PROGRESS IN GEOGRAPHY ›› 2015, Vol. 34 ›› Issue (3): 340-353.doi: 10.11820/dlkxjz.2015.03.009
• Hydrology andWater Resource • Previous Articles Next Articles
Jingfeng LIU1, Minghu DING1,2,3, Cunde XIAO1,2
Received:
2014-09-01
Revised:
2015-02-01
Online:
2015-03-25
Published:
2015-03-25
Jingfeng LIU, Minghu DING, Cunde XIAO. Review on atmospheric water vapor isotopic observation and research: theory, method and modeling[J].PROGRESS IN GEOGRAPHY, 2015, 34(3): 340-353.
Tab.1
Kinetic fractionation effect of water isotopes during evaporation
动力分馏 | 引证 |
---|---|
1 水汽分子扩散 | |
(Merlivat, 1978) | |
式中: | |
D(H216O)/D(HD16O)=1.0164; D(H216O)/D(H218O)=1.0319 | (Cappa et al, 2003) |
式中: | |
2 陆地环境风洞实验—分馏富集系数 | (Vogt, 1976) |
式中:hd为蒸发表面以上10 m处相对湿度/%。 | |
3 海洋环境 | (Merlivat et al, 1979) |
无风海表(1<u<7 m/s): | |
风浪海表(u>7 m/s): | |
式中: |
Tab.2
Traditional methods for gathering water vapors
水汽收集方法 | 原理 | 优点 | 缺陷 |
---|---|---|---|
液氮冷阱冷凝 | 液氮等冷凝剂约-70℃环境下将水汽分子完全冷却凝结 | 足够低的温度使水分子完全凝结 | 需要持续供给液氮;冷阱极高的气流(>1 L·m-1)造成额外的分馏或冰晶流失;极端制冷剂造成CO2和O2凝结 |
Peltier制冷法 | 半导体制冷产生约-50℃的冷凝温度 | 避免其他气体的过冷凝结 | 冷凝温度不够低造成凝结水量少,不能满足质谱仪分析的精度要求;有可能造成重同位素的富集,而富集校正又需要精确测量采样时的气流量、凝结温度、气温及相对湿度等,造成误差累积放大 |
干燥剂脱水法 | 分子筛选吸附 | 精度高 | 吸湿性干燥剂含O2,会引起同位素交换;需要做非饱和-饱和状态的校正恢复;需要集成以适应野外作业 |
Flask真空采样瓶 | 真空直接采样 | 直接取样,没有冷凝等造成的信息失真 | 采集量少,可用于HDO ,但不能满足18O测量剂量 |
Tab.3
Laser spectroscopy and application
激光光谱分析类型 | 原理 | 代表性仪器 | 应用研究 |
---|---|---|---|
Off-Axis ICOS离轴积分振腔输出光谱技术 | 将激光谐振腔与气体测量室合为一体,激光在谐振腔两端的反射镜中反复震荡,其中少部分透过反射镜到达检测器。进入检测室的激光必先在待测气体中反复通过上万次才能到达检测器,相当于增加了测量室的厚度,使水汽吸收信号明显增强,来检测含量极低的水汽中2H和18O。 | LGRinc. 908-00040003 | Steen-Larsen et al, 2011; Steen-Larsen et al, 2013 |
CRDS振腔衰荡光谱技术 | 激光进入谐振腔后透过待测水汽在镜片间反射震荡,强度不断增加,其中少部分光透过镜片到达检测器。当检测器中的光信号达到一定的稳定值后,停止照射激光,体系在检测器方向的漏光将使检测器监测到的光强度随时间按指数规律衰减。由于待测水汽重的同位素吸收特定频率的光,所以光衰减到某一确定程度所需要的时间将变短,根据这一变短的时间推算水汽同位素含量。 | PICARRO inc. L1102-i | Steen-Larsen et al, 2013; Steen-Larsen et al, 2014 |
TDL-可调谐二极管激光吸收光谱技术 | 利用激光器波长调谐通过被测气体的特征吸收区,水汽同位素的直接吸收光谱就是以波长为函数记录对入射光吸收的原型吸收线。由测量获得的线性、线宽和强度可以计算出同位素分子的吸收截面,进而计算出被测水汽同位素的浓度,可用于同时观测水汽( 1. 37 L m 波长)和 CO2 同位素含量。 | Campbell Inc. TDL-TGA1001 | Wen et al, 2010 |
Tab.4
Spaceborne hyperspectral sensors on isotopic inversion
星载同位素监测传感器类型 | 观测简介 |
---|---|
温室气体观测干涉仪(Interferometric Monitor for Greenhouse-gasses, IMG); | 属于日本EOS观测系统的一部分,在1996-997年运行了9个月;基于该观测数据估算的HDO表明其可以重现纬向递变规律; |
迈克尔森大气无源探测干涉仪(Michelson Interferometer for Passive Atmospheric Sounding, MIPAS); | 搭载于Envisat卫星上,运行于2002-2004年,可用来反演6 km以上至平流层顶部HDO,其中平流层结果相对可靠; |
对流层发射光谱仪(Tropospheric Emission Spectrometer, TES); | 搭载NASA Arua航天器上,发射于2004年。连续扫描,可提供全球5°×5°分辨率的HDO分布; |
红外大气探测干涉仪(Infrared Atmospheric Sounding Interferometer, IASI) | 类似于TES,但不是对地观测 |
Tab.5
Isotopic GCM and isotopic RegCM participating in the second Stable Water Isotope Intercomparison Group (SWING2) of the IAEA
Iso-GCMs/Iso-RCMs | 模型类别 | 开发机构 | 参考文献 |
---|---|---|---|
Iso-GCMs | CAM3 | U.Colorado | Noone et al, 2010 |
CAM2 | UC Berkeley | Lee et al, 2007 | |
ECHAM5 | AWI-Bremerhaven | Werner et al, 2011 | |
ECHAM4 | MPI-Hamburg | Hoffmann et al, 1998 | |
LMDZ4 | LMD-Paris | Risi et al, 2010 | |
GSM | Scripps-San Diego | Yoshimura et al, 2011 | |
GISS-E | GISS-New York | Schmidt et al, 2007 | |
GENESIS | Penn U | Mathieu et al, 2002 | |
HadCM3 | U.Bristol | Tindall et al, 2009 | |
HadAM3 | BAS-Cambridge | Sime et al, 2008 | |
Iso-RCMs | REMOiso | MPIM-Hamburg | Sturm et al, 2005 |
Iso-RCM | - | Yoshimura et al, 2008 |
Tab.6
Classification of simulation methods of water vapor isotopic modeling
模型方法 | 优点 | 缺陷 |
---|---|---|
瑞利分馏模型或混合相分馏模型 | 能反映核心的微物理过程;能对水循环的各个传输环节的分馏(蒸发、过饱和)进行敏感性验证 | 是基于对初始条件的假设,如封闭方程模型或嵌入同位素模块的全球环流模型AGCM的水汽初始场,所以与实际有误差;不能很好的模拟对流过程 |
嵌入水体稳定同位素模拟的大气环流模型(AGCM) | 环流模型本身与同位素分馏过程具有一致性和兼容性;能对气象条件和分馏过程进行耦合;基于不同的气候驱动条件可探究不同空间因子关系在时间上的稳定性 | 在某些特殊区域如极地可能造成气候学模拟的变差;由于模型分辨率和某些参数如下降风、边界层过程、平流层过程和云层微物理等的参数化误差可能造成缺陷;难以区分不同过程的相对重要性(如水汽源区、传输过程以及凝结等) |
利用大气再分析资料辨识不同降水/降雪事件的的天气条件特征以及后向气团轨迹模型 | 基于实测气象数据,具有实际意义的天气学框架;利用同位素组分有可能将降水与相关的天气系统的气团联系起来 | 难以区分不同过程如水汽源区、传输轨迹、凝结等对最终降水同位素组分的相对重要性;利用后向轨迹也很难确定水汽源区 |
利用AGCM水汽分布根据后向轨迹进行简单的同位素模型计算 | 能够确定气团源区对最终水汽同位素组成的影响;基于再分析资料,因此避免了凝结温度的假设引起的误差 | Iso-AGCM模型中水汽同位素组成分布和再分析资料后向轨迹之间可能存在不一致;另外对对流过程的描述有欠缺 |
再分析资料驱动的Iso-AGCM模型 | 可利用与实测资料一致的动力驱动模拟结果进行分析 | 不能区分水汽凝结和凝华过程;不能对浅薄逆温层进行有效处理;驱动场异常格点造成模拟误差;对云微物理结构的处理有欠缺 |
再分析资料驱动的区域气候模型 | 较好的模拟了降水相关的主要过程:云团微物理过程、边界层条件以及后沉降过程等 | 难以捕捉水气传输路径;难以区分不同过程如水汽源区、传输轨迹、凝结等对最终降水同位素组分的影响大小 |
详细模拟稳定同位素的区域大气模型 | 大气动力学与水体同位素分馏的一致性和兼容性 | 目前还不能用于极区 |
1 | 顾慰祖, 庞忠和, 王全九, 等. 2011. 同位素水文学[M]. 北京: 科学出版社, 120-124. |
[Gu W Z, Pang Z H, Wang Q J, et al.2011. Isotopic hydrology[M]. Beijing, China: Science Press: 120-124.] | |
2 | 侯书贵, 王叶堂, 庞洪喜. 2013. 南极冰盖雪冰氢、氧稳定同位素气候学: 现状与展望[J]. 科学通报, 58: 27-40. |
[Hou S G, Wang Y T, Pang H X.2013. Climatology of stable isotopes in Antarctic snow and ice: current status and prospects[J]. Chinese Science Bulletin, 58(10): 1095-1106.] | |
3 | 王永森, 马振民, 徐征和. 2011. 基于瑞利分馏模式的水体蒸发线斜率模型[J]. 水科学进展, 22(6): 795-800. |
[Wang Y S, Ma Z M, Xu Z H.2011. Slope of evaporation lines in a model based on Rayleigh fractionation formula[J]. Advances in Water Science, 22(6): 795-800.] | |
4 | 余武生, 姚檀栋, 田立德, 等. 2006. 那曲河流域季风结束前后大气水汽中δ18O 变化特征[J]. 科学通报, 51(2), 194-199. |
[Yu W S, Yao T D, Tian L D, et al.2006. δ18O variation characteristic of atmosphere vapor isotope during the monsoon period of Naqu River[J]. Chinese Science Bulletin, 51(2): 194-199.] | |
5 | 章新平, 关华德, 孙治安, 等. 2011. 东亚水循环中水稳定同位素的GCM模拟和相互比较[J]. 冰川冻土, 33(6): 1275-1286. |
[Zhang X P, Guang H D, Sun Z A, et al.2011. GCM simulation of stable water isotopes in water cycle and intercomparison over East Asia[J]. Journal of Glaciology and Geocryology, 33(6): 1275-1286.] | |
6 | 章新平, 姚檀栋, 田立德, 等. 2003. 水体蒸发过程中稳定同位素分馏的模拟[J]. 冰川冻土, 25(1): 65-70. |
[Zhang X P, Yao T D, Tian L D, et al.2003. Study on the fractionation mechanism of stable isotope in evaporating water body[J]. Journal of Glaciology and Geocryology, 25(1): 65-70.] | |
7 | Angert A, Lee J, Yakir D.2008. Seasonal variations in the isotopic composition of near-surface water vapour in the eastern Mediterranean[J]. Tellus Series B: Chemical and Physical Meteorology, 60(4): 674-684. |
8 | Bender M, Sowers T, Labeyrie L.1994. The dole effect and its variations during the last 130000 years as measured in the Vostok ice core[J]. Global Biogeochemical Cycles, 8(3): 363-376. |
9 | Bolin B.1959. On the use of tritium as a tracer for water in nature[C]//Proceedings of the second united nations international conference on the peaceful uses of atomic energy. Stockholm, Sweden: International Meteorological Institution: 336-343 |
10 | Brown D, Worden J, Noone D.2008. Comparison of atmospheric hydrology over convective continental regions using water vapor isotope measurements from space[J]. Journal of Geophysical Research, 113(D15): D15124. |
11 | Cappa C, Hendricks M, Donald J, et al.2003. Isotopic fractionation of water during evaporation[J]. Journal of Geophysical Research, 108(D16): 4525. |
12 | Ciais P, Denning A,Tans P, et al.1997. A three-dimensional synthesis study of δ18O in atmospheric CO2: 1. surface fluxes[J]. Journal of Geophysical Research, 102(D5):5857-5872. |
13 | Ciais P, Jouzel J.1994. Deuterium and oxygen-18 in precipitation: isotropic model, including mixed cloud processes[J]. Journal of Geophysical Research, 99(D8): 16793-16803. |
14 | Craig H, Gordon L.1965. Deuterium and oxygen 18 variations in the ocean and marine atmosphere[C]//Proceedings of a Conference on Stable Isotopes in Oceanographic Studies and Paleotemperatures. Pisa, Italy: Laboratorio de Geologia Nucleare: 9-130. |
15 | Dansgaard W.1953. The abundance of 18O in atmospheric water and water vapour[J]. Tellus Series B: Chemical and Physical Meteorology, 5(4): 461-469. |
16 | Dansgaard W.1964. Stable isotopes in precipitation[J]. Tellus Series B: Chemical and Physical Meteorology, 16(4): 436-468. |
17 | Ehleringer J, Bowling D, Flanagan L, et al.2002. Stable isotopes and carbon cycle processes in forests and grasslands[J]. Plant Biology, 4(2):181-189. |
18 | Eriksson E.1965. Deuterium and oxygen-18 in precipitation and other natural waters. Some theoretical considerations[J]. Tellus Series B: Chemical and Physical Meteorology, 17(4): 498-512. |
19 | Farquhar G, Lloyd, Taylor J, et al.1993. Vegetation effects on the isotope composition of oxygen in atmospheric CO2[J]. Nature, 363: 439-443. |
20 | Gat J.1996. Oxygen and hydrogen isotopes in the hydrologic cycle[J]. Annual Review of Earth and Planetary Sciences, 24(1): 225-262. |
21 | Gat J, Klein B, Kushnir Y, et al.2003. Isotope composition of air moisture over the Mediterranean Sea: an index of the air-sea interaction pattern[J]. Tellus Series B: Chemical and Physical Meteorology, 55(5): 953-965. |
22 | Gedzelman S, Lawrence J.1982. The isotopic composition of cyclonic precipitation[J]. Journal of Applied Meteorology and Climatology, 21(10): 1385-1404. |
23 | Grootes P, Stuiver M.1997. Oxygen 18/16 variability in Greenland snow and ice with 103- to 105-year time resolution[J]. Journal of Geophysical Research, 102(C12): 26455-26470. |
24 | Haese B, Werner M, Lohmann G, et al.2012. Stable water isotopes in the coupled atmosphere-land surface model ECHAM5-JSBACH[J]. Geoscientific Model Development, 6: 3375-3418. |
25 | Hoffmann G, Ramirez E, Taupin J, et al.2003. Coherent isotope history of Andean ice cores over the last century[J]. Geophysical Research Letters, 30(4): 1179-1182. |
26 | Hoffmann G, Werner M, Heimann M.1998. Water isotope module of the ECHAM atmospheric general circulation model: a study on timescales from days to several years[J]. Journal of Geophysical Research, 103(D14): 16871-16896. |
27 | Horita J, Wesolowski D J.1994. Liquid-vapour fractionation of oxygen and hydrogen isotopes of water from the freezing to the critical temperature[J]. Geocheimica et Cosmochimica Acta, 58(16): 3425-3437. |
28 | Jacob H, Sonntag C.1991. An 8 year record of the seasonal variation of H and O in atmospheric water vapour and precipitation at Heidelberg, Germany[J]. Tellus Series B: Chemical and Physical Meteorology, 43(3): 290-300. |
29 | Jouzel J.2003. Water stable isotopes: atmospheric composition and applications in polar ice core studies[J]. Treatise Geochem, 4: 213-243. |
30 | Jouzel J, Merlivat L.1984. Deuterium and oxygen-18 in precipitation: modeling of the isotopic effects during snow formation[J]. Journal of Geophysical Research, 89(D7): 11749-11757. |
31 | Lai C T, Ehleringer J, Bond B, et al.2006. Contributions of evaporation, isotopic non-steady state transpiration and atmospheric mixing on the delta O-18 of water vapour in Pacific Northwest coniferous forests[J]. Plant Cell and Environment , 29(1): 77-94. |
32 | Lawrence J, Gedzelman S.1996. Low stable isotope ratios of tropical cy-clone rains[J]. Geophysical Research Letters, 23(5): 527-530. |
33 | Lawrence J, Gedzelman S, Zhang Z, et al.1998. Stable isotope ratios of rain and vapor in 1995 hurricanes[J]. Journal of Geophysical Research, 103(D10): 11381-11400. |
34 | Lee J, Fung I, DePaolo D, et al.2007. Analysis of the global distribution of water isotopes using the NCAR atmospheric general circulation model[J]. Journal of Geophysical Research, 112(D16): D16306. |
35 | Lee X, Sargent S, Smithet R, et al.2005. In situ measurement of the water vapor O-18/O-16 isotope ratio for atmospheric and ecological applications[J]. Journal of Atmospheric and Oceanic Technology, 22(8): 1305-1305. |
36 | Liljequist G, Cehak K.1979. Allgemeine Meteorologie[M]. Braunschweig, Germany: F. Vieweg und Sohn Verlagsgesellschaft: 298. |
37 | Majoube M.1971. Fractionnement en oxyene-18 et en deuterium entre l'eau et savapeur[J]. Journal de Chimie Physique, 68(10): 1423-1436. |
38 | Masson-Delmotte V, Hou S, Ekaykin A, et al.2008. A review of antarctic surface snow isotopic composition: observations, atmospheric circulation, and isotopic modeling[J]. Journal of Climate, 21(13): 3359-3387. |
39 | Mathieu R, Pollard D, Cole J, et al.2002. Simulation of stable water isotope variations by the GENESIS GCM for modern conditions[J]. Journal of Geophysical Research, 107(D4): 4037. |
40 | Merlivat L.1978. Molecular diffusivities of H218O, 2HH18O, H216O in gases[J]. Journal de Chimie Physique, 69: 2864-2877. |
41 | Merlivat L, Coantic M.1975. Study of mass transfer at the air, water interface by an isotope method[J]. Journal of Geophysical Research, 80(24): 3455-3460. |
42 | Merlivat L, Jouzel J.1979. Global climatic interpretation of the deuterium-oxygen18 relationship for precipitation[J]. Journal of Geophysical Research, 84(C8): 5029-5033. |
43 | Noone D.2008. The influence of midlatitude and tropical overturning circulation on the isotopic composition of atmospheric water vapor and Antarctic precipitation[J]. Journal of Geophysical Research, 113(D4): D04102. |
44 | Noone D, Galewsky J, Sharp Z, et al.2011. Properties of air mass mixing and humidity in the subtropics from measurements of the D/H isotope ratio of water vapor at the Mauna Loa Observatory[J]. Journal of Geophysical Research, 116(D22): D22113. |
45 | Noone D, Sturm C.2010. Comprehensive dynamical models of global and regional water isotope distributions[M]. Isoscapes, NY: Springer: 195-219 |
46 | Ramirez E, Hoffmann G, Taupin J, et al.2003. A new Andean deep ice core from Nevado Illimani (6350 m), Bolivia[J]. Earth and Planetary Science Letters, 212(3): 337-350. |
47 | Riley W, Still C, Helliker B, et al.2003. 18O composition of CO2 and H2O ecosystem pools and fluxes in a tallgrass prairie: simulations and comparisons to measurements[J]. Global Change Biology, 9(11): 1567-1581. |
48 | Risi C, Bony S, Vimeux F, et al.2010. Water-stable isotopes in the LMDZ4 general circulation model: model evaluation for present day and past climates and applications to climatic interpretations of tropical isotopic records[J]. Journal of Geophysical Research, 115(D12): D12118 |
49 | Rozanski K, Sonntag C.1982. Vertical distribution of deuterium in atmospheric water vapor[J]. Tellus Series B: Chemical and Physical Meteorology, 34(2): 135-141. |
50 | Schmidt G, LeGrande A, Hoffmann G.2007. Water isotope expressions of intrinsic and forced variability in a coupled ocean-atmosphere model[J]. Journal of Geophysical Research, 112(D10): D10103. |
51 | Schoch F, Rozanski K, Jacob H,et al, 1984. Hydrometeorological factors controlling the time variation of D, 18O and 2H in atmospheric water vapour and precipitation in the northern westwind belt[C]//Isotope Hydroloy. Vienna, Austria: International Atomic Energy Agency: 3-31 |
52 | Sime L, Tindall J, Wolff E, et al.2008. Antarctic isotopic thermometer during a CO2 forced warming event[J]. Journal of Geophysical Research, 113(D24): D24119 |
53 | Steen-Larsen H, Johnsen S, Masson-Delmotte V, et al.2013. Continuous monitoring of summer surface water vapour isotopic composition above the Greenland Ice Sheet[J]. Atmospheric Chemistry and Physics, 13(9):4815-4828. |
54 | Steen-Larsen H, Masson-Delmotte V, Sjolte J, et al.2011. Understanding the climatic signal in the water stable isotope records from the NEEM shallow firn/ice cores in northwest Greenland[J]. Journal of Geophysical Research-Atmosphere, 116(D6): D6108. |
55 | Steen-Larsen H, Sveinbjörnsdottir A, Peters Aet al.2014. Climatic controls on water vapor deuterium excess in the marine boundary layer of the North Atlantic based on 500 days of in situ, continuous measurements[J]. Atmospheric Chemistry and Physics, 14(2): 2363-2401 |
56 | Stewart M K.1975. Stable isotope fractionation due to evaporation and isotopic exchange of falling water drops: application to atmospheric processes and evaporation of lakes[J]. Journal of Geophysical Research, 80(9): 1133-1146. |
57 | Sturm C, Hoffmann G, Langmann B, et al.2005. Simulation of δ18O in precipitation by the regional circulation model REMOiso[J]. Hydrological Process, 19(17): 3425-3444. |
58 | Sturm C, Zhang Q, Noone D, et al.2010. An introduction to stable water isotopes in climate models: benefits of forward proxy modelling for paleoclimatology[J]. Climate of the Past, 6(1): 115-129. |
59 | Sonntag C, Rozanski K, Munnich K, et al.1983. Variations of deuterium and oxygen-18 in continental precipitation and groundwater and their causes[C]//Variations in the global water budget. Dordrecht, Netherlands: Reidel Publishing Company: 107-124. |
60 | Thompson L, Yao T, Davis M, et al.1997. Tropical climate instability: the last glacial cycle from a Qinghai-Tibetan ice core[J]. Science, 276: 1821-1825. |
61 | Tian L, Yao T, MacClune K, et al.2007. Stable isotopic variations in west China: a consideration of moisture sources[J]. Journal of Geophysical Research, 112(D10): D10112. |
62 | Tindall J, Valdes P, Sime L.2009. Stable water isotopes in HadCM3: isotopic signature of El Nino Southern Oscillation and the tropical amount effect[J]. Journal of Geophysical Research, 114(D4): D04111. |
63 | Uemura R, Barkan E, Abe O, Luz B.2010. Triple isotope composition of oxygen in atmospheric water vapor[J]. Geophysical Research Letters, 37(4): L04402. |
64 | Uemura R, Matsui Y, Yoshimura K, et al.2008. Evidence of deuterium excess in water vapor as an indicator of ocean surface conditions[J]. Journal of Geophysical Research, 113(D19): D19114. |
65 | Vogt H.1976. Isotopentrennung bei der Verdunstung von Wasser[D]. Heidelberg, Germany: Institute of Environmental Physics, University of Heidelberg: 58. |
66 | Wen X F, Zhang S C, Sun X M, et al.2010. Water vapor and precipitation isotope ratios in Beijing, China[J]. Journal of Geophysical Research, 115(D1): D1103 |
67 | Werner M, Langebroek P, Carlsen T, et al.2011. Stable water isotopes in the ECHAM5 general circulation model: toward high-resolution isotope modeling on a global scale[J]. Journal of Geophysical Research, 116(D15): 109. |
68 | White J, Gedzelman S.1984. The isotopic composition of atmosphericwater vapour and the concurrent meteorological conditions[J]. Journal of Geophysical Research, 89(D3): 4937-4939. |
69 | Williams D, Cable W, Hultine K, et al.2004. Evapotranspiration components determined by stable isotope, sap flow and eddy covariance techniques[J]. Agricultural and Forest Meteorology, 125(3): 241-258. |
70 | Xu X, Werner M, Butzin, et al.2012. Water isotope variations in the global ocean model MPI-OM[J]. Geoscientific Model Development, 5(3): 809-818. |
71 | Yakir D, Sternberg L S L.2000. The use of stable isotopes to study ecosystem gas exchange[J]. Oecologia, 123: 297-311. |
72 | Yepez E, Williams D, Scott R, et al.2003. Partitioning overstory and understory evapotranspiration in a semiarid savanna woodland from the isotopic composition of water vapor[J]. Agricultural and Forest Meteorology, 119(1): 53-68. |
73 | Yoshimura K, Frankenberg C, Lee J, et al.2011. Comparison of an isotopic atmospheric general circulation model with new quasi-global satellite measurements of water vapor isotopologues[J]. Journal of Geophysical Research, 116(D19): D19118. |
74 | Yoshimura K, Kanamitsu M, Noone D.et al.2008. Historical isotope simulation using Reanalysis atmospheric data[J]. Journal of Geophysical Research, 113(D1): D19108. |
75 | Zhang X P, Liu J M, He Y Q, et al.2005a. Humidity effect and its influence on the seasonal distribution of precipitation δ18O in monsoon regions[J]. Advances in Atmoshperic science. 22(2): 271-277. |
76 | Zhang X P, Liu J M, He Y Q, et al.2005b. Simulations of stable isotopic fractionation in mixed cloud in middle latitudes-taking the precipitation of Urumqi as an example[J]. Advances in Atmoshperic science, 20(2): 262-268. |
|