城市交通韧性研究进展及未来发展趋势
嵇涛(1988— ),男,江苏扬州人,中国科学院博士后,研究方向为交通大数据分析建模、城市灾害应急救援与辅助决策。E-mail: jitao@yzu.edu.cn |
收稿日期: 2022-07-25
修回日期: 2023-03-12
网络出版日期: 2023-05-24
基金资助
江苏省基础研究计划(青年基金项目)(BK20210833)
中国博士后科学基金面上项目(2021M703175)
江苏省双创博士项目(JSSCBS20211025)
Progress and future development trend of urban transportation resilience research
Received date: 2022-07-25
Revised date: 2023-03-12
Online published: 2023-05-24
Supported by
Natural Science Foundation of Jiangsu Province(BK20210833)
China Postdoctoral Science Foundation(2021M703175)
Double-Creation Doctoral Program of Jiangsu Province(JSSCBS20211025)
交通韧性是指在极端条件下交通系统能够通过自身抵抗、减缓以及吸收的方式维持其系统基本功能和结构的能力,或者能够在合理的时间和成本内恢复原始平衡或者新平衡状态的能力。受全球增温、海平面上升以及快速城市化的影响,极端事件的风险日益增加,从而导致城市交通运输基础设施运营面临着严峻的挑战。在此背景下,如何衡量极端事件下城市交通韧性强度(包括不同极端天气事件强度对其强度的影响),如何监测其时空分布特征和演变趋势,以及多长时间交通运输系统能够恢复正常状态?针对这些问题,目前还缺乏有效的监测方法,尤其是缺乏气候变化对交通韧性影响的时空动态变化监测。因此,如何精准识别极端事件下城市交通韧性的状态,提升自然灾害交通防治水平亟待解决。而随着大数据挖掘技术和时空预测深度学习方法的发展,为重建城市交通韧性强度时空数据集,进而揭示历史极端事件影响下城市交通韧性强度时空演变特征、变化趋势以及影响机制提供了可能。论文对国内外近50年来交通韧性研究进行了梳理和概括,结合国内外交通韧性的相关研究成果对已有的研究中存在的不足进行了评述;并指出了气候变暖情况下交通韧性研究的重点领域和方向,旨在为今后开展交通韧性研究提供新的思路。
嵇涛 , 姚炎宏 , 黄鲜 , 诸云强 , 邓社军 , 于世军 , 廖华军 . 城市交通韧性研究进展及未来发展趋势[J]. 地理科学进展, 2023 , 42(5) : 1012 -1024 . DOI: 10.18306/dlkxjz.2023.05.014
Urban transportation resilience reflects the ability of the transportation system to maintain its basic functions and structure through its resistance, mitigation, and absorption under extreme conditions, or the ability to restore the original equilibrium or reach a new equilibrium state within a reasonable time and with reasonable cost. Global warming, sea-level rise, and rapid urbanization all increase the risk of compound extreme weather events, presenting challenges for the operation of urban-related infrastructure including transportation infrastructure. In this context, some questions become important. For example, how to measure the strength of urban transportation resilience under extreme weather events (including the impact of different extreme weather event intensities on its strength); how to monitor its spatial and temporal features and evolution trends; and how long will it take for the entire system to restore balance? At present, effective monitoring methods for transportation resilience under the influence of extreme events are lacking, especially the monitoring of the temporal and spatial dynamic changes of transportation resilience under climate change, to answer these questions. Therefore, it is urgently needed to solve the problem of accurately identifying the state of urban transportation resilience under extreme weather events and improving the level of prevention and control of transportation system impact of natural hazard-related disasters. The development of big data mining technology and deep learning methods for spatiotemporal prediction made the construction of spatiotemporal datasets for evaluating and predicting urban transportation resilience possible. Such datasets can reveal the spatiotemporal evolution features, changing trends of urban transportation resilience intensity under the influence of extreme weather events, as well as the mechanism of influence. It indicates the key research areas that should be focused on for transportation resilience under climate warming. This article reviewed and summarized the research on transportation resilience in China and internationally in the past 50 years, analyzed the deficiencies in the existing research based on the relevant research results of transportation resilience in China and globally, and identified the key areas and directions of the research on transportation resilience under climate warming in order to provide new ideas for future research on transportation resilience.
表1 交通系统韧性的定义Tab.1 Definitions of resilience of transportation systems |
交通韧性定义 | 研究领域 | 文献 |
---|---|---|
系统在不发生灾难性事件下吸收冲击的能力,以及在发生破坏或灾难后维持其功能的能力 | 交通系统 | [16⇓⇓-19] |
系统能够吸收中断的能力,以减少中断的影响并保持货运流动性 | 货物运输系统 | [20⇓-22] |
系统面对冲击时的反应,以及继续提供预期服务水平的能力 | 道路运输系统 | [23] |
交通系统在经历潜在的破坏性事件后,在合理的时间内恢复到健康运行状态的速度和能力 | 铁路运输系统 | [24⇓-26] |
交通网络能够有效吸收破坏性事件,并在合理的时间范围内将系统恢复到等于或优于中断前的服务水平 | 交通基础设施 | [27] |
航空网络遭到破坏后维持现状功能及恢复到原先状态的速度 | 航空运输系统 | [28-29] |
海上运输受到事件影响中断后,在一段时间内恢复到正常状态的能力 | 海上运输系统 | [30] |
轨道系统受到事件干扰后恢复到正常状态的速度和服务水平的适应能力 | 城市轨道系统 | [31-32] |
表2 基于特征的韧性评估指标Tab.2 Resilience assessment indicators based on features |
特征指标 | 定义 | 参考文献 |
---|---|---|
冗余度 | 系统拥有相同功能的可替代的子系统 | [26,40,43⇓⇓⇓-47] |
适应性 | 系统根据外部环境的变化而灵活调节自身的形态、结构或功能,以应对新压力的能力 | [31,48⇓-50] |
有效性 | 系统发生中断时仍能保持服务和连通水平的能力 | [45,51⇓-53] |
鲁棒性 | 系统抵御和应对外界冲击的能力 | [7,54⇓⇓⇓⇓⇓⇓-61] |
依存度 | 各子系统之间的连通性,包括子系统之间关系网络连通性 | [24] |
应对性 | 在系统被破坏之前准备某些措施,并通过减少破坏性事件的潜在负面影响来增强系统韧性的能力 | [50,62-63] |
灵活性 | 系统应对突发事件冲击并在系统中断后通过应急计划适应变化的能力 | [7,24,40,26,54,56] |
快捷性 | 系统按照优先事项及时实现控制损失并避免未来系统中断目标的能力 | [7,64-65] |
[1] |
|
[2] |
|
[3] |
|
[4] |
|
[5] |
|
[6] |
|
[7] |
|
[8] |
|
[9] |
翟盘茂, 袁宇锋, 余荣, 等. 气候变化和城市可持续发展[J]. 科学通报, 2019, 64(19): 1995-2001.
[
|
[10] |
杨琦, 张雅妮, 周雨晴, 等. 复杂网络理论及其在公共交通韧性领域的应用综述[J]. 中国公路学报, 2022, 35(4): 215-229.
[
|
[11] |
周方, 赵伟, 胡翔奎, 等. 基于关键基础设施耦合关系的城市韧性评价研究[J]. 安全与环境学报, 2023, 23(4): 1014-1021.
[
|
[12] |
刘洁, 张丽佳, 石振武, 等. 交通运输系统韧性研究综述[J]. 科技和产业, 2020, 20(2): 47-52.
[
|
[13] |
|
[14] |
|
[15] |
赵瑞东, 方创琳, 刘海猛. 城市韧性研究进展与展望[J]. 地理科学进展, 2020, 39(10): 1717-1731.
[
|
[16] |
|
[17] |
|
[18] |
|
[19] |
|
[20] |
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
|
[28] |
|
[29] |
|
[30] |
|
[31] |
|
[32] |
|
[33] |
|
[34] |
Maria, Pregnolato, Alistair, et al. Assessing urban strategies for reducing the impacts of extreme weather on infrastructure networks[J]. Royal Society Open Science, 2016, 3(5): 160023. doi: 10.1098/rsos.160023.
|
[35] |
|
[36] |
|
[37] |
|
[38] |
|
[39] |
|
[40] |
|
[41] |
|
[42] |
薛锋, 何传磊, 黄倩, 等. 多式轨道交通网络的耦合协调度[J]. 吉林大学学报(工学版), 2021, 51(6): 2040-2050.
[
|
[43] |
|
[44] |
|
[45] |
|
[46] |
|
[47] |
|
[48] |
|
[49] |
|
[50] |
|
[51] |
|
[52] |
|
[53] |
Mohammad, Ilbeigi. Statistical process control for analyzing resilience of transportation networks[J]. International Journal of Disaster Risk Reduction, 2019, 33: 155-161.
|
[54] |
|
[55] |
|
[56] |
|
[57] |
|
[58] |
|
[59] |
|
[60] |
|
[61] |
|
[62] |
|
[63] |
|
[64] |
|
[65] |
|
[66] |
|
[67] |
|
[68] |
|
[69] |
|
[70] |
|
[71] |
|
[72] |
高鹏, 胡剑波, 魏高乐. 变权重的城市轨道交通复杂网络鲁棒性分析[J]. 计算机仿真, 2013, 30(9): 153-156.
[
|
[73] |
|
[74] |
|
[75] |
|
[76] |
|
[77] |
|
[78] |
|
[79] |
|
[80] |
|
[81] |
|
[82] |
|
[83] |
|
[84] |
|
[85] |
易嘉伟, 王楠, 千家乐, 等. 基于大数据的极端暴雨事件下城市道路交通及人群活动时空响应[J]. 地理学报, 2020, 75(3): 497-508.
[
|
[86] |
胡文燕, 李梦雅, 王军, 等. 暴雨内涝影响下的城市道路交通拥挤特征识别[J]. 地理科学进展, 2018, 37(6): 772-780.
[
|
[87] |
尹占娥, 许世远, 殷杰, 等. 基于小尺度的城市暴雨内涝灾害情景模拟与风险评估[J]. 地理学报, 2010, 65(5): 553-562.
[
|
[88] |
殷杰. 基于高精度地形表面模型的城市雨洪情景模拟与应急响应能力评价[J]. 地理研究, 2017, 36(6): 1138-1146.
[
|
[89] |
|
[90] |
马令勇, 王振好, 梁静, 等. 基于韧性城市理论的大庆市道路交通空间韧性策略研究[J]. 河南科学, 2018, 36(6): 978-984.
[
|
[91] |
|
[92] |
|
[93] |
|
[94] |
|
[95] |
|
[96] |
|
/
〈 |
|
〉 |