基于空间分位数模型的住宅价格分异的影响因素研究——以武汉市为例
卢新海(1965— ),男,湖北洪湖人,教授,博士生导师,主要从事土地资源管理与粮食安全研究。E-mail: xinhailu@163.com |
收稿日期: 2020-04-10
要求修回日期: 2020-07-13
网络出版日期: 2021-04-28
基金资助
国家自然科学基金项目(71673096)
国家自然科学基金项目(41771563)
国家自然科学基金项目(72042020)
中国博士后基金特别资助项目(2019T12013)
版权
Influencing factors of housing price differentiation based on the spatial quantile model: A case study of Wuhan City
Received date: 2020-04-10
Request revised date: 2020-07-13
Online published: 2021-04-28
Supported by
National Natural Science Foundation of China, No(71673096)
National Natural Science Foundation of China, No(41771563)
National Natural Science Foundation of China, No(72042020)
China Postdoctoral Science Foundation, No(2019T12013)
Copyright
住宅价格的变化是关系我国城镇化建设和社会经济高质量发展的重要问题。为探索住宅价格分位点下的影响因素,本文以我国中部国家中心城市——武汉市为例,运用空间分位数模型进行定量分析,同时将两阶段空间自回归模型结果作为对比揭示其优越性。研究表明:① 空间分位数模型不仅能考虑住宅价格的空间自相关性,而且还关注了住宅价格的条件分布特征,更为全面地描述微观因素对不同价位住宅的作用效应。②从分位点来看,高住宅价格的空间自相关性强于低住宅价格的;而且影响因素存在波动性和异质性,相比较于两阶段空间自回归的均值结果,空间分位数模型中各因素的影响程度随着分位点的变化出现上升或下降趋势,对低价、高价等不同价位的住宅影响程度存在显著差异。③ 整体而言,建筑年龄和医疗配套为负向影响因素,容积率等建筑特征、区位特征和教育配套等邻里特征变量为正向影响因素。基于研究结果,合理提高中低价位住宅区域的容积率和绿地率、加大低价住宅区的轨道交通和教育设施的投入力度等应当成为政府部门针对不同价位的住宅制定差异化政策措施的考虑方向。
卢新海 , 蔡大伟 , 曾晨 . 基于空间分位数模型的住宅价格分异的影响因素研究——以武汉市为例[J]. 地理科学进展, 2021 , 40(2) : 283 -292 . DOI: 10.18306/dlkxjz.2021.02.009
The change of housing price is an important issue related to urbanization and high-quality social and economic development in China. In order to explore the influencing factors in terms of the quantiles of housing price, this study took Wuhan City as a case, which is the central city of central China, and used the spatial quantile regression (SQR) model for quantitative analysis. The two-stage least squares (2SLS) model result was compared with the SQR model output to reveal its superiority. The research shows that: 1) The SQR model not only can consider the spatial autocorrelation of the housing price, but also have the capability to embed the conditional distribution characteristics, which helps to better describe the driving effects of micro-factors on different housing prices. 2) In view of the quantiles, the spatial autocorrelation of the high prices is stronger than the low prices. The influencing factors show volatility and heterogeneity. Compared with the mean result of the 2SLS model, the influencing degree of each factor in the SQR model increases or decreases with the change of the quantile. There is a significant difference in the degree of influence on housing price of different levels. 3) Overall, age of the residential building and medical facilities are negative influencing factors, and building characteristics including floor area ratio, location, and neighborhood such as nearby educational facilities are positive influencing factors. Based on the results, reasonable increase of the floor area ratio and green space ratio of low- and middle-priced residential areas, and increased investment in rail transportation and educational facilities in low-priced residential areas can be taken as alternatives for the government to formulate differentiated policy measures for housing with different levels of prices.
表1 住宅特征价格模型的指标体系Tab.1 Variables of the housing price model |
特征类型 | 变量名称 | 量化方式 |
---|---|---|
建筑特征 | 建筑年龄 | 距小区建成年份 |
容积率 | 小区的建筑总面积/小区宗地面积 | |
绿地率 | 小区绿化面积/小区宗地面积 | |
区位特征 | 交通区位 | 小区距最近地铁站的距离 |
环线区位 | 小区所处环线位置(一环内:3分;一环外二环内:2分;二环外三环内:1分) | |
邻里特征 | 教育配套 | 小区附近1 km内有无幼儿园、小学、中学、大学,每项设为1分,共4分 |
生活配套 | 小区附近1 km内有无商场、超市、菜市,每项设为1分,共3分 | |
环境设施 | 小区距最近公园的距离 | |
医疗设施 | 小区距最近医院(不含诊所、卫生院)的距离 | |
金融设施 | 小区距最近银行(不含ATM机)的距离 |
表2 空间分位数回归模型的估计结果Tab.2 Estimation results of spatial quantile regression model |
变量 | 2SLS | SQR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.1分位点 | 0.2分位点 | 0.3分位点 | 0.4分位点 | 0.5分位点 | 0.6分位点 | 0.7分位点 | 0.8分位点 | 0.9分位点 | ||
ln建筑年龄 | -0.138*** | -0.112*** | -0.122*** | -0.124*** | -0.135*** | -0.147*** | -0.148*** | -0.150*** | -0.151*** | -0.144*** |
(0.007) | (0.011) | (0.011) | (0.010) | (0.008) | (0.009) | (0.011) | (0.012) | (1.186) | (0.018) | |
容积率 | 0.012*** | 0.005 | 0.006 | 0.009* | 0.013** | 0.012*** | 0.015*** | 0.017** | 0.013* | 0.018* |
(0.003) | (0.003) | (0.006) | (0.005) | (0.005) | (0.004) | (0.005) | (0.007) | (0.015) | (0.010) | |
绿地率 | 0.425*** | 0.485*** | 0.365*** | 0.320*** | 0.310*** | 0.341*** | 0.411*** | 0.411*** | 0.374*** | 0.348* |
(0.072) | (0.153) | (0.123) | (0.105) | (0.065) | (0.067) | (0.107) | (0.126) | (0.008) | (0.193) | |
ln交通区位 | -0.013* | -0.005 | -0.005 | -0.008 | -0.015** | -0.020*** | -0.020*** | -0.024** | -0.016 | -0.020 |
(0.007) | (0.009) | (0.009) | (0.011) | (0.007) | (0.007) | (0.008) | (0.011) | (0.110) | (0.016) | |
环线区位 | 0.050*** | 0.041*** | 0.061*** | 0.051*** | 0.047*** | 0.045*** | 0.038** | 0.033** | 0.039** | 0.068*** |
(0.010) | (0.014) | (0.014) | (0.012) | (0.010) | (0.010) | (0.015) | (0.015) | (0.018) | (0.023) | |
教育配套 | 0.020*** | 0.028** | 0.018* | 0.019** | 0.022*** | 0.017* | 0.007 | 0.019* | 0.020** | 0.034** |
(0.007) | (0.011) | (0.010) | (0.007) | (0.006) | (0.010) | (0.010) | (0.010) | (0.010) | (0.015) | |
生活配套 | 0.019* | 0.027 | 0.055*** | 0.040*** | 0.028** | 0.015 | 0.010 | -0.006 | 0.001 | -0.004 |
(0.011) | (0.017) | (0.018) | (0.014) | (0.012) | (0.014) | (0.019) | (0.020) | (0.020) | (0.026) | |
ln环境设施 | -0.032*** | -0.032** | -0.026* | -0.038*** | -0.037*** | -0.038*** | -0.034*** | -0.027*** | -0.028*** | -0.039** |
(0.009) | (0.014) | (0.015) | (0.009) | (0.007) | (0.008) | (0.009) | (0.010) | (0.011) | (0.017) | |
ln医疗设施 | 0.014** | 0.011 | 0.015** | 0.022*** | 0.021*** | 0.014* | 0.010 | 0.011 | 0.012 | 0.019 |
(0.006) | (0.008) | (0.008) | (0.006) | (0.006) | (0.007) | (0.008) | (0.008) | (0.012) | (0.015) | |
ln金融设施 | -0.017*** | 0.001 | -0.014* | -0.013* | -0.014** | -0.011* | -0.015* | -0.022** | -0.030*** | -0.024* |
(0.005) | (0.009) | (0.008) | (0.007) | (0.005) | (0.006) | (0.008) | (0.009) | (0.011) | (0.012) | |
常数项 | 3.145*** | 3.400*** | 4.892*** | 4.699*** | 4.347*** | 3.538*** | 2.600* | 2.574* | 1.975* | 3.826*** |
(0.785) | (1.255) | (1.314) | (0.963) | (0.905) | (1.033) | (1.423) | (1.364) | (1.186) | (1.323) | |
0.712*** | 0.648*** | 0.501*** | 0.537*** | 0.586*** | 0.684*** | 0.786*** | 0.795*** | 0.858*** | 0.669*** | |
(0.079) | (0.124) | (0.128) | (0.097) | (0.092) | (0.106) | (0.146) | (0.141) | (0.120) | (0.129) |
注:*、**、***表示系数分别通过了0.1、0.05和0.01的显著性检验;括号内为通过100次bootstrap抽样得到的标准误。 |
[1] |
张绍良, 李晶晶, 公云龙 . 基于特征价格模型的城市住宅价格影响因素研究[J]. 地域研究与开发, 2013,32(4):80-83.
[
|
[2] |
尹上岗, 宋伟轩, 马志飞 , 等. 南京市住宅价格时空分异格局及其影响因素分析: 基于地理加权回归模型的实证研究[J]. 人文地理, 2018,33(3):68-77.
[
|
[3] |
崔娜娜, 古恒宇, 沈体雁 . 北京市住房价格和租金的空间分异与相互关系[J]. 地理研究, 2019,38(6):1420-1434.
[
|
[4] |
宋伟轩, 毛宁, 陈培阳 , 等. 基于住宅价格视角的居住分异耦合机制与时空特征: 以南京为例[J]. 地理学报, 2017,72(4):589-602.
[
|
[5] |
王福良, 冯长春, 甘霖 . 轨道交通对沿线住宅价格影响的分市场研究: 以深圳市龙岗线为例[J]. 地理科学进展, 2014,33(6):765-772.
[
|
[6] |
宋伟轩, 马雨竹, 陈艳如 . 南京城区住宅售租价格时空分异与影响因素[J]. 地理科学进展, 2018,37(9):1268-1276.
[
|
[7] |
王健, 景霖霖, 彭山桂 , 等. 基于空间计量模型的商品住宅开发商定价互动影响及其空间分异研究: 以济南市为例[J]. 中国土地科学, 2019,33(1):24-31.
[
|
[8] |
|
[9] |
|
[10] |
吴晓隽, 裘佳璐 . Airbnb房源价格影响因素研究: 基于中国36个城市的数据[J]. 旅游学刊, 2019,34(4):13-28.
[
|
[11] |
程亚鹏 . 城市住房子市场价格差异的分位数分解方法与实证[J]. 中国管理科学, 2017,25(6):39-49.
[
|
[12] |
|
[13] |
|
[14] |
|
[15] |
|
[16] |
|
[17] |
|
[18] |
黄静, 崔光灿, 王诤诤 . 大型主题乐园对周边住宅价格的影响分析: 以上海迪士尼为例[J]. 城市发展研究, 2018,25(5):37-43.
[
|
[19] |
毛德华, 吴亚菱, 袁周炎妍 , 等. 长沙市生态景观对住宅价格的影响分析[J]. 经济地理, 2018,38(8):76-82.
[
|
[20] |
陈建宝, 丁军军 . 分位数回归技术综述[J]. 统计与信息论坛, 2008(3):89-96.
[
|
[21] |
|
[22] |
|
[23] |
|
[24] |
|
[25] |
|
[26] |
|
[27] |
王芳, 高晓路, 颜秉秋 . 基于住宅价格的北京城市空间结构研究[J]. 地理科学进展, 2014,33(10):1322-1331.
[
|
[28] |
王洪强, 李小雪, 张英婕 . 上海市住宅租金价格空间分异格局及其影响因素分析[J]. 管理现代化, 2019,39(5):95-100.
[
|
[29] |
张凌, 常欣, 温海珍 . 重大事件与政策调整对杭州市住房市场价量波动的影响[J]. 浙江大学学报(理学版), 2017,44(3):363-368, 378.
[
|
/
〈 |
|
〉 |