[1] 谭明艳, 陈仲新, 曹鑫, 等. 利用MODIS识别草原火灾迹地方法的研究. 遥感学报, 2007, 11(3): 340-349.
[2] Rothermel R C. A mathematical model for predicting fire spread in wildland fuels. USDA, Forest Service. Rep. No. RP INT-115, 1972.
[3] Pastor E, Zarate L, Planas E, et al. Mathematical models and calculation systems for the study of wildland fire behaviour. Progress in Energy and Combustion Science, 2003, 29(2): 139-153.
[4] 唐晓燕, 孟宪宇, 易浩若. 林火蔓延模型及蔓延模拟的研究进展. 北京林业大学学报, 2002, 24(1): 87-91.
[5] Cohen J D, Deeming J E. The National Fire Danger Rating System: Basic equations. Pacific Southwest Forest and Range Experiment Station. Rep. No. PSW-82, 1982.
[6] Albini F A. Estimating wildfire behavior and effects. USDA, Forest Service, Intermountain Forest and Range Experiment Station. Rep. No. GTR INT-30, 1976.
[7] Anderson H E. Aids to determining fuel models for estimating fire behavior. USDA, Forest Service. Rep. No. GTR INT-122, 1982.
[8] Burgan R E R, Richard C. BEHAVE: Fire behavior prediction and fuel modeling system-FUEL subsystem. USDA, Forest Service, Intermountain Forest and Range Experiment Station. General Technical Report INT-167, 1984.
[9] Andrews P L. BEHAVE: Fire behavior prediction and fuel modeling system-Burn subsystem, Part 1. USDA, Forest Service, Intermountain Forest and Range Experiment Station. Rep. No. GTR INT-194, 1986.
[10] Finney M A. FARSITE: Fire area simulator–model development and valuation. USDA, Forest Service. Rep. No. Paper RMRS-RP-4. 1998.
[11] Sandberg D V, Ottmar R D, Cushon G H. Characterizing fuels in the 21st Century. International Journal of Wildland Fire, 2001, 10(3/4): 381-187.
[12] Ottmar R D, Sandberg D V, Riccardi C L, et al. An overview of the fuel characteristics classification system: Quantifying, classifying, and creating fuelbeds for resource planning. Canadian Journal of Forest Research, 2007, 37(12): 2383-2393.
[13] Cheney P. A National Fire Danger Rating System for Australia. International Forest Fire News.
[1992-2-6].http://www.fire.uni-freiburg.de/iffn/country/au/au_4.htm.
[14] Van Wagner C E. Development and Structure of the Canadian Forest Fire Behavior Prediction System. Forestry Canada, Forestry Canada Fire Danger Group. Information Report ST-X-3. 1992.
[15] Giakoumakis M N, Gitas I Z, San-Miguel J. Object-oriented classification modeling for fuel type mapping in the Mediterranean, using LANDSAT TM and IKONOS imagery preliminary results. Viegas. Forest Fire Research & Wildland Fire Safety. Rotterdam:Millpress, 2002: 1-13.
[16] Keane R E, Burgan R E, Wagtendonk J V. Mapping wildland fuel for fire management across multiple scales: Integrating remote sensing, GIS, and biophysical modeling. International Journal of Wildland Fire, 2001, 10(4): 301-319.
[17] van Wagtendonk J W, Root R R. The USE of multitemporal Landsat normalized difference vegetation index (NDVI) data for mapping fuels models in Yosemite National Park, USA. International Journal of Remote Sensing, 2003, 24(3): 1639-1651.
[18] Lanorte A, Lasaponara R. Fuel type characterization based on coarse resolution MODIS satellite data. Journal of Biogeosciences and Forestry, 2008, 1: 60-64.
[19] Lefsky M A, Cohen W B, Parker G G, et al. Lidar Remote Sensing for Ecosystem Studies. BioScience, 2002, 52(1): 19-30.
[20] Austin J M, Mackey B G, Van Niel K P. Estimating forest biomass using satellite radar: an exploratory study in a temperate Australian Eucalyptus forest. Forest Ecology and Management, 2003, 176(1/2/3): 575-583.
[21] Andersen H E, McGaughey R J, Reutebuch S E. Estimating forest canopy fuel parameters using LIDAR data. Remote Sensing of Environment, 2005, 94(4): 441-449.
[22] Kalabokidis K, Hay C, Hussin Y. Spatially resolved fire growth simulation//Proceedings of the 11th Conference on Fire and Forest Meterology, 1991: 188-195.
[23] Vasconcelos M J, Guertin D P. FIREMAP: Simulation of fire growth with a geographic information system. International Journal of Wildland Fire, 1992, 2(2): 87-96.
[24] Lopes A, Cruz M, Viegas D. Firestation-an integrated software system for the numerical simulation of fire spread on complex topography. Environmental Modelling & Software, 2002, 17(3): 269-285.
[25] Perry G L, Sparrow A D, Owens I F. A gis-supported model for the simulation of the spatial structure of wildland fire, Cass Basin, New Zealand. Journal of Applied Ecology, 1999, 36(4): 502-518.
[26] Weise D R, Biging G S. A qualitative comparison of fire spread models incorporating wind and slope effects. Forest Science, 1997, 43(2): 170-180.
[27] Noble I R, Bary G A V, Gill A M. McArthur's fire-danger meters expressed as equations. Australian Journal of Ecology, 1980, 5(2): 201-203.
[28] Ensis. SiroFire: A computer-based fire spread simulator
[EB/OL].
[2006] . http://www.ensisjv.com/ResearchCapabilitiesAchievements/ForestHealthBiosecurityandFire/BushfireResearch/BushfireSoftware.
[29] Cheney N P, Gould J S, Catchpole W R. Prediction of fire spread in grasslands. International Journal of Wildland Fire, 1998, 8(1): 1-13.
[30] Van Wagner C E, The development and structure of the Canadian Forest Fire Weather Index System. Canadian Forest Service, Petawawa National Forestry Institute. FTR-35. 1987.
[31] Richards G D. A general mathematical framework for modeling two-dimensional wildfire spread. International Journal of Wildland Fire, 1995, 5(2): 63-72.
[32] Karafyllidis I, Thanailakis A. A model for predicting forest fire spreading using cellular automata. Ecological Modelling, 1997, 99(1): 87-97.
[33] Berjak S G, Hearne J W. An improved cellular automaton model for simulating fire in a spatially heterogeneous Savanna system. Ecological Modelling, 2002, 148(2): 133-151.
[34] Encinas L H, White S H, del Rey A M, et al. Modelling forest fire spread using hexagonal cellular automata. Applied Mathematical Modelling, 2007, 31(6): 1213-1227.
[35] Alexandridis A, Vakalis D, Siettos C I, et al. A cellular automata model for forest fire spread prediction: The case of the wildfire that swept through Spetses Island in 1990. Applied Mathematics and Computation, 2008, 204(1): 191-201.
[36] Yassemi S, Dragicevic S, Schmidtb M. Design and implementation of an integrated GIS-based cellular automata model to characterize forest fire behaviour. Ecological Modelling, 2008, 210(1/2): 71-84.
[37] Karafyllidis I, Thanailakis A. Design of a dedicated parallel processor for the prediction of forest fire spreading using cellular automata and genetic algorithms. Engineering Applications of Artificial Intelligence, 2004, 17(1): 19-36.
[38] Innocenti E, Silvani X, Muzya A, et al. A software framework for fine grain parallelization of cellular models with OpenMP: Application to fire spread. Environmental Modelling & Software, 2009, 24(7): 1-13.
[39] Richards G D. An elliptical growth model of forest fire fronts and its numerical solution. International Journal for Numerical Methods in Engineering, 1990, 30(6):1163-1179.
[40] 毛贤敏. 风和地形对林火蔓延速度的作用. 应用气象学报, 1993, 4(1): 100-104.
[41] 温广玉, 刘勇. 林火蔓延的数学模型及其应用. 东北林业大学学报, 1994, 22(2): 31-36.
[42] 唐晓燕, 孟宪宇, 葛宏立, 等. 基于栅格结构的林火蔓延模拟研究及其实现. 北京林业大学学报, 2003, 25(1): 54-58.
[43] 黄作维, 张贵. 基于GIS模型的林火蔓延研究. 湖南林业科技, 2004, 31(2): 17-19.
[44] 宋丽艳, 周国模, 汤孟平, 等. 基于GIS的林火蔓延模拟的实现. 浙江林学院学报, 2007, 24(5): 614-618.
[45] 毛学刚, 范文义, 李明泽. 基于GIS模型的林火蔓延计算机仿真. 东北林业大学学报, 2008, 36(9): 38-41.
[46] 单延龙, 张敏, 胡海清. 大兴安岭地区樟子松林地表可燃物模型. 东北林业大学学报, 2005, 33(2): 74-76.
[47] 郭利峰, 牛树奎, 阚振国. 北京八达岭人工油松林地表枯死可燃物负荷量研究. 林业资源管理, 2007(5): 53-58
[48] 田晓瑞, 戴兴安, 王明玉. 北京市森林可燃物分类研究. 林业科学, 2006, 42(11): 76-80.
[49] 覃先林, 易浩若. 基于MOD IS 数据的森林可燃物分类方法:以黑龙江省为实验区. 遥感技术与应用, 2004, 19(4): 236-239.
[50] Tian X R, McRae D J, Shu L F, et al. Fuel classification and mapping from satellite imagines. Journal of Forestry Research, 2005, 16(4): 311-316.
[51] 黄华国, 张晓丽. 基于三维曲面元胞自动机模型的林火蔓延模拟. 北京林业大学学报, 2005, 27(3): 94-97.
[52] 王长缨, 周明全, 张思玉. 基于规则学习的林火蔓延元胞自动机模型. 福建林学院学报, 2006, 26(3): 229-234.
[53] 王惠, 周汝良, 庄娇艳, 等. 林火蔓延模型研究及应用开发. 济南大学学报: 自然科学版, 2008, 22(3): 295-300.
[54] 薛晔, 黄崇福. 自然灾害风险评估模型的研究进展. 应用基础与工程科学学报, 2006, 14(增): 1-10.
[55] 史培军. 三论灾害研究的理论与实践. 自然灾害学报, 2002, 11(3): 1-9.
[56] Gonzalez-alonso F, Cuevas J M, Casanova J L, et al. A forest fire risk assessment using NOAA AVHRR images in the Valencia area, eastern Spain. International Jounrnal Remote Sensing, 1997, 18(10): 2201-2207.
[57] Burgan R E, Klaver R W, Klaver J M. Fuel models and fire potential from satellite and surface observation. International Journal of Wildland Fire, 1998, 8(3): 159-170.
[58] Ana. Integration of satellite sensor data, fuel type maps and meteorological observations for evaluation of forest fire risk at the pan-European scale. International Jounrnal Remote Sensing, 2002, 23(13): 2713-2719.
[59] Peng G, Li J, Chen Y, et al. A forest fire risk assessment using ASTER images in Peninsular Malaysia. Journal of China University of Mining & Technology, 2007, 17(2): 232-237.
[60] Jaiswal R K, Mukherjee S, Raju K D, et al. Forest fire risk zone mapping from satellite imagery and GIS. International Journal of Applied Earth Observation and Geoinformation, 2002, 4(1): 1-10.
[61] Xu D, Dai L M, Shao G F, et al. Forest fire risk zone mapping from satellite images and GIS for Baihe Forestry Bureau, Jilin, China. Journal of Forestry Research, 2005, 16(3): 169-173.
[62] Kalabokidis K D, Koutsias N, Konstantinidis P, et al. Multivariate analysis of landscape wildfire dynamics in a Mediterranean ecosystem of Greece. Area, 2007, 39(3): 392-402.
[63] Martinez J, Garcia C V, Chuvieco E. Human-caused wildfire risk rating for prevention planning in Spain. Journal of Environmental Management, 2009, 90(2): 1241-1252.
[64] Vasconcelos M J P, Silva S, Tomé M. Spatial prediction of fire ignition probabilities: Comparing logistic regression and neural networks. Photogrammetric Engineering and Remote Sensing, 2001, 67(1): 73-81.
[65] Mbow C, Goita K, Benie G. Spectral indices and fire behavior simulation for fire risk assessment in savanna ecosystems. Remote Sensing of Environment, 2004, 91(1):1-13.
[66] Carmel Y, Paz b S, Jahashan F, et al. Assessing fire risk using Monte Carlo simulations of fire spread. Forest Ecology and Management, 2009, 257(1): 370-377.
[67] Tong Z, Zhang J, Liu X. GIS-based risk assessment of grassland fire disaster in western Jilin province, China. Stoch Environ Res Risk Assess, 2009, 23(4): 463-471.
[68] Chuviecoa E, Aguadoa I, Yebra M, et al. Development of a framework for fire risk assessment using remote sensing and geographic information system technologies. Ecological Modelling, 2009, 221(1): 46-58.
|