研究论文

中国城市流动人口就业行业选择分异及影响因素

  • 刘振 , 1 ,
  • 戚伟 , 1, 2, * ,
  • 刘盛和 1, 2 ,
  • 齐宏纲 3 ,
  • 金浩然 4 ,
  • 张雪飞 5
展开
  • 1.中国科学院地理科学与资源研究所,中国科学院区域可持续发展分析与模拟重点实验室,北京100101
  • 2.中国科学院大学资源与环境学院,北京100049
  • 3.天津师范大学地理与环境科学学院,天津300387
  • 4.国务院发展研究中心市场经济研究所,北京 100010
  • 5.中国标准化研究院,北京100191
* 戚伟(1989— ),男,江苏泰州人,副研究员,中国地理学会会员(S110007891A),主要从事城市地理与人口地理研究。E-mail:

刘振(1990— ),男,山东滨州人,博士,副研究员,中国地理学会会员(S110010569M),主要从事城市地理和人口地理研究。E-mail:

收稿日期: 2022-12-18

  修回日期: 2023-04-24

  网络出版日期: 2023-06-26

基金资助

国家自然科学基金项目(42171237)

国家自然科学基金项目(42001166)

国家自然科学基金项目(42101237)

Employment choice of the floating population and influencing factors in China

  • LIU Zhen , 1 ,
  • QI Wei , 1, 2, * ,
  • LIU Shenghe 1, 2 ,
  • QI Honggang 3 ,
  • JIN Haoran 4 ,
  • ZHANG Xuefei 5
Expand
  • 1. Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
  • 2. University of Chinese Academy of Sciences, Beijing 100049, China
  • 3. College of Urban and Environmental Science, Tianjin Normal University, Tianjin 300387, China
  • 4. Institute of Market Economy at the Development Research Center of the State Council of China, Beijing 100010, China
  • 5. China National Institute of Standardization, Beijing 100191, China

Received date: 2022-12-18

  Revised date: 2023-04-24

  Online published: 2023-06-26

Supported by

National Natural Science Foundation of China(42171237)

National Natural Science Foundation of China(42001166)

National Natural Science Foundation of China(42101237)

摘要

准确把握流动人口就业特征是制定相关就业政策的重要基础。论文利用2017年中国流动人口动态监测调查数据,划分传统第二产业、高技术制造业、传统服务业和现代服务业等就业行业,分析流动人口就业行业选择差异,建立多层多项logistic回归模型,从个体层次和城市层次揭示其影响因素,结果表明:(1) 流动人口在就业市场处于弱势地位,其就业选择仍以传统服务业和传统第二产业为主,从事高技术制造业和现代服务业等新兴产业就业的比例较低。(2) 流动人口就业选择存在空间差异,东部地区流动人口选择传统第二产业和高技术制造业就业的比例较高,且以长三角、珠三角和山东半岛等发达地区最为突出;中西部地区和东北地区流动人口就业选择以传统服务业为主,部分城市现代服务业就业的比例相对较高,但传统第二产业、高技术制造业就业比例均较低。(3) 流动人口就业选择是流动人口嵌入城市就业结构的结果,产业结构、城镇人口规模等因素主要影响城市就业结构,而就业竞争及流动人口人力资本水平等因素则影响流动人口嵌入城市就业结构的过程,两方面因素共同影响流动人口就业行业选择。研究结果能够深化对流动人口就业选择机理的认知,特别是流动人口就业选择与城市产业发展的关系,可为流动人口就业政策的制定提供参考和支撑。

本文引用格式

刘振 , 戚伟 , 刘盛和 , 齐宏纲 , 金浩然 , 张雪飞 . 中国城市流动人口就业行业选择分异及影响因素[J]. 地理科学进展, 2023 , 42(6) : 1055 -1068 . DOI: 10.18306/dlkxjz.2023.06.003

Abstract

Understanding the employment preferences of the floating population is crucial for formulating relevant employment policies. In this study, based on the China dynamic monitoring survey data for the floating population in 2017, we categorized the employment options into traditional secondary industry, high-tech manufacturing industry, traditional service industry, and modern service industry, and then scrutinized the floating population's employment choices and spatial variations at the prefecture level. We also established a mixed-effects multinomial logistic regression model to investigate individual and regional factors of the employment choice of the floating population. The main findings of the study are as follows: 1) The majority of the floating population have engaged in employment in the traditional service and traditional secondary industry, with only a small fraction opting for high-tech manufacturing and modern service employment. 2) The percentages of the floating population engaged in employment in the traditional secondary industry and high-tech manufacturing industry were significantly higher in the eastern region than in other regions, particularly in the Yangtze River Delta, Pearl River Delta, and Shandong Peninsula. 3) Most city units in the central-west and Northeast regions had a high concentration of floating population employment in the traditional service industry, with some city units showing relatively high employment percentages in the modern service industry. 4) The floating population's employment choices were influenced by both regional and individual factors. Specifically, regional industrial structure and urban population size affected the regional employment structure, while employment competition and human capital levels of the floating population affected their integration into the regional employment structure. Moreover, gender, age, and population registration status of the floating population also affected their employment choice. The research findings can deepen the understanding of the mechanisms behind the employment choice of the floating population in Chinese cities, especially the relationship between the employment choice of the floating population and urban industrial development, providing references and support for the formulation of employment policies on the floating population.

随着城镇化的快速发展,流动人口规模保持快速增长,与流动人口相关的问题得到广泛关注[1]。第七次全国人口普查公报数据显示,2020年全国流动人口规模达到3.76亿,与2010年第六次全国人口普查相比,流动人口增加1.54亿,增长69.73%。就业是最大的民生,流动人口作为就业市场的重要组成部分,其就业问题关乎经济社会的可持续发展。由于就业技能偏低、户籍歧视等方面的原因,在较长时期内流动人口在就业竞争中并不占优势,多从事劳动密集型产业、传统服务业等行业[2-5]。近年来,城市产业结构正经历转型升级,新兴产业不断发展,产业结构变化将深刻影响就业结构[6-8]。同时,新生代流动人口正逐渐成为流动人口的主体,其就业观念和职业要求也发生明显变化[9-10]。这些方面的变化将可能深刻影响流动人口的就业选择,而准确把握当前流动人口的就业选择及其影响因素是制定流动人口相关就业政策的重要基础。
流动人口就业问题得到了广泛关注,已有学者在流动人口就业质量、就业稳定性以及就业保障等方面进行了较多的研究[11-14]。相比之下,流动人口就业选择及结构方面的研究相对较为缺乏。相关研究多从流动人口就业形式[15-16]、职业分布[3,17-21]等视角分析了流动人口的结构特征,发现流动人口以受雇或务工型等就业形式为主,且多从事低技能的职业类型。就业形式和职业视角的优势在于能够一定程度上反映流动人口的就业状态和技能,但是在产业转型升级背景下,这些研究不能较直观地反映产业发展和流动人口就业的关系,难以支撑从产业发展的角度提出促进流动人口就业的相关政策。
目前,也有一些研究分析了部分地区或单个城市流动人口的就业行业选择偏好,发现流动人口主要选择批发零售、住宿餐饮、建筑业、制造业等传统行业就业,这主要与流动人口的受教育程度、户籍类型、年龄等因素密切相关[22-24]。虽然已有研究揭示了流动人口个体因素对其就业选择差异的影响,但流动人口就业选择可能受到个体因素和城市层面因素的共同影响,因此已有研究可能还不足以充分揭示流动人口就业选择的形成机理。
针对已有研究不足,本文利用国家卫生健康委员会发布的2017年中国流动人口动态监测调查数据,从就业行业视角分析流动人口的就业选择差异,并结合个体层次和城市层次等2个方面的因素探讨其背后的形成机理,以期深化对流动人口就业选择机理及其与城市产业发展关系的认知,为流动人口就业政策的制定提供参考和支撑,具有一定的理论和实践意义。

1 研究数据与方法

1.1 研究数据与处理

本文采用的主要数据为2017 年中国流动人口动态监测调查数据(简称“监测调查数据”),该数据集通过分层、多阶段与规模成比例抽样相结合的方法在全国范围(暂缺港澳台地区数据)内对在流入地居住一个月及以上,非本区(县、市)户口的15周岁及以上男性和女性流动人口进行调查而得到,调查时点为2017年4月;该数据在流动人口相关研究中得到较广泛的应用[13,25]。在流动人口就业行业方面,监测调查数据与2017年发布的《国民经济行业分类(GB/T 4754—2017)》行业分类一致;另外,制造业进一步细分为食品加工、纺织服装、木材家具、印刷文体办公娱乐用品、化学制品加工、医药制造、专业设备制造、交通运输设备制造、电器机械及制造、计算机及通讯电子设备制造、仪器仪表制造和其他制造业。需要说明的是:(1) 部分被调查者为待业人员,无就业行业属性,未纳入研究样本;(2) 6个研究单元无数据,包括吉林省通化市、辽宁省抚顺市,以及西藏自治区的阿里地区、昌都市、那曲市、山南市。最终,本文样本数据为139841份,涉及335个地级研究单元。
另外,还包括以下2个方面数据:一是社会经济发展数据,主要来源于2015年各省份的统计年鉴数据;二是2020年中国人口普查分县资料和各省份以及地级单元发布的第七次人口普查公报数据,均用以分析城市因素对流动人口就业选择分异的影响。需要说明的是,虽然社会经济发展数据和监测调查数据为不同年份,但考虑到经济社会因素的影响可能存在时间滞后性,因此,2015年的经济社会数据能较好地反映经济社会因素对流动人口就业选择分异的影响;另外,第七次全国人口普查数据为2020年,与2017年相距较近,可较好地替代2017年相应的指标数据。

1.2 流动人口就业行业划分

流动人口就业行业涉及20个门类,难以进行逐一分析。已有研究主要将就业行业划分为第一产业、第二产业和第三产业(分别简称“一产”“二产”和“三产”)三大类进行分析[26]。但是,近年来,中国城市产业发展不断转型升级,二产中的高技术制造业和三产中的现代服务业等新兴产业不断涌现和壮大,因此有必要进一步对二产和三产进行细化分析。基于此,本文将二产进一步划分为传统第二产业和高技术制造业,将三产进一步划分为传统服务业和现代服务业,其中:(1) 传统第二产业包括采矿、食品加工、纺织服装、木材家具、印刷文体办公娱乐用品、化学制品加工、电器机械及制造、其他制造业、电煤水热生产供应以及建筑等行业;(2) 高技术制造业是指研发投入强度相对较高的制造业行业,根据国家统计局发布的高技术产业(制造业)分类(2017),本文中高技术制造业具体包括医药制造、专业设备制造、交通运输设备制造、计算机及通讯电子设备制造、仪器仪表制造等行业;(3) 传统服务业包括批发零售、交通运输、仓储和邮政、住宿餐饮、居民服务、修理和其他服务业等行业;(4) 根据科学技术部《关于印发现代服务业科技发展十二五专项规划的通知》,现代服务业是指“以现代科学技术特别是信息网络技术为主要支撑,建立在新的商业模式、服务方式和管理方法基础上的服务产业”,本文中具体包括信息传输、软件和信息技术服务、金融、房地产、租赁和商务服务、科研和技术服务、水利环境和公共设施管理、卫生和社会工作、文体和娱乐、公共管理、社会保障和社会组织以及国际组织等行业[27]

1.3 流动人口就业行业选择的影响因素分析

1.3.1 分析框架

流动人口就业选择可能受到城市因素和个体因素的共同影响(图1)。城市因素是影响流动人口就业选择的基础因素,很大程度上决定了流动人口的就业机会并影响流动人口的就业决策,城市因素可能包括以下几个方面:一是产业结构因素,城市的产业结构是影响就业结构的重要因素,进而影响一个城市能够为流动人口提供的就业机会[28-29];二是城市规模因素,规模等级较高的城市能够提供的就业机会可能更多样,且其工资水平也较高,从而影响流动人口就业行业的选择[30];三是就业竞争因素,流动人口就业将面临本地人口竞争,若流动人口在就业竞争中具有人力资本优势,其从事现代服务业等高技能就业岗位的机会更高[31-32];四是城市发展背景因素,如就业政策、文化观念等,这些因素也可能间接影响流动人口的就业选择。
图1 中国城市流动人口就业行业选择分异的分析框架

Fig.1 A framework of research on the employment choice of the floating population in the Chinese cities

流动人口如何嵌入城市就业结构将最终影响其就业行业,因此,个体因素的影响也非常重要,主要包括以下几个方面:一是性别因素,由于身体因素方面的差异,男性从事劳动密集型就业可能比女性更有优势,且在就业市场更具有竞争力,其就业选择的机会更丰富[21-22];二是年龄因素,不同年龄段流动人口在就业观念方面可能存在较大差异,年轻人口学习适应能力更强,从事新兴产业就业存在优势,而年龄较大的流动人口就业则更可能存在路径依赖;三是人力资本水平因素,流动人口自身人力资本水平不仅会导致就业观念的差异,更重要的是将直接影响流动人口就业能力和就业选择的范围[17-21];四是其他因素,如户籍因素,农村流动人口和城镇流动人口在就业技能、就业信息获取等方面存在差异,进而影响其就业选择[33]
综上所述,城市因素和个体因素可能共同影响流动人口的就业选择,其中城市因素,尤其是城市产业结构,可能是影响流动人口就业选择的基础因素,但流动人口个体因素会影响其嵌入城市就业结构的过程,并最终影响流动人口的就业行业选择。

1.3.2 多层多项logistic回归模型

流动人口就业行业选择同时受到流动人口个体层面和城市层面因素的影响,因此,定量分析通常采用随机系数的多层回归模型。根据本文就业行业类型划分情况,采用两层多项logistic回归模型,其具体模型形式如下[34]
p i j 1 = P ( y i j = 1 β ) = 1 1 + h = 1 C e x p ( z i j h )
p i j c = P ( y i j = c β ) = e x p ( z i j c ) 1 + h = 1 C e x p ( z i j h )
z i j c = α c w i j + β i c x i j
式中:yij为流入地 j(第二层,即城市层次)中流动人口 i(第一层,即个体层次)的就业行业,pij1pijc分别为流动人口在随机效应β下选择就业行业类别1(参照组)和就业行业类别c的概率,zijc则为相应的条件值集合,C为就业行业个数,h为汇总函数中的就业行业类别取值,wij为个体层次的一系列变量,xij为城市层次的一系列变量;相应地,αc为固定效应参数,βic为随机效应参数。

1.3.3 变量设置

基于分析框架,个体层次主要考虑性别、年龄、人力资本水平以及户籍地等因素(表1)。部分变量设置及说明如下:(1) 年龄因素。1980年及以后出生的流动人口已占到流动人口总规模的60%左右,因此,本文将年龄结构划分为1980年前出生、1980—1990年出生(简称“80后”)以及1990年后出生(简称“90后”)3个年龄段进行分析。(2) 人力资本水平因素。参考已有研究,采用受教育程度进行测度,分为初中及以下学历、高中学历、专科及以上学历等3个层次[35-36]。(3) 户籍地因素。根据户籍来源地分为农村户籍和城镇户籍;根据监测调查数据的问题“您老家(户籍所在地)所处的地理位置,将“农村”作为“农村户籍”处理,将“乡镇”“县城”“地级市”等作为“城镇户籍”处理。
表1 变量选取与说明

Tab.1 Variables and descriptions

影响因素 指标名称 指标简称 指标说明 均值 标准差
个体层次因素 性别 性别 Gender 男性=1,女性=0 0.57 0.49
年龄 年龄 Age70s 1980年之前出生=1,否=0 0.40 0.44
Age80s 1980—1990年出生=1,否=0 0.38 0.49
Age90s 1990年以后出生=1,否=0 0.22 0.41
人力资本水平 受教育程度 Junior 初中及以下学历=1,否=0 0.59 0.49
Senior 高中学历=1,否=0 0.22 0.42
College 专科及以上学历=1,否=0 0.19 0.39
户籍地 户籍地 Hukou 农村户籍=1,城镇户籍=0 0.88 0.32
城市层次因素 城市规模 城镇人口规模 ln Pop 2020年城镇人口规模的对数值,连续变量 14.94 1.15
产业结构 二三产业产值比值 Industry 二产产值与三产产值的比值,连续变量 1.20 0.71
就业竞争 受教育程度优势比 Competition 流动人口平均受教育年限与城市常住人口平均受教育年限的比值,连续变量 0.80 0.42
城市背景 东部地区 Coastal 东部地区=1,否=0 0.40 0.47
中西部地区 Mid-west 中西部地区=1,否=0 0.52 0.50
东北地区 Northeast 东北地区=1,否=0 0.08 0.27
在城市层次主要考虑城市规模、城市产业结构、就业竞争以及城市背景等因素,变量设置及说明如下:(1) 城市规模因素。采用城镇人口规模指标衡量城市规模,城镇人口规模越大,能够较大程度上表明该城市的规模等级越高。(2) 产业结构因素。虽然本文在流动人口就业行业选择方面,将第二产业和第三产业细分为传统制造业、高技术制造业、传统服务业和现代服务业,但目前在城市层面难以获取相应的产值数据;本文采用二产产值与三产产值的比值反映城市产业结构,主要用以分析产业结构对流动人口从事第二产业和第三产业就业的影响[8]。由于第二产业和第三产业集中于城市地区,因此,本文采用地区二三产业产值比值衡量城市的产业结构。(3) 就业竞争因素。构建流动人口受教育程度优势比指标,即流动人口平均受教育年限与城市常住人口平均受教育年限的比值,该指标值越高,则说明流动人口在城市就业竞争中具有人力资本优势。(4) 城市背景因素。划分东北地区、中西部地区和东部地区,以反映不同城市在就业政策、就业观念等方面的差异。

2 流动人口就业选择的总体特征及空间差异

总体来看,流动人口主要选择三产就业,占比达到61.4%;其次为二产就业,占比约为36.2%;而选择一产就业的比例最低,仅为2.4%。同时,流动人口在二产和三产内部的就业分化较为明显:二产就业类型中,流动人口仍以选择传统第二产业就业为主,比例达到82.9%,而选择高技术制造业就业的比例则仅为17.1%;三产就业类型中,流动人口主要选择传统服务业就业,比例达到79.4%,而选择现代服务业就业仅为20.6%。以上特征反映出流动人口主要从事低技能的就业行业。
不同城市的流动人口在就业行业选择方面存在明显差异(①农林牧渔业仅有3306个样本,很多城市样本量为0,因此未纳入分析。)。首先,东部地区流动人口选择二产就业的比例最高,形成相对连绵的高值城市,包括辽东半岛、京津冀地区、山东半岛、长三角地区、福建沿海以及珠三角地区等(图2a);具体到研究单元,镇江、泉州、温州、东莞、无锡、宁波、苏州等制造业发达的城市,流动人口选择二产就业的比例超过60%,远高于全国平均水平。在中西部地区,西北地区的内蒙古、山西和陕西等省份城市的流动人口也多选择二产就业,乌海、包头、金昌等资源型城市较为突出;此外,部分边疆地区城市流动人口二产就业比例较高,如西藏的日喀则市,这可能与第二产业的较快发展以及援建类项目的建设有关。相比之下,东北地区、长江中游地区、西南地区等地区的多数城市流动人口选择二产就业的比例低于全国平均水平(28%)。其次,流动人口选择三产就业的比例普遍较高,东部地区相对较低。将近65%的城市流动人口三产就业比例超过60%,高值区在中西部地区呈现大规模集中连片分布的特征,东北地区流动人口三产就业占比总体也较高(图2b)。
图2 流动人口就业行业选择的空间差异特征

注:本图基于自然资源部标准地图服务网站下载的审图号为GS(2019)1697号的标准地图制作,底图无修改。图a、b中28%和48%分别为2017年全国尺度第二产业和第三产业从业人员比例。

Fig.2 Spatial differences of the employment choice of the floating population

进一步分传统第二产业、高技术制造业、传统服务业和现代服务业等4个类别进行分析,主要的发现如下:(1) 东部地区多数城市流动人口选择传统第二产业就业的比例较高,其空间特征与二产就业总体情况较为相似;东北地区流动人口选择传统第二产业就业的比例相对较低,多数城市在20%以下(图2c)。(2) 东部地区流动人口选择高技术制造业就业的比例较高(图3d),包括京津冀、山东半岛、长三角、珠三角等地区,典型的城市包括深圳、北京、上海等特大城市以及东莞、苏州、烟台、无锡、大连、郑州等制造业发达的大城市。(3) 流动人口选择传统服务业就业的占比普遍较高,中西部地区最为突出,包括河南、湖南、湖北、云南、青海和甘肃等省份城市(图2e)。(4) 流动人口选择现代服务业就业的占比普遍不高,大多数城市在15%以下;高值城市主要集中在东北地区、川渝地区、安徽以及新疆的边境地区等(图2f),且以广安、茂名、贺州、白山市等中小城市最为突出。除北京、上海、广州、天津等发达城市外,东部地区大多数城市流动人口现代服务业就业占比较低。

3 流动人口就业行业选择的影响因素

考虑到以往研究多考虑二产和三产的区别,为与其进行联系和对比,本文首先分析流动人口选择二产和三产就业的影响因素;在此基础上,进一步分析流动人口选择传统第二产业、高技术制造业、传统服务业和现代服务业等就业的影响因素。

3.1 分二三产就业行业的回归结果分析

分二三产进行分析时,被解释变量仅包括2个类别,根据式(2),二产就业赋值为1,作为参照组,三产就业赋值为2,利用Stata 14.0软件对模型进行估计,结果见表2。首先,Model A0 为空模型,即未加入任何解释变量的模型,可以反映多层模型是否适用以及个体层次和城市层次对因变量解释效果的差异,其结果显示,城市层次的随机方差为0.986,组内相关系数为0.425,说明流动人口就业选择差异的42.5%由城市层次因素引起,因此,多层模型比单层模型能更好地解释流动人口就业选择的差异。
表2 分二三产就业行业的回归结果

Tab.2 Regression results of the employment structure in terms of the second and tertiary industries

指标简称 Model A0 Model A1 Model A2 Model A3
个体层次因素 Gender -0.066** -0.355** -0.070**
Age80s -0.228** -0.274** -0.221**
Age90s -0.217** -0.224** -0.237**
Senior 0.068** 0.021 0.080**
College 0.131** -0.011 0.142**
Hukou -0.071** -0.124** -0.062**
城市层次因素 ln Pop -1.229** -0.830**
Industry -1.875** -1.423**
Competition 0.367** 0.210**
Mid-west 0.594** 0.647**
Northeast 0.616** 0.416**
交互项 ln Pop×Age80s -0.417**
ln Pop×Age90s -0.468**
ln Pop×Senior 0.490**
ln Pop×College 0.085
常数项 0.771** 0.969** 2.096** -1.497**
var(常数项) 0.986** 0.975** 0.769** 0.737**
样本量 136535 136535 136535 136535
Log‐likelihood -78568.37 -78402.91 -85908.12 -96709.89

注:**表示通过1%的显著性水平检验;年龄因素的参照组为1980年以前出生,人力资本水平因素的参照组为初中及以下学历;城市背景因素的参照组为东部地区;var(常数项)为多层模型中城市层次常数项的随机方差,用以判断多层模型的适用性。

在此基础上,本文进一步构建了Model A1和Model A2等2个模型:前者仅纳入个体层次的解释变量,主要用以考察个体层次解释变量的主效应;后者则同时纳入个体层次和城市层次的解释变量,主要用以考察城市层次的解释变量。主要发现如下:
(1) 年龄因素对流动人口二三产就业选择影响最为显著。变量Age80s和Age90s的系数分别为-0.228和-0.217(Model A1),且通过1%的显著性水平检验,表明80后和90后流动人口选择三产就业的概率比1980年前出生流动人口分别低20.4%和19.5%。可能的原因在于,二产中的制造业就业能够获得一定的技能积累,且平均收入水平也较高,对年轻人口仍具有一定的吸引力。同时,很多二产行业属于劳动密集型产业,在劳动力需求方面更青睐年轻劳动力。
(2) 人力资本水平因素和户籍因素对流动人口就业选择具有一定影响。受教育程度较高的流动人口选择从事三产就业的概率更高,但变量Senior和College的系数值显示,受教育程度的影响程度并不高,高中学历和大专及以上学历流动人口从事三产就业的概率仅分别比初中及以下学历流动人口高7.0%和14.0%,可能的原因是三产涉及的行业较多,高学历流动人口从事传统服务业行业的概率不高,影响了总体结果。户籍地为农村的流动人口从事三产就业的概率更低,这可能与城乡流动人口就业观念的差异有关。
(3) 城市层次因素中,产业结构对流动人口就业选择的影响最强。二三产产值比值每提高一个单位,流动人口从事三产就业的概率将降低约84.7%,说明二产发展较好的城市,流动人口从事二产就业的概率也较高,可能的原因是二产发展较好的城市可以提供更多的二产就业机会,且制造业也更具竞争力,能够提供更高的收入。
(4) 城镇人口规模、就业竞争和城市背景等因素对流动人口的就业选择影响显著。城镇人口规模越大的城市,流动人口从事二产就业的概率越高,这可能与较大规模城市二产竞争力较强有关。流动人口就业竞争力越强的城市,流动人口从事三产就业的概率越高,这可能与三产能够提供更多的中高端就业机会有关。在城市背景方面,东北地区和中西部地区流动人口从事三产就业的概率显著高于二产,这可能与中西部地区和东北地区二产整体竞争力偏弱有关,如东北地区二产正经历转型发展。
在Model A2的基础上,Model A3进一步考虑城镇人口规模和个体层次解释变量的交互效应,结果显示:(1) 年龄因素的交互效应非常显著,年轻人口在城镇人口规模较大的城市从事三产就业的概率更低,可能的原因是这些城市能够提供较强竞争力的二产就业机会,如高技术制造业的就业机会。(2) 受教育程度因素中,高中学历流动人口在规模等级较高的城市从事三产就业的概率更高,而专科及以上学历流动人口则不存在显著差异,这可能需要通过细分二三产就业类别进行分析和解释。

3.2 分4类就业行业的回归结果分析

由于二三产内部行业之间可能存在差异,仅分二产和三产进行分析,可能难以深入揭示流动人口就业选择的机理,因此进一步分传统第二产业、高技术制造业、传统服务业和现代服务业等类别进行分析,其中传统第二产业作为参照组。与以上分析类似,空模型Model B0结果显示(表3),城市层次的随机方差为0.687,组内相关系数为0.340,说明流动人口就业选择差异的34.0%由城市层次的影响因素引起。表3为空模型和仅包含个体层次因素模型结果,表4为同时包含个体层次因素和城市层次因素的总体模型以及总体模型进一步加入交互项的结果。主要发现如下:
表3 分4类就业行业的回归结果(1):空模型及个体层次模型

Tab.3 Regression results of the employment structure in terms of four types of industries (1): The model with no independent variables and the model only including individual‐level variables

指标简称 Model B0 Model B1
(1)
高技术制造业
(2)
传统服务业
(3)
现代服务业
(4)
高技术制造业
(5)
传统服务业
(6)
现代服务业
个体层次因素 Gender 0.336** 0.054** -0.147**
Age80s 0.404** -0.157** -0.151**
Age90s 0.494** -0.184 0.128**
Senior 0.645** 0.127** 0.672**
College 1.355** -0.043* 2.040**
Hukou -0.200** -0.115 -0.348**
常数项 -1.279** 0.948** -0.553** -2.082** 1.084** -0.870**
var(常数项) 0.687** 0.692**
样本量 136535 136535
Log‐likelihood -147400.49 -139556.14

注:**、*分别表示通过1%和5%的显著性水平检验。下同。

表4 分4类就业行业的回归结果(2):总体模型及交互项

Tab.4 Regression results of the employment structure in terms of four types of industries (2): The overall model and the overall model including cross‐level interaction variables

指标简称 Model B2 Model B3
(7)
高技术制造业
(8)
传统服务业
(9)
现代服务业
(10)
高技术制造业
(11)
传统服务业
(12)
现代服务业
个体层次因素 Gender 0.361* 0.052** -0.143** 0.363* 0.052** -0.142**
Age80s 0.391** -0.143** -0.140** 0.395** -0.072** -0.117*
Age90s 0.508** -0.167 0.034** 0.520** -0.176 0.064*
Senior 0.583** 0.117** 0.640** 0.842** 0.380** 0.187**
College 1.227** -0.067** 1.963** 0.761** -0.501** 1.567**
Hukou -0.064* -0.014 -0.224** -0.052* -0.009 -0.219**
城市层次因素 ln Pop 2.067** -0.757** -0.279** 2.179** -0.652** -0.378**
Industry -1.216** -2.255** -2.793** -1.045** -2.087** -2.631**
Competition 0.388** 0.087** 0.515** 0.366** 0.305** 0.491**
Northeast 0.474** 0.867** 0.801** 0.482** 0.870** 0.804**
Mid-west -0.050** 0.579** 0.546** -0.035** 0.592** 0.560**
交互项 ln Pop×Age80s -0.022 -0.314** -0.034
ln Pop×Age90s -0.035 -0.492** -0.040
ln Pop×Senior -0.305* 0.712** 0.645**
ln Pop×College 0.631** 0.615** 0.557**
常数项 -3.399** 2.190** 0.008** -3.573** 2.035* -0.004*
var(常数项) 0.754** 0.746**
样本量 136535 136535
Log‐likelihood -137231.15 -137138.48

注:年龄因素的参照组为1980年以前出生,人力资本水平因素的参照组为初中及以下学历;城市背景因素的参照组为东部地区。

(1) 流动人口人力资本水平对就业选择影响最为显著。总体来看,随着受教育程度的提高,流动人口从事传统第二产业的概率呈下降趋势(表3),以Model B1列(4)结果为例,高中学历因素的系数为0.645,且通过1%的显著性水平检验,即高中学历流动人口从事高技术制造业的概率比初中及以下学历流动人口高90.6%;相应地,专科及以上学历流动人口从事高技术制造业的概率则比初中及以下学历流动人口高287.7%。
(2) 年龄和户籍地对流动人口就业选择具有显著影响。年轻流动人口更倾向于从事高技术制造业,80后和90后流动人口从事高技术制造业的概率分别比1980年之前出生流动人口高49.8%和63.9%;同时,90后流动人口从事现代服务业的概率也较高,反映出年轻流动人口更愿意从事新兴产业就业。户籍地为农村的流动人口从事传统第二产业和传统服务业的概率显著高于其他行业,这可能与农村流动人口就业技能相对较低有关,相对其他行业,传统第二产业和传统服务业的就业技能要求和就业门槛相对较低;另外,相对本地人口,流动人口获得较好就业机会的难度更大[3,31]
(3) 城市层次因素中,产业结构对流动人口选择传统第二产业就业和其他类型就业的差异具有显著的解释力(表4)。二三产产值比值每提高一个单位,流动人口从事高技术制造业、传统服务业和现代服务业的概率将分别降低70.4%、89.5%和93.9%,可能的原因是:大多数城市第二产业仍以传统制造业为主,高技术制造业占比相对较低,因此二三产产值比值越高意味着一个城市的传统制造业越发达,能够提供更多的就业机会,进而影响流动人口的就业选择。
(4) 城镇人口规模、就业竞争和城市背景等因素对流动人口的就业选择影响显著。城镇人口规模越大的城市,流动人口从事高技术制造业的概率越高,而从事现代服务业和传统服务业的概率则相对较低,这可能与较大规模城市高技术制造业竞争力较强有关。另外,流动人口是否从事现代服务业和高技术制造业与就业竞争因素密切相关,在流动人口人力资本水平具有优势的城市中,流动人口从事现代服务业和高技术制造业的概率越高。在城市背景方面,东北地区和中西部地区流动人口从事传统服务业的概率最高,其次为现代服务业,而传统第二产业就业概率较低。
在交互效应方面,结果显示:(1) 年龄因素的交互效应仅在传统服务业方面显著,即年轻人口在城镇人口规模较大的城市从事传统服务业的概率更低,可能的原因是这些城市就业选择更多样,且能够提供具有较强竞争力的制造业就业机会。(2) 受教育程度的交互效应较为显著,高中学历和专科及以上学历流动人口在城镇人口规模较大的城市从事传统服务业和现代服务业的概率均显著提高,可能的原因是这些城市的服务业能够提供较好的职位,对高学历流动人口吸引力更强。同时,专科及以上学历流动人口在城镇人口规模越大的城市从事高技术制造业就业的概率提升最为显著,可能的原因是城镇人口规模越大的城市能够提供更多相匹配的高技术就业岗位。
通过就业结构不同分类方法的回归结果对比,可进一步得到以下发现:年轻流动人口从事二产就业概率高于三产就业(Model A2和Model A3),这可能与高技术制造业就业密切相关,Model B2和Model B3年龄因素结果均显示,不同年龄流动人口选择传统第二产业和传统服务业就业的差异较小,而年轻流动人口从事高技术制造业的概率显著高于传统服务业和现代服务业(②在Stata 14中进行Wald 检验,Model B2和Model B3中年龄因素在高技术制造业和传统服务业以及现代服务业中的系数差异在95%的置信水平下通过显著性检验,说明年轻流动人口选择高技术制造业的概率显著高于传统服务业和现代服务业。),反映出高技术制造业对年轻流动人口的吸引力更强,说明这可能也是导致年轻流动人口从事二产就业概率高于三产就业的重要原因;二是高学历流动人口从事高技术制造业和现代服务业的概率均较高(Model B2和Model B3),这能够解释,仅比较二三产就业,专科及以上学历流动人口就业选择并不存在较大差异的原因(Model A2和Model A3);三是农村人口流动从事三产就业的概率低于二产就业(Model A2和Model A3),这可能与农村流动人口从事现代服务业的概率较低有关(Model B2和Model B3)。

4 流动人口就业选择及空间差异的形成机理

基于流动人口就业选择影响因素的分析结果,本文进一步解析流动人口就业选择及其空间分异的形成机理。从流动人口整体来看,流动人口就业选择受到宏观产业结构的影响。目前,中国产业发展处于转型期,一方面,三产就业已经超过二产就业成为就业的主体;另一方面,传统产业就业仍占据主体,新兴产业就业的占比相对较低。流动人口总体的就业结构与宏观的就业结构较为相符。但是,流动人口在就业市场处于弱势地位,以二产就业为例,2017年规模以上工业企业中,高技术制造业就业占二产就业规模的比例达到29.6%。但是流动人口该比例则仅为17.1%,这可能与流动人口人力资本水平较低以及户籍制度的影响有着密切的关系[3,31]。从流动人口个体来看,其就业行业是基于自身因素作出的预期收益最大化的选择。年龄、受教育程度以及户口来源地等因素不仅影响流动人口的就业观念,更重要的是,其决定了流动人口在就业市场中的竞争力和就业机会。
流动人口就业选择存在明显的空间差异。总体来看,东部地区流动人口多选择传统二产就业和高技术制造业就业,而中西部地区流动人口则多选择传统服务业就业,这可能受到城市因素和个体因素的双重影响。首先,城市产业结构差异导致就业机会差异,进而影响流动人口就业选择。东部地区很多城市第二产业较为发达,可以提供更充足的就业机会,以江苏省为例,根据2020年中国人口普查分县资料,多数城市二产就业占比超过40%,部分制造业发达城市二产就业比例接近甚至超过三产就业,如苏州、无锡、常州。同时,东部发达地区高技术制造业较为集中,可以为流动人口提供较丰富的高技术制造业就业机会;加之制造业平均收入水平高于传统服务业,因此,二产就业成为东部地区流动人口的主要就业选择。相比之下,中西部地区多数城市二产发展总体偏弱,而东北地区制造业面临发展转型,导致这些城市二产就业机会不足,传统服务业就业吸纳能力反而更强。如河南省三产就业比例显著高于二产就业,大多数城市三产的就业比例在60%左右;吉林省的多数城市也存在类似特征。受城市本身就业结构的影响,传统服务业成为中西部地区和东北地区等城市流动人口就业的主要路径。
同时,流动人口人力资本水平以及城市就业竞争等因素影响选择就业机会的结果。大部分流动人口人力资本水平较低,根据监测调查数据,将近60%的流动人口为初中及以下学历,人力资本水平较低的流动人口往往仅能选择技能要求较低的传统第二产业和传统服务业就业,成为流动人口在东部地区选择传统第二产业就业的重要原因,而人力资本水平较高的流动人口更愿意选择现代服务业就业。同时,流动人口就业选择受到城市就业竞争状况的影响,当其人力资本水平在就业竞争中处于优势时,其更有可能选择从事现代服务业。中西部地区和东北地区人才集聚程度相对较低,流动人口在城市就业竞争中更容易获得优势;以四川省广安市为例,根据第六次人口普查数据,常住人口中每10万人大学(专科)及以上学历的人口为2889人,而外省流入人口中则超过6000人,外省流入人口在学历上具有较大优势,因此流动人口从事现代服务业就业的比例也较高。相比之下,东部地区人才集聚程度较高,城市就业竞争更为激烈,流动人口面临更多的就业竞争,其从事现代服务业的难度相对较高[37-38];因此,尽管东部地区现代服务业可能更发达,但流动人口从事现代服务业就业的比例却低于其他地区。最后,城镇人口规模以及个体层面的性别和年龄也会影响城市就业结构以及流动人口的就业观念和能力,进而影响流动人口的就业选择。

5 结论与讨论

本文利用2017年中国流动人口动态监测调查数据,分为传统第二产业、高技术制造业、传统服务业和现代服务业等就业行业进行分析,揭示了流动人口就业行业选择的分异特征,建立多层多项logistic回归模型,探讨了流动人口就业选择的影响因素,研究结论如下:
(1) 流动人口就业选择仍以传统服务业和传统第二产业为主,但也存在显著空间分异。近年来,中国产业发展正不断转型升级,而目前流动人口选择传统服务业和传统第二产业就业的比例仍然较高。但是,不同城市间流动人口就业选择存在较大差异,东部地区多数城市流动人口选择传统第二产业和高技术制造业就业的比例明显高于其他地区:虽然中西部地区正不断承接东部地区产业转移,但流动人口选择传统第二产业和高技术制造业就业的比例仍较低,传统服务业就业占据主体,部分城市流动人口选择现代服务业就业的比例相对较高;东北地区流动人口就业选择与中西部地区呈现相似特征。
(2) 产业结构、就业竞争以及流动人口人力资本水平对流动人口就业选择影响最为显著。产业结构是影响流动人口选择空间差异的重要因素,一方面,本文模型结果显示,二产发达的城市,流动人口选择从事二产就业的比例较高,这对东部地区和中西部地区流动人口就业选择的差异具有较强的解释力;另一方面,通过典型城市的分析可以发现,高技术制造业发达的城市,如北京、上海、深圳、苏州、东莞等城市,流动人口选择高技术制造业就业的比例也较高,也在一定程度上反映出城市产业结构对流动人口就业选择的影响。但是,流动人口自身的人力资本水平及城市就业竞争则影响流动人口嵌入城市就业结构的位置。相比年龄因素,人力资本水平对流动人口就业选择具有更强的解释力,初中及以下学历流动人口从事传统第二产业的概率显著高于其他流动人口,而高学历流动人口则更多的从事高技术制造业和现代服务业。同时,流动人口人力资本水平在就业竞争中占据优势的城市,流动人口从事高技术制造业和现代服务业的概率也更高。
目前已有研究对流动人口就业选择的分析较为缺乏,相比已有研究,本文的贡献在于:一是利用2017年监测调查数据,从就业行业的视角,揭示了全国尺度流动人口就业选择的差异及其空间分异特征,相比以往职业视角的研究,就业行业的视角有助于更好地理解流动人口就业选择与产业发展的关系;同时,本文将二三产就业进一步划分出高技术制造业和现代服务业等类别,有助于进一步理解产业转型发展对流动人口就业选择的影响。二是相比已有研究多关注流动人口个体因素对就业结构的影响,本文结合城市层次和个体层次因素进行了分析,更好地揭示了流动人口就业选择及其空间分异的形成机理。
基于研究发现,本文提出以下政策建议:(1) 虽然三产已逐渐成为流动人口就业的主体,但仍需重视传统制造业对流动人口就业的吸纳作用,中西部地区可进一步通过承接产业转移发展制造业,从而促进流动人口就业;(2) 随着新生代流动人口逐渐成为流动人口的主体,发达城市亟需进一步加快产业结构升级,提升高技术制造业和现代服务业等新兴行业的就业吸纳能力;(3) 建议进一步提升流动人口就业技能,在产业转型升级背景下,未来传统产业可能会逐渐被新兴产业替代,因此需要给予低学历流动人口更多的人力资本提升方面的支持,以适应高技术制造业等新兴产业的就业需求。
同时,本文存在一些不足,主要表现在分析结果可能会受到研究数据的影响。尽管2017年监测调查数据采用了科学的抽样调查方法,但受到样本量的限制,部分研究单元的数据仍可能与实际情况存在一定偏差。未来可通过进一步获取研究数据或通过典型城市分析的方法,深化产业结构对流动人口就业选择影响的分析。
[1]
张展新, 杨思思. 流动人口研究中的概念、数据及议题综述[J]. 中国人口科学, 2013(6): 102-112, 128.

[Zhang Zhanxin, Yang Sisi. A review on the concepts, data, and fields of floating population research. Chinese Journal of Population Science, 2013(6): 102-112, 128.]

[2]
孙婧芳. 城市劳动力市场中户籍歧视的变化: 农民工的就业与工资[J]. 经济研究, 2017, 52 (8): 171-186.

[Sun Jingfang. Changes to Hukou discrimination in China's labor market: Employment and wages of rural migrant workers. Economic Research Journal, 2017, 52(8): 171-186.]

[3]
林耿, 王炼军. 阶层化背景下的就业空间: 以常住人口与流动人口为例[J]. 地理研究, 2010, 29(6): 1069-1082.

[Lin Geng, Wang Lianjun. A case study on vocation space of permanent population and floating population in the context of social stratification. Geographical Research, 2010, 29(6): 1069-1082.]

DOI

[4]
Zhu R. Wage differentials between urban residents and rural migrants in urban China during 2002-2007: A distributional analysis[J]. China Economic Review, 2016, 37: 2-14.

DOI

[5]
Zhang Z N, Wu X G. Occupational segregation and earnings inequality: Rural migrants and local workers in urban China[J]. Social Science Research, 2017, 61: 57-74.

DOI PMID

[6]
胡森林, 曾刚, 滕堂伟, 等. 长江经济带产业的集聚与演化: 基于开发区的视角[J]. 地理研究, 2020, 39(3): 611-626.

DOI

[Hu Senlin, Zeng Gang, Teng Tangwei, et al. Industrial agglomeration and evolution in the Yangtze River Economic Belt: From the perspective of development zone. Geographical Research, 2020, 39(3): 611-626.]

DOI

[7]
贺灿飞. 区域产业发展演化: 路径依赖还是路径创造?[J]. 地理研究, 2018, 37(7): 1253-1267.

DOI

[He Canfei. Regional industrial development and evolution: Path dependence or path creation? Geographical Research, 2018, 37(7): 1253-1267.]

DOI

[8]
刘艳军, 李诚固. 东北地区产业结构演变的城市化响应机理与调控[J]. 地理学报, 2009, 64(2): 153-166.

[Liu Yanjun, Li Chenggu. Regulation model and mechanism of urbanization response to the industrial structure evolvement in Northeast China. Acta Geographica Sinica, 2009, 64(2): 153-166.]

DOI

[9]
段成荣, 马学阳. 当前我国新生代农民工的“新”状况[J]. 人口与经济, 2011(4): 16-22.

[Duan Chengrong, Ma Xueyang. A study on the new situation of the younger generation of farmer-turned migrant workers in China. Population & Economics, 2011(4): 16-22.]

[10]
孟凡强, 林浩, 谢健. 农民工就业结构的代际差异: 基于中国流动人口动态监测调查数据的再研究[J]. 中国农村研究, 2020(1): 246-266.

[Meng Fanqiang, Lin Hao, Xie Jian. Intergenerational differences in the employment structure of rural migrants: Further research on the data of China Migrant Dynamic Survey. China Rural Studies, 2020(1): 246-266.]

[11]
杨凡, 杜姗姗, 陶涛. 中国流动人口失业状况及其影响因素: 基于2015年全国1%人口抽样调查数据的分析[J]. 人口研究, 2018, 42(4): 14-26.

[Yang Fan, Du Shanshan, Tao Tao. Patterns and determinants of migrant unemployment in China: An analysis of data of 2015 National One-Percent Population Sample Survey. Population Research, 2018, 42(4): 14-26.]

[12]
殷江滨. 劳动力回流的驱动因素与就业行为研究进展[J]. 地理科学进展, 2015, 34(9): 1084-1095.

DOI

[Yin Jiangbin. Advances in research on driving factors of return migration and employment behavior of migrants. Progress in Geography, 2015, 34(9): 1084-1095.]

DOI

[13]
罗恩立, 方丹丹. 家庭随迁、居留意愿与流动人口就业质量: 基于2016年全国流动人口动态监测数据的分析[J]. 人口与发展, 2020, 26(3): 117-128, 26.

[Luo Enli, Fang Dandan. Family migration, residence willingness and employment quality of the floating population: Based on the data of the floating population in 2016. Population and Development, 2020, 26(3): 117-128, 26.]

DOI

[14]
付占辉, 梅林, 郑茹敏, 等. 东北地区城市女性就业水平空间分异机制[J]. 地理科学进展, 2020, 39(8): 1308-1318.

DOI

[Fu Zhanhui, Mei Lin, Zheng Rumin, et al. Spatial differentiation mechanism of urban female employment rate in Northeast China. Progress in Geography, 2020, 39(8): 1308-1318.]

DOI

[15]
莫旋, 唐成千, 阳玉香. 城镇化进程中流动人口就业影响因素与就业选择: 分层异质视角下多元选择模型的实证分析[J]. 商业研究, 2019(7): 36-41.

[Mo Xuan, Tang Chengqian, Yang Yuxiang. Factors affecting employment of floating population in the process of urbanisation and employment choice: Empirical analysis of multivariate selection model from the perspective of stratified heterogeneity. Commercial Research, 2019(7): 36-41.]

[16]
景再方, 陈娟娟, 杨肖丽. 自雇还是受雇: 农村流动人口人力资本作用机理与实证检验: 基于CGSS数据经验分析[J]. 农业经济问题, 2018(6): 87-97.

[Jing Zaifang, Chen Juanjuan, Yang Xiaoli. Self-employed or employed: Mechanism and empirical test of human capital in rural floating population: Analysis of experience based on CGSS data. Issues in Agricultural Economy, 2018(6): 87-97.]

[17]
张晓菲, 张国俊, 周春山. 珠三角流动人口的代际就业结构分异及影响因素: 基于六城市的调查分析[J]. 热带地理, 2020, 40(5): 821-831.

DOI

[Zhang Xiaofei, Zhang Guojun, Zhou Chunshan. Generational differences in employment structure and its determinants of the floating population of the Pearl River Delta: Based on a survey of six cities. Tropical Geography, 2020, 40(5): 821-831.]

DOI

[18]
王胜今, 许世存. 吉林省流动人口的就业特征及其影响因素分析[J]. 吉林大学社会科学学报, 2013, 53(3): 5-15, 175.

[Wang Shengjin, Xu Shicun. Employment characteristics and their affecting factors in Jilin Province. Jilin University Journal Social Sciences Edition, 2013, 53(3): 5-15, 175.]

[19]
田艳平. 农民工职业选择影响因素的代际差异[J]. 中国人口·资源与环境, 2013, 23(1): 81-88.

[Tian Yanping. Intergenerational differences of factors influencing migrant workers' vocational selection. China Population, Resources and Environment, 2013, 23(1): 81-88.]

[20]
Chen Y. Occupational attainment of migrants and local workers: Findings from a survey in Shanghai's manufacturing sector[J]. Urban Studies, 2011, 48(1): 3-21.

DOI

[21]
宋健. 中国流动人口的就业特征及其影响因素: 与留守人口的比较研究[J]. 人口研究, 2010, 34(6): 32-42.

[Song Jian. Migrant employment in urban China: Characteristics and determinants: A comparative study with rural left-behind people. Population Research, 2010, 34(6): 32-42.]

[22]
邱红, 张凌云. 我国流动人口就业特征及分性别异质性研究[J]. 经济纵横, 2020(7): 84-91.

[Qiu Hong, Zhang Lingyun. A study on the employment characteristics and gender heterogeneity of floating population in China. Economic Review Journal, 2020(7): 84-91.]

[23]
葛晓巍, 叶俊涛. 刘易斯拐点下农民工就业结构及产业结构变化: 基于苏、浙、粤的调查[J]. 经济学家, 2014(2): 67-72.

[Ge Xiaowei, Ye Juntao. Changes of migrant workers' employment structure and industrial structure under Lewis turning point. Economist, 2014(2): 67-72.]

[24]
刘玉, 张雪. 基于行业特征的流动人口就业选择偏好分析: 以北京为例[J]. 城市发展研究, 2021, 28(3): 115-122.

[Liu Yu, Zhang Xue. The influence of industry characteristics on the employment choice of migrant workers: A case study of Beijing. Urban Development Studies, 2021, 28(3): 115-122.]

[25]
丁悦, 林李月, 朱宇, 等. 中国地级市间流动人口永久定居意愿的空间特征和影响因素[J]. 地理科学进展, 2021, 40(11): 1888-1899.

DOI

[Ding Yue, Lin Liyue, Zhu Yu, et al. Spatial pattern and determinants of floating population's permanent settlement intention between prefecture-level cities in China. Progress in Geography, 2021, 40(11): 1888-1899.]

[26]
王振波, 朱传耿. 中国就业的空间模式及区域划分[J]. 地理学报, 2007, 62(2): 191-199.

[Wang Zhenbo, Zhu Chuangeng. Employment spatial models and regionalization of China. Acta Geographica Sinica, 2007, 62(2): 191-199.]

DOI

[27]
王毅, 丁正山, 余茂军, 等. 基于耦合模型的现代服务业与城市化协调关系量化分析: 以江苏省常熟市为例[J]. 地理研究, 2015, 34(1): 97-108.

DOI

[Wang Yi, Ding Zhengshan, Yu Maojun, et al. Quantitative analysis of the coordination relation between modern service industry and urbanization based on coupling model: A case study of Changshu. Geographical Research, 2015, 34(1): 97-108.]

DOI

[28]
牟宇峰, 孙伟, 袁丰, 等. 长江三角洲地区产业演变的就业响应研究[J]. 地理与地理信息科学, 2013, 29(2): 60-65.

[Mu Yufeng, Sun Wei, Yuan Feng, et al. Research on employment response of industrial evolution in Yangtze River Delta. Geography and Geo-Information Science, 2013, 29(2): 60-65.]

[29]
李仲生. 中国产业结构与就业结构的变化[J]. 人口与经济, 2003(2): 43-47.

[Li Zhongsheng. The changes in industrial and employment structures of China. Population & Economics, 2003(2): 43-47.]

[30]
陆铭, 高虹, 佐藤宏. 城市规模与包容性就业[J]. 中国社会科学, 2012(10): 47-66, 206.

[Lu Ming, Gao Hong, Zuo Tenghong. On urban size and inclusive employment. Social Sciences in China, 2012(10): 47-66, 206.]

[31]
杨超, 张征宇. 流动人口与本地人口就业质量差异研究: 现状、来源与成因[J]. 财经研究, 2022, 48(4): 19-33.

[Yang Chao, Zhang Zhengyu. Research on employment quality differences between migrant population and local population: Status quo, sources, and causes. Journal of Finance and Economics, 2022, 48(4): 19-33.]

[32]
杨胜利, 高向东. 人力资本、社会支持与流动人口失业持续时间[J]. 城市问题, 2021(6): 83-94.

[Yang Shengli, Gao Xiangdong. Human capital, social support and the duration of unemployment among the floating population. Urban Problems, 2021(6): 83-94.]

[33]
陈宁, 石人炳. 制度约束、人力资本与流动人口就业分化: 基于2015年全国流动人口动态数据的实证分析[J]. 兰州学刊, 2020(11): 150-161.

[Chen Ning, Shi Renbing. Institutional constraints, human capital, and employment differentiation of floating population: Evidence from 2015 National Migrant Population Dynamic Monitoring Survey. Lanzhou Academic Journal, 2020(11): 150-161.]

[34]
Hedeker D. A mixed-effects multinomial logistic regression model[J]. Statistics in Medicine, 2003, 22(9): 1433-1446.

DOI PMID

[35]
刘涛, 韦长传, 仝德. 人力资本、社会支持与流动人口社会融入: 以北京市为例[J]. 人口与发展, 2020, 26(2): 11-22.

[Liu Tao, Wei Changchuan, Tong De. Human capital, social support and social assimilation of floating population: A case study of Beijing. Population and Development, 2020, 26(2): 11-22.]

[36]
刘晔, 徐楦钫, 马海涛. 中国城市人力资本水平与人口集聚对创新产出的影响[J]. 地理科学, 2021, 41(6): 923-932.

DOI

[Liu Ye, Xu Xuanfang, Ma Haitao. Impact of human capital stock and population concentration on innovative output in China. Scientia Geographica Sinica, 2021, 41(6): 923-932.]

DOI

[37]
齐宏纲, 赵美风, 刘盛和, 等. 2000—2015年中国高学历人才省际迁移的演化格局及影响机理[J]. 地理研究, 2022, 41(2): 456-479.

DOI

[Qi Honggang, Zhao Meifeng, Liu Shenghe, et al. Evolution pattern and its driving forces of China's interprovincial migration of highly-educated talents from 2000 to 2015. Geographical Research, 2022, 41(2): 456-479.]

DOI

[38]
聂晶鑫, 刘合林. 中国人才流动的地域模式及空间分布格局研究[J]. 地理科学, 2018, 38(12): 1979-1987.

DOI

[Nie Jingxin, Liu Helin. Spatial pattern and the resulting characteristics of talent flows in China. Scientia Geographica Sinica, 2018, 38(12): 1979-1987.]

DOI

文章导航

/