研究论文

全球城市光伏产业创新合作网络时空格局演变及中国城市地位变迁

  • 吴爱萍 ,
  • 张晓平 , * ,
  • 练文华 ,
  • 宋佳雯
展开
  • 中国科学院大学资源与环境学院,北京 100049
*张晓平(1972—),女,河南南阳人,博士,教授,博士生导师,主要从事经济地理学相关领域的教学与科研工作。E-mail:

吴爱萍(1997—),女,山东烟台人,博士生,研究方向为区域可持续发展。E-mail:

收稿日期: 2024-09-13

  修回日期: 2024-12-18

  网络出版日期: 2025-06-25

基金资助

国家自然科学基金项目(42271193)

国家自然科学基金项目(41771133)

Spatiotemporal evolution of the photovoltaic industry innovation cooperation networks of cities globally and the changing status of Chinese cities

  • WU Aiping ,
  • ZHANG Xiaoping , * ,
  • LIAN Wenhua ,
  • SONG Jiawen
Expand
  • College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2024-09-13

  Revised date: 2024-12-18

  Online published: 2025-06-25

Supported by

National Natural Science Foundation of China(42271193)

National Natural Science Foundation of China(41771133)

摘要

全球城市间开展光伏产业创新合作是全球能源绿色转型及可持续发展的重要基石,探讨其创新合作网络时空格局演变及中国城市地位变迁,对于战略性新兴产业的发展以及城市地位提升具有重要的战略意义。论文基于2000—2022年光伏产业专利合作数据构建全球1382个城市间创新合作网络,结合光伏产品技术生命周期,运用复杂网络分析方法探究了全球城市光伏产业创新合作网络的拓扑结构及空间结构演变,并揭示了中国城市的地位变迁规律。研究发现:① 伴随着光伏技术从初生萌芽到快速生长再到成熟稳定,全球光伏产业创新合作强度呈现从快速增长到回落稳定的变化趋势。② 全球光伏产业创新合作网络在空间上具有明显的集聚特征,主要集中在美国东部、欧洲西部以及东亚地区。创新网络从以美国、日本城市为中心的“少核主导”向“多核互联”演变,并逐渐演化为以中国、印度、欧美城市为主的创新集群。③ 城市规模以及城市创新等级对城市光伏产业合作创新规模具有显著的正向影响,碳减排政策初期对光伏产业创新推动作用较强,后期呈现边际效应递减效应。④ 以北京、上海、苏州、深圳等为代表的中国城市在网络中的中介中心度和加权中心度均呈持续上升态势,表明中国光伏产业正逐步转型:从初期依赖技术引进,发展到国内外技术互惠合作,进而成为技术输出者的转变。厘清全球光伏产业创新合作网络的时空演化以及中国城市地位的变迁,有望推动光伏产业链的重组和价值链的重新配置,优化区域创新活动的空间布局,进而重构战略性新兴产业的空间格局。

本文引用格式

吴爱萍 , 张晓平 , 练文华 , 宋佳雯 . 全球城市光伏产业创新合作网络时空格局演变及中国城市地位变迁[J]. 地理科学进展, 2025 , 44(6) : 1130 -1145 . DOI: 10.18306/dlkxjz.2025.06.004

Abstract

Cooperative innovation in the photovoltaic industry among global cities is a crucial cornerstone for sustainable development worldwide. Examining the evolution of innovation cooperation networks among global cities and the changing status of Chinese cities holds significant strategic importance for the development of strategic emerging industries and the enhancement of cities' status. Based on the patent cooperation data from 2000 to 2022, this study constructed innovation cooperation networks among 1382 global cities. Considering the life cycle of photovoltaic products, and using complex network analysis methods, this study elucidated the topological structure and spatial change of the global intercity photovoltaic industry innovation cooperation networks. Then, the changing status of Chinese cities was revealed. The results show that: 1) With the technology of the photovoltaic industry evolving from nascent stage to rapid growth and then to maturity and stability, the intensity of global photovoltaic industry innovation cooperation first grew and then became stable. 2) The global photovoltaic innovation cooperation network exhibited a pronounced spatial clustering, primarily concentrated in the eastern United States, Western Europe, and East Asia. The innovation network has transitioned from a "few-core dominance" centered on cities in the United States and Japan to a "multi-core interconnected" structure, gradually evolving into innovation clusters dominated by cities in China, India, Europe, and the United States. 3) City scale and innovation level had a significant positive impact on the intensity of photovoltaic industry innovation cooperation of cities. The carbon reduction policy had a strong driving effect on photovoltaic industry innovation in the early stage, but later showed a diminishing marginal effect. 4) Cities in China, represented by Beijing, Shanghai, Suzhou, and Shenzhen, have shown a continuous upward trend in their betweenness centrality and weighted centrality within networks. They have gradually transitioned from primarily importing technology to establishing mutually beneficial relationships in technology with domestic and international partners, ultimately evolving into technology exporters. Understanding the spatiotemporal change of the global photovoltaic industry innovation cooperation networks and the changing status of Chinese cities within it holds significant promise. It is expected to promote the restructuring of the photovoltaic industrial chain and the reconfiguration of the value chain. This, in turn, can reshape the spatial pattern of strategic emerging industries and regional innovation activities.

[1]
开欣, 朱盼, 董莉晶. 论全球城市网络结构的特征及发展演变趋势[J]. 全球城市研究, 2023, 4(3): 1-13, 188.

[Kai Xin, Zhu Pan, Dong Lijing. Research on the characteristics and evolution trend of the global city network structure. Global Cities Research, 2023, 4(3): 1-13, 188. ]

[2]
黄璜. 全球化视角下的世界城市网络理论[J]. 人文地理, 2010, 25(4): 18-24.

[Huang Huang. World city network theories from the global perspective. Human Geography, 2010, 25(4): 18-24. ]

[3]
Taylor P J, Walker D R F, Catalano G, et al. Diversity and power in the world city network[J]. Cities, 2002, 19(4): 231-241.

[4]
吕国庆, 曾刚, 顾娜娜. 经济地理学视角下区域创新网络的研究综述[J]. 经济地理, 2014, 34(2): 1-8.

[Lv Guoqing, Zeng Gang, Gu Nana. Literature review of regional innovation network: An economic geographical perspective. Economic Geography, 2014, 34(2): 1-8. ]

[5]
杜德斌. 全球科技创新中心理论与实践[M]. 上海: 上海科学技术出版社, 2024: 5-7.

[Du Debin. Theory and practice of global science and technology innovation center. Shanghai, China: Shanghai Science and Technology Publishing House, 2024: 5-7. ]

[6]
国家能源局. 《中国的能源转型》白皮书[EB/OL]. 2023-08-29 [2023-09-02]. https://www.nea.gov.cn/2024-08/29/c_1310785406.htm.

[National Energy Administration. China's energy transition. 2023-08-29 [2023-09-02]. https://www.nea.gov.cn/2024-08/29/c_1310785406.htm.]

[7]
Pastuszak J, Węgierek P. Photovoltaic cell generations and current research directions for their development[J]. Materials, 2022, 15(16): 5542. doi: 10.3390/ma15165542.

[8]
Shubbak M H. Advances in solar photovoltaics: Technology review and patent trends[J]. Renewable and Sustainable Energy Reviews, 2019, 115: 109383. doi: 10.1016/j.rser.2019.109383.

[9]
李正图, 姚清铁. 经济全球化、城市网络层级与全球城市演进[J]. 华东师范大学学报(哲学社会科学版), 2019, 51(5): 67-78, 237-238.

[Li Zhengtu, Yao Qingtie. Ecomonic globalization, city network and the development of global cities. Journal of East China Normal University (Humanities and Social Sciences), 2019, 51(5): 67-78, 237-238. ]

[10]
练文华, 张晓平, 吴爱萍, 等. 中国光伏装备制造业空间布局演化及影响因素分析[J]. 地理研究, 2024, 43(3): 679-700.

DOI

[Lian Wenhua, Zhang Xiaoping, Wu Aiping, et al. Spatiotemporal evolution of photovoltaic equipment manufacturing industry in China and its influencing factors. Geographical Research, 2024, 43(3): 679-700. ]

[11]
工业和信息化部. 智能光伏产业创新发展行动计划(2021—2025年) [EB/OL]. 2022-01-04 [2024-5-10]. https://www.ncsti.gov.cn/zcfg/zcwj/202201/t20220105_55224.html.

[Ministry of industry and information technology. Action plan for innovative development of smart photovoltaic industry (2021-2025). 2022-01-04 [2024-5-10]. https://www.ncsti.gov.cn/zcfg/zcwj/202201/t20220105_55224.html.]

[12]
Zhou Y, Pan M J, Urban F. Comparing the international knowledge flow of China's wind and solar photovoltaic (PV) industries: Patent analysis and implications for sustainable development[J]. Sustainability, 2018, 10(6): 1883. doi: 10.3390/su10061883.

[13]
Duan H B, Zhu L, Fan Y. A cross-country study on the relationship between diffusion of wind and photovoltaic solar technology[J]. Technological Forecasting and Social Change, 2014, 83: 156-169.

[14]
Ding J F, Du D B, Duan D Z, et al. A network analysis of global competition in photovoltaic technologies: Evidence from patent data[J]. Applied Energy, 2024, 375: 124010. doi: 10.1016/j.apenergy.2024.124010.

[15]
De Paulo A F, Ribeiro E M S, Porto G S. Mapping countries cooperation networks in photovoltaic technology development based on patent analysis[J]. Scientometrics, 2018, 117(2): 667-686.

[16]
贺灿飞. 高级经济地理学[M]. 北京: 商务印书馆, 2021: 483-484.

[He Canfei. Adcanced economic geography . Beijing, China: The Commercial Press, 2021: 483-484. ]

[17]
周灿, 曾刚, 尚勇敏. 演化经济地理学视角下创新网络研究进展与展望[J]. 经济地理, 2019, 39(5): 27-36.

DOI

[Zhou Can, Zeng Gang, Shang Yongmin. Progress and prospect of research on innovation networks: A perspective from evolutionary economic geography. Economic Geography, 2019, 39(5): 27-36. ]

[18]
Castellani D, Perri A, Scalera V G, et al. Cross-border innovation in a changing world:Players, places, and policies[M]. Oxford, UK: Oxford University Press, 2022: 160-164.

[19]
顾伟男, 刘慧, 王亮. 国外创新网络演化机制研究[J]. 地理科学进展, 2019, 38(12): 1977-1990.

DOI

[Gu Weinan, Liu Hui, Wang Liang. International research on the evolution mechanisms of innovation networks. Progress in Geography, 2019, 38(12): 1977-1990. ]

DOI

[20]
于英杰, 吕拉昌. 中国城市知识创新职能空间分异及其影响因素[J]. 地理学报, 2023, 78(2): 315-333.

DOI

[Yu Yingjie, Lv Lachang. Spatial pattern of urban knowledge innovation function in China and its influencing factors. Acta Geographica Sinica, 2023, 78(2): 315-333. ]

DOI

[21]
Meijers E J, Burger M J. Spatial structure and productivity in US metropolitan areas[J]. Environment and Planning A: Economy and Space, 2010, 42(6): 1383-1402.

[22]
Liu L, Luo J, Xiao X, et al. Spatio-temporal evolution of urban innovation networks: A case study of the urban agglomeration in the middle reaches of the Yangtze River, China[J]. Land, 2022, 11(5): 597. doi: 10.3390/land11050597.

[23]
Chen J, Jiang L, Tian Y, et al. The study of regional innovation network structure: Evidence from the Yangtze River Delta urban agglomeration[J]. ISPRS International Journal of Geo-Information, 2023, 12(10): 428. doi: 10.3390/ijgi12100428.

[24]
马海涛, 徐楦钫, 江凯乐. 中国城市群技术知识多中心性演化特征及创新效应[J]. 地理学报, 2023, 78(2): 273-292.

DOI

[Ma Haitao, Xu Xuanfang, Jiang Kaile. The evolutionary characteristics and innovation effects of technological knowledge polycentricity in Chinese urban agglomerations. Acta Geographica Sinica, 2023, 78(2): 273-292. ]

DOI

[25]
Turkina E, Oreshkin B. The impact of co-inventor networks on smart cleantech innovation: The case of montreal agglomeration[J]. Sustainability, 2021, 13(13): 7270. doi: 10.3390/su13137270.

[26]
曹湛, 戴靓, 杨宇, 等. 基于“蜂鸣—管道”模型的中国城市知识合作模式及其对知识产出的影响[J]. 地理学报, 2022, 77(4): 960-975.

DOI

[Cao Zhan, Dai Liang, Yang Yu, et al. Knowledge collaboration patterns of Chinese cities and their impacts on knowledge output: An empirical study based on the "buzz-and-pipelines" model. Acta Geographica Sinica, 2022, 77(4): 960-975. ]

DOI

[27]
司月芳, 曾刚, 曹贤忠, 等. 基于全球—地方视角的创新网络研究进展[J]. 地理科学进展, 2016, 35(5): 600-609.

DOI

[Si Yuefang, Zeng Gang, Cao Xianzhong, et al. Research progress of glocal innovation networks. Progress in Geography, 2016, 35(5): 600-609. ]

DOI

[28]
刘通, 刘承良. “全球—地方”视角下中国创新网络演化格局与内生机制[J]. 世界地理研究, 2024, 33(9): 1-15.

[Liu Tong, Liu Chengliang. The evolution pattern and endogenous mechanism of China's innovation network: From the "glocal" perspective. World Regional Studies, 2024, 33(9): 1-15. ]

[29]
张翼鸥, 谷人旭, 马双. 中国城市间技术转移的空间特征与邻近性机理[J]. 地理科学进展, 2019, 38(3): 370-382.

DOI

[Zhang Yi'ou, Gu Renxu, Ma Shuang. Spatial characteristics and proximity mechanism of technology transfer among cities in China. Progress in Geography, 2019, 38 (3): 370-382. ]

DOI

[30]
沈静, 王毅斌, 曹媛媛. 从全球到地方: 东莞家具产业的绿色化升级路径[J]. 地理研究, 2021, 40(12): 3455-3469.

DOI

[Shen Jing, Wang Yibin, Cao Yuanyuan. From global to local: Environmental upgrading of the furniture industry in Dongguan. Geographical Research, 2021, 40(12): 3455-3469. ]

[31]
Li D Y, Alkemade F, Frenken K, et al. Catching up in clean energy technologies: A patent analysis[J]. The Journal of Technology Transfer, 2023, 48(2): 693-715.

[32]
De Paulo A F, de Oliveira Graeff C F, Porto G S. Uncovering emerging photovoltaic technologies based on patent analysis[J]. World Patent Information, 2023, 73: 102181. doi: 10.1016/j.wpi.2023.102181.

[33]
Wang Y W, Urban F, Zhou Y, et al. Comparing the technology trajectories of solar PV and solar water heaters in China: Using a patent lens[J]. Sustainability, 2018, 10(11): 4166. doi: 10.3390/su10114166.

[34]
Lai K K, Chang Y H, Bhatt P C, et al. Identifying the technological positions and roles using patent citation network: The case of solar photovoltaic cell companies[C]// Proceedings of 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). New York, USA: IEEE, 2020: 1-5.

[35]
董彩婷, 柳卸林, 高雨辰, 等. 从创新生态系统视角分析中国光伏产业的追赶与超越[J]. 科研管理, 2022, 43(12): 44-53.

[Dong Caiting, Liu Xielin, Gao Yuchen, et al. An analysis of the catching up and surpassing of China's photovoltaic industry from the perspective of innovation ecosystem. Science Research Management, 2022, 43(12): 44-53. ]

[36]
He X H, Ping Q Y, Hu W F. Does digital technology promote the sustainable development of the marine equipment manufacturing industry in China?[J]. Marine Policy, 2022, 136: 104868. doi: 10.1016/j.marpol.2021.104868.

[37]
Chang C L, Lin C Y, Lai K K, et al. The role on inter-organizational knowledge flows of patent citation network: The case of thin-film solar cells[C]// Proceedings of 2019 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). New York, USA: IEEE, 2019: 1-8.

[38]
Shubbak M H. The technological system of production and innovation: The case of photovoltaic technology in China[J]. Research Policy, 2019, 48(4): 993-1015.

[39]
Zhang F, Gallagher K S. Innovation and technology transfer through global value chains: Evidence from China's PV industry[J]. Energy Policy, 2016, 94: 191-203.

[40]
Hu F, Mou S Y, Wei S B, et al. Research on the evolution of China's photovoltaic technology innovation network from the perspective of patents[J]. Energy Strategy Reviews, 2024, 51: 101309. doi: 10.1016/j.esr.2024.101309.

[41]
国家知识产权局. 全球绿色低碳专利统计分析报告(2023)[R/OL]. 2023-05-17 [2024-09-12]. https://www.cnipa.gov.cn/art/2023/5/17/art_88_185467.html.

[State Intellectual Property Office. Global green low carbon patent statistical analysis report (2023). 2023-05-17 [2024-09-12]. https://www.cnipa.gov.cn/art/2023/5/17/art_88_185467.html.]

[42]
Momeni A, Rost K. Identification and monitoring of possible disruptive technologies by patent-development paths and topic modeling[J]. Technological Forecasting and Social Change, 2016, 104: 16-29.

[43]
吴爱萍, 张晓平, 宋现锋, 等. 2000—2019年全球核电设备贸易网络结构及其影响因素[J]. 经济地理, 2022, 42(7): 126-134, 194.

DOI

[Wu Aiping, Zhang Xiaoping, Song Xianfeng, et al. Network structure of global nuclear power equipment trade and its influencing factors from 2000 to 2019. Economic Geography, 2022, 42(7): 126-134, 194. ]

DOI

[44]
胡骁宇, 陈刚, 王光辉. 基于履历数据的“杰青”人才流动网络特征及驱动机制研究[J]. 地理科学进展, 2024, 43(9): 1771-1784.

DOI

[Hu Xiaoyu, Chen Gang, Wang Guanghui. Characteristics of Distinguished Young Scholars mobility network and driving mechanism based on curriculum vitae data. Progress in Geography, 2024, 43(9): 1771-1784. ]

DOI

[45]
Blondel V D, Guillaume J L, Lambiotte R, et al. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008, 2008: P10008. doi: 10.1088/1742-5468/2008/10/P10008.

[46]
Breiman L. Random forests[J]. Machine Learning, 2001, 45: 5-32.

[47]
Lei X P, Zhao Z Y, Zhang X, et al. Technological collaboration patterns in solar cell industry based on patent inventors and assignees analysis[J]. Scientometrics, 2013, 96(2): 427-441.

[48]
赵艳艳, 张晓平, 陈明星, 等. 中国城市空气质量的区域差异及归因分析[J]. 地理学报, 2021, 76(11): 2814-2829.

DOI

[Zhao Yanyan, Zhang Xiaoping, Chen Mingxing, et al. Regional variation of urban air quality in China and its dominant factors. Acta Geographica Sinica, 2021, 76(11): 2814-2829. ]

DOI

[49]
Shum K L, Watanabe C. Towards an institutions-theoretic framework comparing solar photovoltaic diffusion patterns in Japan and the United States[J]. International Journal of Innovation Management, 2007, 11(4): 565-592.

[50]
Song D, Jiao H, Fan C T. Overview of the photovoltaic technology status and perspective in China[J]. Renewable and Sustainable Energy Reviews, 2015, 48: 848-856.

[51]
于佳, 王勇. 中国光伏产业发展与“一带一路”新机遇: 基于新结构经济学视角的解析[J]. 西安交通大学学报(社会科学版), 2020, 40(5): 87-98.

[Yu Jia, Wang Yong. Development of the photovoltaic industry in China and new opportunities from the Belt and Road initiatives: Analysis from the perspective of new structural economics. Journal of Xi'an Jiaotong University (Social Sciences), 2020, 40(5): 87-98. ]

[52]
Wen D Y, Gao W J, Qian F Y, et al. Development of solar photovoltaic industry and market in China, Germany, Japan and the United States of America using incentive policies[J]. Energy Exploration & Exploitation, 2021, 39(5): 1429-1456.

文章导航

/