研究论文

全球金属矿产贸易网络演化及其启示

  • 陈伟 , 1, 2 ,
  • 赵晞泉 1, 2 ,
  • 俞肇元 , 3, 4, *
展开
  • 1.中国科学院地理科学与资源研究所 中国科学院区域可持续发展分析与模拟实验室,北京 100101
  • 2.中国科学院大学资源与环境学院,北京 100049
  • 3.南京师范大学地理科学学院,南京 210023
  • 4.江苏省地理信息资源开发与应用协同创新中心,南京 210023
* 俞肇元(1984—),安徽南陵人,教授,博士生导师,研究方向为地理信息系统与地理建模。E-mail:

陈伟(1989—),安徽淮南人,副研究员,硕士生导师,研究方向为经济地理与区域发展。E-mail:

收稿日期: 2024-10-28

  修回日期: 2025-03-28

  网络出版日期: 2025-07-25

基金资助

国家自然科学基金项目(42230406)

国家自然科学基金项目(42130508)

Change of global metallic mineral trade network and its implications

  • CHEN Wei , 1, 2 ,
  • ZHAO Xiquan 1, 2 ,
  • YU Zhaoyuan , 3, 4, *
Expand
  • 1. Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 2. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. School of Geography Science, Nanjing Normal University, Nanjing 210023, China
  • 4. Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China

Received date: 2024-10-28

  Revised date: 2025-03-28

  Online published: 2025-07-25

Supported by

National Natural Science Foundation of China(42230406)

National Natural Science Foundation of China(42130508)

摘要

金属矿产资源是工业生产和经济发展的物质支撑。探究全球金属矿产贸易网络演化,对于理解全球金属矿产生产、流通和消费格局变化具有重要意义。论文运用中心性、网络密度、全局集聚系数、全局效率和视差滤波等网络分析方法,刻画全球金属矿产贸易格局时空演化,剖析全球金属矿产贸易网络拓扑结构,识别各国在全球金属矿产贸易网络中的地位和角色变化,为全面认知全球金属矿产贸易连通性、促进金属矿产贸易合作、维护全球金属矿产供应稳定提供有益参考。研究发现:① 全球金属矿产贸易中铁、铜、锌、钼和锰等矿产类型长期占据较高比重,总贸易规模呈现出波动中上升态势,局部区域贸易格局正在经历明显的空间重构。全球金属矿产贸易网络层级特征和空间不均衡态势逐渐显现,形成金属矿产贸易大国和贸易活跃地区相互联动并辐射带动其他区域的贸易格局。② 全球金属矿产贸易网络规模呈扩张趋势,网络的复杂化和稠密化态势明显,网络连通性和传输效率随网络扩张而显著提升。但部分国家可能会面临金属供应链中断的风险,全球金属矿产贸易网络应对冲击的稳健性仍有待提升。③ 全球金属矿产贸易网络骨干结构特征明显,部分关键节点和优势连边在网络中起到重要的支撑作用,以中国为核心的轴辐式骨干结构较为稳定,以欧洲和美洲国家为主体的骨干网络逐渐凸显并具有复杂化拓扑特征。④ 中国是全球金属矿产贸易网络的绝对核心,但进口和出口规模相差悬殊;德国和南非分别具有重要的全球金属矿产进口和出口影响力;澳大利亚、巴西和智利的出口规模以及日本和韩国的进口规模位居全球前列;荷兰、西班牙和加拿大等国发挥着重要的贸易枢纽作用。部分国家在全球金属矿产贸易网络中的位置有所调整,意大利的整体影响力和枢纽功能均显著下降,美国的金属矿产进口规模和印度的金属矿产出口规模分别略有降低,秘鲁逐渐跻身金属矿产出口核心国行列。最后,论文从提高金属矿产自给率和利用效率、优化金属矿产对外贸易合作格局、增强金属矿产贸易风险抵御能力及提升金属矿产供应端控制能力4个维度,提出促进金属矿产对外贸易合作、保障金属矿产供应安全的政策启示。

本文引用格式

陈伟 , 赵晞泉 , 俞肇元 . 全球金属矿产贸易网络演化及其启示[J]. 地理科学进展, 2025 , 44(7) : 1406 -1421 . DOI: 10.18306/dlkxjz.2025.07.007

Abstract

Metallic mineral resources provide the raw materials for industrial production and economic growth. It is critical to investigate the change of the global metallic mineral trade network to understand changes in global metallic mineral production, distribution, and consumption patterns. In this study, we employed various network analysis methods to portray the spatiotemporal change of the global metallic mineral trade pattern, analyze the topological structures of the global metallic mineral trade network, and identify the status and role of each country in the global metallic mineral trade network, to provide helpful information for understanding the stability of the global metallic mineral supply. The study found that: 1) The global metallic mineral trade, with iron, copper, zinc, molybdenum, and manganese accounting for a significant share, showed an upward trend amidst fluctuations, and the regional trade pattern is undergoing spatial restructuring. The global metallic mineral trade network has steadily developed hierarchical features and spatial imbalances, creating a trade pattern where major trading countries and active trading countries are interconnected and drive changes of other regions. 2) The scale of the global metallic mineral trade network is expanding, network complexity and density are increasing, and network connectivity is improved with the expansion of the network. However, some countries may face the risk of interruption of the metal supply chain, and the robustness of the global metallic mineral trade network to cope with shocks still needs to be improved. 3) The backbone structures of the global metallic mineral trade network are obvious, with some key nodes and edges playing an essential supporting role. The hub-and-spoke backbone structure with China as the core is relatively stable, while the backbone network with Europe and America as the main body is gradually becoming prominent and shows complicated topological characteristics. 4) China is the core of the global metallic mineral trade network, but there is a significant discrepancy between its import and export scales. Germany and South Africa have important global influence in terms of metallic mineral imports and exports, respectively. Australia, Brazil, and Chile lead the world in export scale, while Japan and the Republic of Korea rank high in import scale. Countries such as the Netherlands, Spain, and Canada play important roles as trade hubs. The position of some countries in the global metallic mineral trade network has been adjusted, with Italy's overall influence and pivotal function declining significantly, the metallic mineral import scale of the United States and the export scale of India decreasing, and Peru gradually ranking among the core metallic mineral exporting countries. Finally, this article put forward policy implications for promoting international trade cooperation in metallic minerals and ensuring the security of metallic minerals supply in China from four dimensions: improving the self-sufficiency rate and utilization efficiency of metallic minerals, optimizing the pattern of international trade cooperation in metallic minerals, enhancing the ability to resist the risks of trade in metallic minerals, and upgrading the ability to control the supply side of metallic minerals.

[1]
陈其慎, 于汶加, 张艳飞, 等. 矿业发展周期理论与中国矿业发展趋势[J]. 资源科学, 2015, 37(5): 891-899.

[Chen Qishen, Yu Wenjia, Zhang Yanfei, et al. Mining development cycle theory and development trends in Chinese mining. Resources Science, 2015, 37(5): 891-899.]

[2]
种照辉, 姜信洁, 何则. 国际能源贸易依赖网络特征及替代关系研究: 化石能源与可再生能源[J]. 地理研究, 2022, 41(12): 3214-3228.

DOI

[Chong Zhaohui, Jiang Xinjie, He Ze. Research on the network dependence characteristics and substitution in international trade: Fossil energy and renewable energy. Geographical Research, 2022, 41(12): 3214-3228.]

[3]
Gulley A L, Nassar N T, Xun S A. China, the United States, and competition for resources that enable emerging technologies[J]. PNAS, 2018, 115(16): 4111-4115.

DOI PMID

[4]
Liang Y N, Kleijn R, Tukker A, et al. Material requirements for low-carbon energy technologies: A quantitative review[J]. Renewable and Sustainable Energy Reviews, 2022, 161: 112334. doi: 10.1016/j.rser.2022.112334.

[5]
朱学红, 李双美, 曾安琪. 清洁能源转型下关键金属产业链碳排放研究综述与展望[J]. 资源科学, 2023, 45(1): 1-17.

DOI

[Zhu Xuehong, Li Shuangmei, Zeng Anqi. A review and prospect of research on carbon emissions from the critical metal industry chain under clean energy transition. Resources Science, 2023, 45(1): 1-17.]

DOI

[6]
Elshkaki A, Graedel T E, Ciacci L, et al. Resource demand scenarios for the major metals[J]. Environmental Science & Technology, 2018, 52(5): 2491-2497.

[7]
Watari T, Nansai K, Nakajima K. Major metals demand, supply, and environmental impacts to 2100: A critical review[J]. Resources, Conservation and Recycling, 2021, 164: 105107. doi: 10.1016/j.resconrec.2020.105107.

[8]
Nassar N T, Brainard J, Gulley A, et al. Evaluating the mineral commodity supply risk of the US manufacturing sector[J]. Science Advances, 2020, 6(8): eaay8647. doi: 10.1126/sciadv.aay8647.

[9]
Eggert R G. Minerals go critical[J]. Nature Chemistry, 2011, 3(9): 688-691.

DOI PMID

[10]
王安建, 王高尚, 邓祥征, 等. 新时代中国战略性关键矿产资源安全与管理[J]. 中国科学基金, 2019, 33(2): 133-140.

[Wang Anjian, Wang Gaoshang, Deng Xiangzheng, et al. Security and management of China's critical mineral resources in the new era. Bulletin of National Natural Science Foundation of China, 2019, 33(2); 133-140.]

[11]
毛景文, 杨宗喜, 谢桂青, 等. 关键矿产: 国际动向与思考[J]. 矿床地质, 2019, 38(4): 689-698.

[Mao Jingwen, Yang Zongxi, Xie Guiqing, et al. Critical minerals: International trends and thinking. Mineral Deposits, 2019, 38(4): 689-698.]

[12]
Chen J Y, Huang Y X, Ren X H, et al. Time-varying spillovers between trade policy uncertainty and precious metal markets: Evidence from China-US trade conflict[J]. Resources Policy, 2022, 76: 102577. doi: 10.1016/j.resourpol.2022.102577.

[13]
Johnson J, Graedel T E. The "hidden" trade of metals in the United States[J]. Journal of Industrial Ecology, 2008, 12(5/6): 739-753.

[14]
成金华, 尤喆, 朱永光, 等. 有色金属国际价格波动的影响因素研究[J]. 中国人口·资源与环境, 2017, 27(7): 35-45.

[Cheng Jinhua, You Zhe, Zhu Yongguang, et al. Factors affecting price fluctuations of nonferrous in world market. China Population, Resources and Environment, 2017, 27(7): 35-45.]

[15]
汤林彬, 汪鹏, 陈伟强. 中国钨贸易格局演变及启示: 基于物质流与价值流分析[J]. 科技导报, 2022, 40(8): 70-77.

DOI

[Tang Linbin, Wang Peng, Chen Weiqiang. Evolution of China's tungsten trade pattern and its implications based on the perspectives of material flow and valcce flow. Science & Technology Review, 2022, 40(8): 70-77.]

[16]
Zhong W Q, Dai T, Wang G S, et al. Structure of international iron flow: Based on substance flow analysis and complex network[J]. Resources, Conservation and Recycling, 2018, 136: 345-354.

[17]
Hu X Q, Wang C, Lim M K, et al. Characteristics and community evolution patterns of the international scrap metal trade[J]. Journal of Cleaner Production, 2020, 243: 118576. doi: 10.1016/j.jclepro.2019.118576.

[18]
丁存振, 纪祥宇. 全球粮食供应链韧性测度及其演化研究[J]. 地理科学进展, 2025, 44(1): 103-116.

DOI

[Ding Cunzhen, Ji Xiangyu. Resilience of the global grain supply chain and change. Progress in Geography, 2025, 44(1): 103-116.]

DOI

[19]
高珊珊, 管靖, 宋周莺. 尼泊尔对外贸易格局演化及其影响因素[J]. 地理科学进展, 2025, 44(2): 327-342.

DOI

[Gao Shanshan, Guan Jing, Song Zhouying. Evolution of Nepal's foreign trade patterns and its driving factors. Progress in Geography, 2025, 44(2): 327-342.]

DOI

[20]
朱学红, 彭婷, 谌金宇. 战略性关键金属贸易网络特征及其对产业结构升级的影响[J]. 资源科学, 2020, 42(8):1489-1503.

DOI

[Zhu Xuehong, Peng Ting, Chen Jinyu. Impact of strategic and critical metals trade network characteristics on the upgrading of industrial structures. Resources Science, 2020, 42(8): 1489-1503.]

DOI

[21]
计启迪, 刘卫东, 陈伟, 等. 基于产业链的全球铜贸易网络结构研究[J]. 地理科学, 2021, 41(1): 44-54.

DOI

[Ji Qidi, Liu Weidong, Chen Wei, et al. Structure of global copper-containing products trade network based on industrial chain perspective. Scientia Geographica Sinica, 2021, 41(1): 44-54.]

DOI

[22]
Wang X B, Yao M T, Li J S, et al. Global embodied rare earths flows and the outflow paths of China's embodied rare earths: Combining multi-regional input-output analysis with the complex network approach[J]. Journal of Cleaner Production, 2019, 216: 435-445.

[23]
赵晞泉, 陈伟. 全球钴资源贸易网络演化及其启示[J]. 资源科学, 2024, 46(1): 100-113.

DOI

[Zhao Xiquan, Chen Wei. Changes of global cobalt trade network and implications. Resources Science, 2024, 46(1): 100-113.]

DOI

[24]
Chen W, Jiang Y F, Liu Z G. Unveiling structural differentiation in the global nickel trade network: A product chain perspective[J]. Journal of Geographical Sciences, 2024, 34(4): 763-778.

DOI

[25]
Nansai K, Nakajima K, Kagawa S, et al. Global flows of critical metals necessary for low-carbon technologies: The case of neodymium, cobalt, and platinum[J]. Environmental Science & Technology, 2014, 48(3): 1391-1400.

[26]
庄德林, 李嘉豪, 陈紫若, 等. 全球稀土贸易网络的动态演变与影响机制: 基于产业链的视角[J]. 地理科学, 2022, 42(11): 1900-1911.

DOI

[Zhuang Delin, Li Jiahao, Chen Ziruo, et al. The dynamic change of global rare earth trade network and its impact mechanism: From the perspective of industrial chain. Scientia Geographica Sinica, 2022, 42(11): 1900-1911.]

DOI

[27]
Shao L G, Kou W W, Zhang H. The evolution of the global cobalt and lithium trade pattern and the impacts of the low-cobalt technology of lithium batteries based on multiplex network[J]. Resources Policy, 2022, 76: 102550. doi: 10.1016/j.resourpol.2022.102550.

[28]
Yang J L, Chen W. Unravelling the landscape of global cobalt trade: Patterns, robustness, and supply chain security[J]. Resources Policy, 2023, 86: 104277. doi: 10.1016/j.resourpol.2023.104277.

[29]
陈伟, 赵晞泉, 刘卫东, 等. “一带一路”贸易网络演化与贸易门户国家识别[J]. 地理学报, 2023, 78(10): 2465-2483.

DOI

[Chen Wei, Zhao Xiquan, Liu Weidong, et al. The trade network evolution and identification of gateway countries in the Belt and Road region. Acta Geographica Sinica, 2023, 78(10): 2465-2483.]

DOI

[30]
Tang K, Xiong W. Index investment and the financialization of commodities[J]. Financial Analysis Journal, 2012, 68(6): 54-74.

[31]
Klimek P, Obersteiner M, Thurner S. Systemic trade risk of critical resources[J]. Science Advances, 2015, 1(10): e1500522. doi: 10.1126/sciadv.1500522.

[32]
Fischer C S, Shavit Y. National differences in network density: Israel and the United States[J]. Social Networks, 1995, 17(2): 129-145.

[33]
Watts D J, Strogatz S H. Collective dynamics of 'small-world' networks[J]. Nature, 1998, 393: 440-442.

[34]
Ek B, VerSchneider C, Narayan D A. Global efficiency of graphs[J]. AKCE International Journal of Graphs and Combinatorics, 2015, 12(1): 1-13.

[35]
Barrat A, Barthélemy M, Pastor-Satorras R, et al. The architecture of complex weighted networks[J]. PNAS, 2004, 101(11): 3747-3752.

DOI PMID

[36]
Bröhl T, Lehnertz K. A straightforward edge centrality concept derived from generalizing degree and strength[J]. Scientific Reports, 2022, 12: 4407. doi: 10.1038/s41598-022-08254-5.

PMID

[37]
Chen W, Zhang H P. Characterizing the structural evolution of cereal trade networks in the Belt and Road regions: A network analysis approach[J]. Foods, 2022, 11(10): 1468. doi: 10.3390/foods11101468.

[38]
钮潇雨, 陈伟, 俞肇元. “一带一路”贸易网络连通性演化[J]. 地理科学进展, 2023, 42(6): 1069-1081.

DOI

[Niu Xiaoyu, Chen Wei, Yu Zhaoyuan. Evolution of "the Belt and Road" trade network connectivity. Progress in Geography, 2023, 42(6): 1069-1081.]

DOI

[39]
Serrano M A, Boguñá M, Vespignani A. Extracting the multiscale backbone of complex weighted networks[J]. PNAS, 2009, 106(16): 6483-6488.

DOI PMID

[40]
Gulley A L. China, the Democratic Republic of the Congo, and artisanal cobalt mining from 2000 through 2020[J]. PNAS, 2023, 120(26): e2212037120. doi: 10.1073/pnas.2212037120.

[41]
Rubaszek M, Karolak Z, Kwas M. Mean-reversion, non-linearities and the dynamics of industrial metal prices: A forecasting perspective[J]. Resources Policy, 2020, 65: 101538. doi: 10.1016/j.resourpol.2019.101538.

[42]
Shi T, Li C Y, Zhang W, et al. Forecasting on metal resource spot settlement price: New evidence from the machine learning model[J]. Resources Policy, 2023, 81: 103360. doi: 10.1016/j.resourpol.2023.103360.

[43]
刘玄宇, 程国宇, 刘云刚. 地缘经济视角下中日资源贸易关系测度与分析[J]. 世界地理研究, 2022, 31(6): 1227-1239.

[Liu Xuanyu, Cheng Guoyu, Liu Yungang. Measurement and analysis of Sino-Japanese resource trade relations from the perspective of geo-economy. World Regional Studies, 2022, 31(6): 1227-1239.]

[44]
Renner S, Wellmer F W. Volatility drivers on the metal market and exposure of producing countries[J]. Mineral Economics, 2020, 33(3): 311-340.

[45]
徐斌, 刘杨倩宇, 叶利莹, 等. 全球锡矿典型产品网络贸易格局演变与中国地位[J]. 经济地理, 2023, 43(12): 113-125.

DOI

[Xu Bin, Liu Yangqianyu, Ye Liying, et al. Evolution and China's status of global network trade pattern in typical tin products. Economic Geography, 2023, 43(12): 113-125.]

DOI

[46]
夏启繁, 杜德斌, 段德忠, 等. 中国稀土对外贸易格局演化及影响因素[J]. 地理学报, 2022, 77(4): 976-995.

DOI

[Xia Qifan, Du Debin, Duan Dezhong, et al. Evolution and influencing factors of China's foreign trade in rare earth metals. Acta Geographica Sinica, 2022, 77(4): 976-995.]

DOI

[47]
徐德义, 朱永光. 能源转型过程中关键矿产资源安全回顾与展望[J]. 资源与产业, 2020, 22(4): 1-11.

DOI

[Xu Deyi, Zhu Yongguang. Review and outlook of key minerals security during energy transformation. Resources & Industries, 2020, 22(4): 1-11.]

[48]
Vakulchuk R, Overland I. Central Asia is a missing link in analyses of critical materials for the global clean energy transition[J]. One Earth, 2021, 4(12): 1678-1692.

[49]
Li Y M, Zhong Q M, Wang Y, et al. Scarcity-weighted metal extraction enabled by primary suppliers through global supply chains[J]. Journal of Cleaner Production, 2022, 371: 133435. doi: 10.1016/j.jclepro.2022.133435.

文章导航

/