 刘再华, 倪健 , 等. 2017. 中国南方喀斯特地区碳循环研究进展[J]. 地球与环境, 45(1):2-9. |
[ Wang S J, Liu Z H, Ni J , et al. 2017. A review of research progress and future prospective of carbon cycle in karst area of South China. Earth and Environment, 45(1):2-9. ] | |
11 |
谢馨瑶, 李爱农, 靳华安 . 2018. 大尺度森林碳循环过程模拟模型综述[J]. 生态学报, 38(1):41-54.
doi: 10.5846/stxb201612122550 |
[ Xie X Y, Li A N, Jin H A . 2018. The simulation models of the forest carbon cycle on a large scale: A review. Acta Ecologica Sinica, 38(1):41-54. ]
doi: 10.5846/stxb201612122550 |
|
12 | 于东升, 史学正, 孙维侠 , 等. 2005. 基于1:100万土壤数据库的中国土壤有机碳密度及储量研究[J]. 应用生态学报, 16(12):2279-2283. |
[ Yu D S, Shi X Z, Sun W X , et al. 2005. Estimation of China soil organic carbon storage and density based on 1:1000000 soil database. Chinese Journal of Applied Ecology, 16(12):2279-2283. ] | |
13 |
袁道先 . 1999. “岩溶作用与碳循环”研究进展[J]. 地球科学进展, 14(5):425-432.
doi: 10.3321/j.issn:1001-8166.1999.05.001 |
[ Yuan D X . 1999. Progress in the study on karst processes and carbon cycle. Advance in Earth Sciences, 14(5):425-432. ]
doi: 10.3321/j.issn:1001-8166.1999.05.001 |
|
14 | 袁道先, 蒋勇军, 沈立成 , 等. 2016. 现代岩溶学 [M]. 北京: 科学出版社. |
[ Yuan D X, Jiang Y J, Shen L C , et al. 2016. Modern Karstology. Beijing, China: Science Press. ] | |
15 | 赵茂盛, Neilson R P, 延晓冬 , 等. 2002. 气候变化对中国植被可能影响的模拟[J]. 地理学报, 57(1):28-38. |
[ Zhao M S, Neilson R P, Yan X D , et al. 2002. Modelling the vegetation of China under changing climate. Acta Geographica Sinica, 57(1):28-38. ] | |
16 | Bourges F, Genthon P, Genty D , et al. 2012. Comment on "Carbon uptake by karsts in the Houzhai basin, southwest China" by Junhua Yan et al. |
[J]. Journal of Geophysical Research, 117, G03006. doi: 10.1029/2012JG001937. | |
17 | Braswell B H, Sacks W J, Linder E , et al. 2005. Estimating diurnal to annual ecosystem parameters by synjournal of a carbon flux model with eddy covariance net ecosystem exchange observations[J]. Global Change Biology, 11:335-355. |
18 | Cao J H, Yuan D X, Groves C , et al. 2012. Carbon fluxes and sinks: The consumption of atmospheric and soil CO2 by carbonate rock dissolution[J]. Acta Geologica Sinica (English Edition), 86(4):963-972. |
19 | Chen W, Chen J, Cihlar J . 2000. An integrated terrestrial ecosystem carbon-budget model based on changes in disturbance, climate, and atmospheric chemistry[J]. Ecological Modelling, 135(1):55-79. |
20 | Christopher J K, Carol C B, Mustapha E M , et al. 2006. A multiyear evaluation of a dynamic global vegetation model at three AmeriFlux forest sites: Vegetation structure, phenology, soil temperature, and CO2 and H2O vapor exchange[J]. Ecological Modelling, 196(1-2):1-31. |
21 | Du WY, Liu Q, Jiang Y , et al. 2014. Response of carbon sink dynamic behaviors to river flood in karst area: A case study in the Li River of Guilin[J]. Advanced Research on Material Engineering, Chemistry, Bioinformatics III, 830:353-362. |
22 | Ferlan M, Alberti G, Eler K , et al. 2011. Comparing carbon fluxes between different stages of secondary succession of a karst grassland[J]. Agriculture Ecosystems & Environment, 140(1-2):199-207. |
23 | Florea L J . 2013. Isotopes of carbon in a karst aquifer of the cumberland plateau of Kentucky, USA[J]. Acta Carsologica, 42(2-3):277-289. |
24 | Frolking S E, Bubier J L, Moore T R , et al. 1998. Relationship between ecosystem productivity and photosynthetically active radiation for northern peatlands[J]. Global Biogeochemical Cycles, 12(1):115-126. |
25 | Gamon J A, Huemmrich K F, Peddle D R , et al. 2004. Remote sensing in BOREAS: Lessons learned[J]. Remote Sensing of Environment, 89(1):139-162. |
26 | Goulden M L, Munger J W, Fan S M , et al. 1996. Measurements of carbon sequestration by long-term eddy covariance: Methods and a critical evaluation of the accuracy[J]. Global Change Biology, 2(3):169-182. |
27 | Hagedorn B, Cartwright I . 2009. Climatic and lithologic controls on the temporal and spatial variability of CO2 consumption via chemical weathering: An example from the Australian Victorian[J]. Chemical Geology, 260:234-253. |
28 | Hanan N P, Berry J A, Verma S B , et al. 2005. Testing a model of CO2, water and energy exchange in Great Plains tallgrass prairie and wheat ecosystems[J]. Agricultural and Forest Meteorology, 131(3-4):162-179. |
29 | He M Z, Zhou Y L, Liu G H, et al. 2010. Validation of MODIS gross primary productivity for a subtropical coniferous plantation in southern China [C]. 18th International Conference on Geoinformatics. Beijing, China:1689-1693. |
30 | Hilker T, Coops N C, Wulder M A , et al. 2008. The use of remote sensing in light use efficiency based models of gross primary production: A review of current status and future requirements[J]. Science of the Total Environment, 404(2):411-423. |
31 | Hui D, Luo Y, Katul G . 2003. Partitioning interannual variability in net ecosystem exchange between climatic variability and functional change[J]. Tree Physiology, 23:433-442. |
32 | Inglima I, Alberti G, Bertolini T , et al. 2010. Precipitation pulses enhance respiration of, Mediterranean ecosystems: The balance between organic and inorganic components of increased soil CO2 efflux[J]. Global Change Biology, 15(5):1289-1301. |
33 | Ji J . 1995. A Climate-vegetation interaction model: Simulating physical and biological processes at the surface[J]. Journal of Biogeography, 22(2/3):445-451. |
34 | Jiang Z C, Yuan D X . 1999. CO2 source-sink in karst processes in karst areas of China[J]. Episodes, 22(1):33-35. |
35 | Ju W M, Chen J M, Harvey D , et al. 2007. Future carbon balance of China forests under climate change and increasing CO2[J]. Journal of Environmental Management, 85(3):538-562. |
36 | Kucharik C J, Foley J A, Delire C , et al. 2000. Testing the performance of a dynamic global ecosystem model: Water Balance, carbon balance and vegetation structure[J]. Global Biogeochemical Cycles, 14(3):795-825. |
37 | Li A N, Bian J H, Lei G B , et al. 2012. Estimating the maximal light use efficiency for different vegetation through the CASA model combined with time-series remote sensing data and ground measurements[J]. Remote Sensing, 4(12):3857-3876. |
38 | Li X . 2014. Characterization, controlling, and reduction of uncertainties in the modeling and observation of land-surface systems[J]. Science China Earth Sciences, 57(1):80-87. |
39 | Liu Z H, Dreybrodt W . 2015. Significance of the carbon sink produced by H2O-carbonate-CO2-aquatic phototroph interaction on land[J]. Science Bulletin, 60(2):182-191. |
40 | Liu Z H, Dreybrodt W, Wang H J . 2010. A new direction in effective accounting for the atmospheric CO2 budget: considering the combined action of carbonate dissolution, the global water cycle and photosynthetic uptake of DIC by aquatic organisms[J]. Earth-Science Reviews, 99(3):162-172. |
41 | Liu Z H, Groves C, Yuan D X , et al. 2004. South China karst aquifer storm-scale hydrogeochemistry[J]. Ground Water, 42(4):491-499 |
42 | Liu Z H, Li Q, Sun H , et al. 2006. Diurnal variations of hydrochemistry in a travertine-depositing stream at Baishuitai, Yunnan, SW China[J]. Aquatic Geochemistry, 12(2):103-121. |
43 | Marcolla B, Cescatti A, Manca G , et al. 2011. Climatic controls and ecosystem responses drive the inter-annual variability of the net ecosystem exchange of an alpine meadow[J]. Agricultural and Forest Meteorology, 151(9):1233-1243. |
44 | Mcculley R L, Burke I, Nelson J , et al. 2005. Regional patterns in carbon cycling across the great plains of North America[J]. Ecosystems, 8(1):106-121. |
45 | Medvigy D, Wofsy S C, Munger J W , et al. 2009. Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem demography model version 2[J]. Journal of Geophysical Research, 114:G01002. doi: 10.1029/2008JG000812. |
46 | Melnikov N B, O'Neill B C . 2006. Learning about the carbon cycle from global budget data[J]. Geophysical Research Letters, 33, L02705. doi: 10.1029/2005gl023935. |
47 | Molina J A E, Crocker G J, Grace P R , et al. 1997. Simulating trends in soil organic carbon in long-term experiments using the NCSOIL and NCSWAP models[J]. Geofisica Internacional, 81(S1-S2):91-107. |
48 | Neilson R P, Marks D . 2010. A global perspective of regional vegetation and hydrologic sensitivities from climatic change[J]. Journal of Vegetation Science, 5(5):715-730. |
49 | Parton W J, Scurlock J M O, Ojima D S , et al. 1993. Observations and modeling of biomass and soil organic matter dynamics for the grassland biome worldwide[J]. Global Biogeochem Cycles, 7(4):485-809. |
50 | Peng C H . 2000. From static biogeographical model to dynamic global vegetation model: A global perspective on modeling vegetation dynamics[J]. Ecological Modelling, 135:33-54. |
51 | Philippe G . 2002. Role of karstic dissolution in global carbon cycle[J]. Global and Planetary Change, 33(1):177-184. |
52 | Piao S, Fang J, Ciais P , et al. 2009. The carbon balance of terrestrial ecosystems in China[J]. Nature, 458:1009-1013. |
53 | Potter C S, Randerson J T, Field C B , et al. 1993. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 7(4):811-841. |
54 | Ramnarine R, Wagnerriddle C, Dunfield K E , et al. 2012. Contributions of carbonates to soil CO2 emissions[J]. Canadian Journal of Soil Science, 92:599-608. |
55 | Richardson A D, Hollinger D Y, Aber J D , et al. 2007. Environmental variation is directly responsible for short but not longterm variation in forest atmosphere carbon exchange[J]. Global Change Biology, 13(4):788-803. |
56 | Running S W, Hunt E R J . 1993. Generalization of a forest ecosystem process model for other biomes, BIOME-BGC, and an application for global-scale models [M]// Ehleringer J R, Field C B. Scaling physiological processes: Leaf to globe. San Diego, USA: Academic Press : 141-158. |
57 | Running S W, Thornton P E, Nemani R , et al. 2000. Global terrestrial gross and net primary productivity from the earth observing system[M]// Sala O E, Jackson R B, Mooney H A. Methods in ecosystem science. New York, USA: Springer-Verlag:44-57. |
58 | Sellers P J . 1985. Canopy reflectance, photosynjournal and transpiration[J]. International Journal of Remote Sensing, 6(8):1335-1372. |
59 | Sherwin C M, Baldini J U L . 2011. Cave air and hydrological controls on prior calcite precipitation and stalagmite growth rates: Implications for palaeoclimate reconstructions using speleothems[J]. Geochimica et Cosmochimica Acta, 75(14):3915-3929. |
60 | Sitch S, Smith B, Prentice I C , et al. 2003. Evaluation of ecosystem dynamic, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model[J]. Global Change Biology, 9:161-185. |
61 | Smith B, Prentice I C, Sykes M T . 2001. Representation of vegetation dynamics in the modelling of terrestrial ecosystems: Comparing two contrasting approaches within European climate space[J]. Global Ecology & Biogeography, 10(6):621-637. |
62 | Stéphanie Schmid, Zierl B, Bugmann H . 2006. Analyzing the carbon dynamics of central European forests: Comparison of Biome-BGC simulations with measurements[J]. Regional Environmental Change, 6(4):167-180. |
63 | Tarnocai C, Canadell J G, Schuur E A G , et al. 2009. Soil organic carbon pools in the northern circumpolar permafrost region[J]. Global Biogeochemical Cycles, 23: GB2023. doi: 10.1029/2008GB003327. |
64 | Thornton P E, Law B E, Gholz H L , et al. 2002. Modeling and measuring the effects of disturbance history and climate on carbon and water budgets in evergreen needleleaf forests[J]. Agricultural and Forest Meteorology, 113:185-222. |
65 | Tong X, Brandt M, Yue Y , et al. 2018. Increased vegetation growth and carbon stock in China karst via ecological engineering[J]. Nature Sustainability, 1:44-50. |
66 | Van Laake P E, Sanchez-Azofeifa G A . 2005. Mapping PAR using MODIS atmosphere products[J]. Remote Sensing of Environment, 94(4):554-563. |
67 | Wang P, Xie D, Zhou Y , et al. 2014. Estimation of net primary productivity using a process-based model in Gansu Province, Northwest China[J]. Environmental Earth Sciences, 71(2):647-658. |
68 | Wang X F, Ma M G, Li X , et al. 2013. Validation of MODIS GPP product at ten flux sites in northern China[J]. International Journal of Remote Sensing, 34(2):587-599. |
69 | Wang Y, Trudinger C M, Enting I G . 2009. A review of applications of model-data fusion to studies of terrestrial carbon fluxes at different scales[J]. Agricultural and Forest Meteorology, 149:829-1842. |
70 | Wu W X, Wang S Q, Xiao X M . 2008. Modeling gross primary production of a temperate grassland ecosystem in Inner Mongolia, China, using MODIS imagery and climate data[J]. Science in China Series D: Earth Sciences, 51(10):1501-1512. |
71 | Xiao J F, Ollinger S V, Frolking S , et al. 2014. Data-driven diagnostics of terrestrial carbon dynamics over North America[J]. Agricultural and Forest Meteorology, 197:142-157. |
72 | Xu T, White L, Hui D , et al. 2006. Probabilistic inversion of a terrestrial ecosystem model: Analysis of uncertainty in parameter estimation and model prediction[J]. Global Biogeochemical Cycles, 20, GB2007. doi: 10.1029/2005gb002468. |
73 | Xu X F, Tian H Q, Zhang C , et al. 2010. Attribution of spatial and temporal variations in terrestrial methane flux over North America[J]. Biogeosciences, 7(4):3637-3655. |
74 | Yamanaka M . 2012. Contributions of C3/C4 organic materials and carbonate rock to dissolved inorganic carbon in a karst groundwater system on Miyakojima Island, southwestern Japan[J]. Journal of Hydrology, 412:151-169. |
75 | Yan J H, Wang Y P, Zhou G Y , et al. 2011. Carbon uptake by karsts in the Houzhai Basin, Southwest China[J]. Journal of Geophysical Research: Biogeosciences, 116(G04012):1-10. doi: 10.1029/2011JG001686. |
76 | Yan J H, Wang Y P, Zhou G Y , et al. 2012. Reply to comment by francois bourges et al. on "carbon uptake by karsts in the Houzhai Basin, Southwest China[J]. Journal of Geophysical Research: Biogeosciences, 117(G03007):102. doi: 10.1029/2012JG002060. |
77 | Yang H, Ma M G, Flower RJ , et al. 2017. Preserve Precambrian fossil heritage from mining[J]. Nature Ecology & Evolution, 1(8):1048-1049. |
78 | Yang R, Liu Z H, Zeng C , et al. 2012. Response of epikarst hydrochemical changes to soil CO2 and weather conditions at Chenqi, Puding, SW China[J]. Journal of Hydrology, 468:151-158. |
79 | Yuan D X . 1997. The carbon cycle in karst[J]. Zeitschrift für Geomorphologie NF (Annual of Geomorphology), 108(S1):91-102. |
80 | Yuan D X, Zhang C. 2002. Karst processes and the carbon cycle: Final report of IGCP379 [M]. Beijing, China: Geological Publishing House. |
81 | Yuan Q Z, Wang S D, Dai E F , et al. 2014. Modeling net primary productivity of the terrestrial ecosystem in China from 1961 to 2005[J]. Journal of Geographical Sciences, 24(1):3-17. |
82 | Zhang C . 2011. Carbonate rock dissolution rates in different landuses and their carbon sink effect[J]. Chinese Science Bulletin, 56:3759-3765. |
83 | Zhang C, Yuan D, Cao J . 2005. Analysis on the environmental sensitivities of typical dynamic epikarst system at the Nongla monitoring site, Guangxi, China[J]. Environmental Geology, 47:615-619. |
84 | Zhang L, Sun R, Qiao C , et al. 2014. Variation of CO2 flux and its response to environmental factors in a maize agroecosystem in Zhangye irrigation area[J]. Chinese Journal of Ecology, 33(7):1722-1728. |
85 | Zhang Y Q, Yu Q, Jiang J , et al. 2008. Calibration of Terra/MODIS gross primary production over an irrigated cropland on the North China Plain and an alpine meadow on the Tibetan Plateau[J]. Global Change Biology, 14:757-767. |
86 | Zhao M, Zeng C, Liu Z , et al. 2010. Effect of different land use/land cover on karst hydrogeochemistry: A paired catchment study of Chenqi and Dengzhanhe, Puding, Guizhou, SW China[J]. Journal of Hydrology, 388:121-130. |
|