研究论文

中国城市关键数字技术创新格局:技术关联性的作用

  • 叶琴 , 1 ,
  • 蒋海云 1 ,
  • 曾刚 2 ,
  • 曹月娥 1
展开
  • 1.上海师范大学环境与地理科学学院,上海 200234
  • 2.华东师范大学中国现代城市研究中心,上海 200062

叶琴(1989— ),女,福建泰宁人,博士,副教授,硕士生导师,主要从事创新网络与区域发展研究。E-mail:

收稿日期: 2024-07-30

  修回日期: 2024-11-07

  网络出版日期: 2025-05-26

基金资助

国家自然科学基金项目(42130510)

国家自然科学基金项目(41901142)

国家自然科学基金项目(42401217)

Key digital technology innovation patterns in cities of China: The role of technological relatedness

  • YE Qin , 1 ,
  • JIANG Haiyun 1 ,
  • ZENG Gang 2 ,
  • CAO Yue'e 1
Expand
  • 1. School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
  • 2. The center for Modern Chinese City Studies, East China Normal University, Shanghai 200062, China

Received date: 2024-07-30

  Revised date: 2024-11-07

  Online published: 2025-05-26

Supported by

National Natural Science Foundation of China(42130510)

National Natural Science Foundation of China(41901142)

National Natural Science Foundation of China(42401217)

摘要

数字技术的快速发展和广泛融合深刻改变经济结构,成为重塑国家创新格局与赋能新质生产力的关键力量。论文基于2014—2022年中国城市关键数字技术发明专利数据,构建关键数字技术专利量、关键数字技术关联性密度指标,刻画中国关键数字技术创新格局演变态势,划分数字技术创新中心区、次中心区、潜力区和外围区,探究技术关联性对城市新数字技术专业化的影响。研究发现:① 中国关键数字技术创新在空间上高度集聚,“虹吸效应”明显。② 城市间新数字技术开发潜力差距缩小。许多中西部城市数字技术融合比例高,跻身技术关联性全国10强之列。③ 识别出59个中心区,其中30个位于长三角、珠三角、京津冀城市群,9个潜力区围绕中心区分布,有助于形成区域间技术互补。④ 技术关联性在中国城市新数字技术专业化中发挥关键作用。技术关联性增加10%,新数字技术专业化概率增加9%;4类区域中次中心区增幅最大;7类技术中物联网增幅最大。研究揭示了数字技术创新空间分异规律,为区域制定差异化数字技术发展战略,推进数字经济高质量发展提供科学参考。

本文引用格式

叶琴 , 蒋海云 , 曾刚 , 曹月娥 . 中国城市关键数字技术创新格局:技术关联性的作用[J]. 地理科学进展, 2025 , 44(5) : 896 -907 . DOI: 10.18306/dlkxjz.2025.05.003

Abstract

The rapid development and widespread integration of digital technologies have profoundly transformed the economic structure, becoming a key force in reshaping national innovation patterns and empowering new quality productivity. Based on the invention patent data for key digital technologies in cities of China from 2014 to 2022, this study identified indicators such as the number of key digital technology patents and the technological relatedness density of key digital technologies, to depict the trends of change of China's key digital technology innovation landscape. The study divided cities into digital technology innovation core zones, sub-core zones, potential zones, and peripheral zones, and explored the impact of technological relatedness on urban specialization in new digital technologies. The findings reveal that: 1) China's key digital technology innovation was highly concentrated spatially, with a pronounced siphon effect. 2) The gap in new digital technology development potential between cities was narrowing, with many cities in the central and western regions showing a high degree of digital technology integration, ranking among the top 10 nationally in terms of technological relatedness. 3) Fifty-nine core zones have been identified, thirty of which are located in the Yangtze River Delta, the Pearl River Delta, and the Beijing-Tianjin-Hebei urban clusters. Nine potential zones were distributed around the core zones, contributing to regional technological complementarity. 4) Technological relatedness played a key role in the specialization of new digital technologies in cities of China. A 10% increase in technological relatedness led to a 9% increase in the likelihood of specialization in new digital technologies, with the largest increase observed in sub-core zones. Among the seven categories of technologies, the Internet of Things showed the greatest growth.This study reveals the spatial differentiation patterns of digital technology innovation, providing a scientific reference for formulating region-specific digital technology development strategies and promoting high-quality growth of the digital economy.

[1]
刘维林, 程倩. 数字产业渗透、全球生产网络与非对称技术溢出[J]. 中国工业经济, 2023(3): 96-114.

[Liu Weilin, Cheng Qian. Digital industry penetration, global production network and asymmetric technology spillover. China Industrial Economics, 2023(3): 96-114.]

[2]
王胜鹏, 滕堂伟, 胡森林, 等. 中国数字经济空间网络结构演化及其驱动因素[J]. 地理科学, 2024, 44(5): 743-753.

DOI

[Wang Shengpeng, Teng Tangwei, Hu Senlin, et al. Evolution and driving factors of spatial network structure of digital economy in China. Scientia Geographica Sinica, 2024, 44(5): 743-753.]

DOI

[3]
Li R, Rao J, Wan L Y. The digital economy, enterprise digital transformation, and enterprise innovation[J]. Managerial and Decision Economics, 2022, 43(7): 2875-2886.

[4]
陶锋, 王欣然, 徐扬, 等. 数字化转型、产业链供应链韧性与企业生产率[J]. 中国工业经济, 2023(5): 118-136.

[Tao Feng, Wang Xinran, Xu Yang, et al. Digital transformation, resilience of industrial chain and supply chain,and enterprise productivity. China Industrial Economics, 2023(5): 118-136.]

[5]
黄勃, 李海彤, 江萍, 等. 战略联盟、要素流动与企业全要素生产率提升[J]. 管理世界, 2022, 38(10): 195-212.

[Huang Bo, Li Haitong, Jiang Ping, et al. Strategic alliance, factor flow and firm total factor productivity growth. Journal of Management World, 2022, 38(10): 195-212.]

[6]
李影. 中国城市数字技术创新水平的时空演变特征及趋势预测[J]. 地理研究, 2024, 43(3): 640-657.

DOI

[Li Ying. Spatio-temporal evolution characteristics and trend prediction of urban digital technology innovation levels in China. Geographical Research, 2024, 43(3): 640-657.]

[7]
孙勇, 樊杰, 刘汉初, 等. 长三角地区数字技术创新时空格局及其影响因素[J]. 经济地理, 2022, 42(2): 124-133.

DOI

[Sun Yong, Fan Jie, Liu Hanchu, et al. Spatial and temporal pattern of digital technology innovation and its influencing factors in the Yangtze River Delta. Economic Geography, 2022, 42(2): 124-133.]

DOI

[8]
周鹏, 王卓, 谭常春, 等. 数字技术创新的价值: 基于并购视角和机器学习方法的分析[J]. 中国工业经济, 2024(2): 137-154.

[Zhou Peng, Wang Zhuo, Tan Changchun, et al. The value of digital technology innovation: From the M&A perspective and machine learning methods. China Industrial Economics, 2024(2): 137-154.]

[9]
Tanner A N. The emergence of new technology-based industries: The case of fuel cells and its technological relatedness to regional knowledge bases[J]. Journal of Economic Geography, 2016, 16(3): 611-635.

[10]
Boschma R, Frenken K. The emerging empirics of evolutionary economic geography[J]. Journal of Economic Geography, 2011, 11(2): 295-307.

[11]
Neffke F, Henning M, Boschma R. How do regions diversify over time? Industry relatedness and the development of new growth paths in regions[J]. Economic Geography, 2011, 87(3): 237-265.

[12]
Balland P A, Boschma R. Mapping the potentials of regions in Europe to contribute to new knowledge production in Industry 4.0 technologies[J]. Regional Studies, 2021, 55(10/11): 1652-1666.

[13]
Gao J, Jun B G, Pentland A, et al. Spillovers across industries and regions in China's regional economic diversification[J]. Regional Studies, 2021, 55(7): 1311-1326.

[14]
贺灿飞, 任卓然, 吴婉金. 产品动态技术关联与中国出口产业地理共聚[J]. 地理研究, 2023, 42(9): 2283-2301.

[He Canfei, Ren Zhuoran, Wu Wanjin. Product dynamic relatedness and the geographical coagglomeration of China's export industry. Geographical Research, 2023, 42(9): 2283-2301.]

[15]
徐洁, 李琳. 技术关联、产业政策与中国城市突破性创新[J]. 地理研究, 2023, 42(10): 2796-2816.

DOI

[Xu Jie, Li Lin. Technological relatedness, industrial policy and breakthrough innovation in Chinese cities. Geographical Research, 2023, 42(10): 2796-2816.]

[16]
李伟, 贺灿飞. 城市新产业与城市经济增长: 演化经济地理学视角[J]. 城市发展研究, 2020, 27(6): 51-61, 173.

[Li Wei, He Canfei. New industries and urban economic growth: Perspective from evolutionary economic geography. Urban Development Studies, 2020, 27(6): 51-61, 173.]

[17]
Yoo Y J, Henfridsson O, Lyytinen K. The new organizing logic of digital innovation: An agenda for information systems research[J]. Information Systems Research, 2010, 21(4): 724-735.

[18]
Li J, Yu Y. From collaborative research to new product development: Why a central or brokered network position is not enough[J]. Journal of Knowledge Management, 2021, 26(3): 615-641.

[19]
黄先海, 高亚兴. 数实产业技术融合与企业全要素生产率: 基于中国企业专利信息的研究[J]. 中国工业经济, 2023(11): 118-136.

[Huang Xianhai, Gao Yaxing. Technology convergence of digital and real economy industries and enterprise total factor productivity: Research based on Chinese enterprise patent information. China Industrial Economics, 2023(11): 118-136.]

[20]
李雪松, 党琳, 赵宸宇. 数字化转型、融入全球创新网络与创新绩效[J]. 中国工业经济, 2022(10): 43-61.

[Li Xuesong, Dang Lin, Zhao Chenyu. Digital transformation, global innovation network and innovation performance. China Industrial Economics, 2022(10): 43-61.]

[21]
Goldfarb A, Tucker C. Digital economics[J]. Journal of Economic Literature, 2019, 57(1): 3-43.

DOI

[22]
许恒, 张一林, 曹雨佳. 数字经济、技术溢出与动态竞合政策[J]. 管理世界, 2020, 36(11): 63-84.

[Xu Heng, Zhang Yilin, Cao Yujia. Digital economy, technology spillover and dynamic coopetition policy. Journal of Management World, 2020, 36(11): 63-84.]

[23]
Boschma R, Miguelez E, Moreno R, et al. The role of relatedness and unrelatedness for the geography of technological breakthroughs in Europe[J]. Economic Geography, 2023, 99(2): 117-139.

[24]
叶琴, 曾刚, 蒋海云. 随机与蓄意攻击下长三角城市知识网络稳健性特征及其对创新绩效的影响[J]. 地理研究, 2024, 43(5): 1088-1106.

DOI

[Ye Qin, Zeng Gang, Jiang Haiyun. Robustness of knowledge networks in the Yangtze River Delta and their impact on innovation performance under random and targeted attacks. Geographical Research, 2024, 43(5): 1088-1106.]

[25]
张杰, 范雨婷. 创新型城市绿色发展: 效率测算、外部性与提升路径[J]. 中国人口·资源与环境, 2023, 33(2): 102-112.

[Zhang Jie, Fan Yuting. Green development of innovative cities: Efficiency measurement, network externalities, and improvement paths. China Population, Resources and Environment, 2023, 33(2): 102-112.]

[26]
Balland P A, Boschma R. Do scientific capabilities in specific domains matter for technological diversification in European regions?[J]. Research Policy, 2022, 51(10): 104594. doi: 10.1016/j.respol.2022.104594.

[27]
王俊松, 颜燕. 复杂度、关联度与城市技术演化路径: 基于北京、上海、深圳的对比分析[J]. 地理科学进展, 2022, 41(4): 554-566.

DOI

[Wang Junsong, Yan Yan. Complexity, relatedness and urban technology evolutionary path: A comparative study of Beijing, Shanghai, and Shenzhen in China. Progress in Geography, 2022, 41(4): 554-566.]

DOI

[28]
李源, 刘承良. 中国城市数字技术创新的时空演化及影响因素[J]. 地理科学, 2024, 44(5): 754-765.

DOI

[Li Yuan, Liu Chengliang. Spatial temporal evolution and influencing factors analysis of digital technology innovation in Chinese cities. Scientia Geographica Sinica, 2024, 44(5): 754-765.]

DOI

[29]
Bravi L, Murmura F. Industry 4.0 enabling technologies as a tool for the development of a competitive strategy in Italian manufacturing companies[J]. Journal of Engineering and Technology Management, 2021, 60(2): 101629. doi: 10.1016/j.jengtecman.2021.101629.

[30]
Adebanjo D, Laosirihongthong T, Samaranayake P, et al. Key enablers of industry 4.0 development at firm level: Findings from an emerging economy[J]. IEEE Transactions on Engineering Management, 2023, 70(2): 400-416.

[31]
洪俊杰, 李研, 杨曦. 数字经济与收入差距: 数字经济核心产业的视角[J]. 经济研究, 2024, 59(5): 116-131.

[Hong Junjie, Li Yan, Yang Xi. Digital economy and income gap: From the perspective of core industries in the digital economy. Economic Research Journal, 2024, 59(5): 116-131.]

文章导航

/