城市地理

基于探索性空间数据分析方法的北京市区域经济差异

展开
  • 中国科学院地理科学与资源研究所资源与环境信息系统国家重点实验室|北京100101
马晓熠(1978-)|女|助理研究员|主要研究方向为空间数据挖掘。E-mail: maxy@1reis.ac.cn

收稿日期: 2010-02-01

  修回日期: 2010-07-01

  网络出版日期: 2010-12-25

基金资助

科技部863 课题(2006AA120106);中国科学院地理科学与资源研究所自主部署创新项目(200905004)。

Exploratory Spatial Data Analysis of Regional Economic Disparities in Beijing during 2001-2007

Expand
  • Lab Resources and Environment Information System, Institute of Geographic Sciences &|Natural Resources Research, CAS, Beijing 100101, China

Received date: 2010-02-01

  Revised date: 2010-07-01

  Online published: 2010-12-25

摘要

我国区域经济的不平衡发展是政府和社会普遍关注的问题。针对城乡之间的较大尺度上的空间差异研究已经受到普遍的关注,但对经济发展迅猛的特大城市(如北京、重庆、上海等)内部贫富差距加大的现象尚未引起足够的重视,而这种现象有可能成为经济可持续发展和社会稳定的严重隐患。因此,正确认识特大城市内部的经济差异及演变趋势,是实现区域协调发展的重要条件之一。本文采用探索性空间数据分析方法,以北京市18 区/县的人均GDP作为评估标准,分析了北京市18 区(县)在2001-2007 年,即2008 年奥运会筹备期间的经济发展的空间格局及其变化规律。分析结果表明北京市人均GDP的空间分布自2005 年后开始有向负的空间自相关性发展的趋势,暗示北京各区县的经济发展局部分异正在逐渐拉大,并显示由过去的南低北高的经济发展差异格局逐步转变为中心高周边低的空间分布格局。

本文引用格式

马晓熠, 裴韬 . 基于探索性空间数据分析方法的北京市区域经济差异[J]. 地理科学进展, 2010 , 29(12) : 1555 -1561 . DOI: 10.11820/dlkxjz.2010.12.012

Abstract

The unbalanced development of regional economy in China has been a ubiquitous socioeconomic phenomenon. Recently, in order to adjust the east-west and south-north polarization patterns on a large scale, the government has put forward some significant strategic decisions, such as the western development and the rejuvenation of old industrial bases in Northeast China. However, due to the less attention paid to the unbalanced economical development in the rapidly developed megalopolises, such as Beijing, Chongqing and Shanghai, the gradually expanded regional economic disparities in megalopolis may affect the sustainable development of economy and the social stability. Understanding the economic disparity in megalopolis and its developing trend is an important precondition to promote the harmonious development of regional economy. This paper aims to study the space-time dynamics of economic development in Beijing during the preparation period of the 2008 Olympic Games (2001-2007), using exploratory spatial data analysis (ESDA). ESDA emphasizes the significance of spatial interactions and geographical location in the studies of regional economic development. By identifying spatial autocorrelation and spatial heterogeneity, the economic performance can be characterized over time. Therefore, ESDA is a powerful tool for revealing the development of regional economic disparities. Previous studies have been implemented on this issue existing in Europe and the Huaihai Economic Zone of China by using ESDA. However, few of them revealed the space-time dynamics of regional economy in inner megalopolis. This study, combining ESDA with GIS technology, attempts to investigate the development of regional economy in Beijing from 2001 to 2007. Our method is based regional per capita gross domestic product (GDP) at a county level . The results do not show strong evidences of global spatial autocorrelation, but present clear evidences of local spatial autocorrelation and spatial heterogeneity in the distribution of regional per capita GDP. From 2001 to 2007, the economic disparity in Beijing was not improved, and even enlarged. Moreover, a new centre-surrounding polarization pattern was gradually replacing the north-south polarization pattern in Beijing.

参考文献


[1] 赵建新. 论区域经济差距的衡量指标与测度方法. 经济地理, 1998, 18(3): 63-67.

[2] 刘兆德, 谢红彬, 范宇. 20 世纪90 年代江苏省经济发展及空间差异研究.经济地理, 2003, 23(1): 23-27.

[3] 鲁凤, 徐建华. 基于二阶段嵌套锡尔系数分解方法的中国区域经济差异研究. 地理科学, 2005, 25(4): 401-407.

[4] 陈才. 区域经济地理学. 北京: 科学出版社, 2001: 63.

[5] Rey S J, Montouri B D. U S Regional income convergence: A spatial econometric perspective. Regional Studies, 1999, 33(2): 143-156.

[6] López-Bazo E, Vayá E, Artís M. Regional externalities and growth: Evidence from European regions. Regional Science, 2004, 44(1): 43-73.

[7] Le Gallo J, Ertur C. Exploratory spatial data analysis of the distribution of regional per capita GDP in Europe, 1980-1995. Regional Science, 2003, 82(2): 175-201.

[8] Ertur C, Koch W. Regional disparities in the European Union and the enlargement process: An exploratory spatial data analysis, 1995-2000. Annals of Regional Science, 2006, 40(4): 723-765.

[9] 唐建军. 长三角区域经济探索性空间数据分析. 浙江统计, 2007(9): 25-27.

[10] 仇方道, 朱传耿, 佟连军, 等. 淮海经济区县域经济差异变动的空间分析. 地理科学, 2009, 29(1): 56-63.

[11] Anselin L. Interactive techniques and exploratory spatial data analysis//Longley P, Goodchild M, Maguire D, Rhind D. Geographical Information Systems: Principles, Techniques, Management and Applications, New York: Wiley, 1999: 251-264.

[12] 马晓冬, 马荣华, 徐建刚. 基于ESDA-GIS的城镇群体空间结构. 地理学报,2004, 59(6):1048-1057.

[13] 陈斐, 杜道生. 空间统计分析与GIS 在区域经济分析中的应用. 武汉大学学报: 信息学报, 2002, 27(4):391-396.

[14] Getis A, Ord J K. The analysis of spatial association by use of distance statistics. Geographical Analysis,1992, 24: 189-206.

[15] Ord J K, Getis A. Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 1995, 27(4): 286-305.

[16] Anselin L. The Moran scatterplot as an ESDA tool to assess local instability in spatial association//Fischer M, Scholten H J, Unwin D. Spatial Analytical Perspectives on GIS: GISDATA 4, London: Taylor & Francis, 1996: 111-125.

[17] Anselin L. Local indicators of spatial association-LISA. Geographical Analysis, 1995, 27(2): 93-115.

[18] Anselin L., 2003. GeoDa 0.9 User’s Guide. June 15, 2003 revision. Spatial Analysis Laboratory, University of Illinois and Centre for Spatially Integrated Social Science, Urbana-Champaign, IL.

[19] 马清裕, 张文尝. 北京市居住郊区化分布特征及其影响因素. 地理研究, 2005, 25(1): 121-131.

[20] 万新恒. 关于石景山区2006 年国民经济和社会发展计划执行情况与2007 年国民经济和社会发展计划草案的报告. 石景山信息网, 2006-12-26
[2009-10-15]. http://www.bjsjs.gov.cn/affair/guihuajh/8a8481d21b533410011b584631130012.htm

文章导航

/