PROGRESS IN GEOGRAPHY ›› 2023, Vol. 42 ›› Issue (1): 197-208.doi: 10.18306/dlkxjz.2023.01.016
• Reviews • Previous Articles
NING Jiachen1,2(), WU Jidong1,2,*(
), TANG Rumei1, CHEN Xiaojuan3, XU Yingjun2
Received:
2022-07-22
Revised:
2022-10-19
Online:
2023-01-28
Published:
2023-03-28
Contact:
WU Jidong
E-mail:JiachenNing@mail.bnu.edu.cn;wujidong@bnu.edu.cn
Supported by:
NING Jiachen, WU Jidong, TANG Rumei, CHEN Xiaojuan, XU Yingjun. Multi-hazard risk assessment methods: A comparative analysis based on five authoritative reports[J].PROGRESS IN GEOGRAPHY, 2023, 42(1): 197-208.
Tab.1
Basic information of the five risk assessment reports
报告名称 | 起始年份 | 选择年份 | 发布频次 | 发布机构 | 发布形式 | 官方网站 |
---|---|---|---|---|---|---|
CRI[ | 2007 | 2021 | 每年 | 德国观察 | 年度报告 | |
GAR[ | 2009 | 2019 | 每2年 | 联合国减灾署 | 年度报告 | |
WRI[ | 2011 | 2020 | 每年 | 德国发展援助联盟 | 年度报告 | |
INFORM[ | 2014 | 2020 | 每年 | 欧盟联合研究中心 | 年度报告 | |
WNDR[ | 2015 | 2015 | 无 | 北京师范大学 | 书籍 |
Tab.3
Assessment contents of the five reports
报告 | 灾种个数 | 国家/地区 个数 | 最小评估单元 | 风险表达 | 等级划分 |
---|---|---|---|---|---|
CRI | 3 | 182 | 国家(地区) | 气候风险指数 | 以评估得分数值10、20、50、100为界 |
GAR | 5 | 216 | 国家(地区) | 年平均损失的期望值;最大可能损失 | 无 |
WRI | 5 | 181 | 国家(地区) | 世界风险指数 | 分位数分级法 |
INFORM | 5 | 191 | 国家(地区) | INFORM风险指数 | Ward最小方差准则 |
WNDR | 10 | 195 | 0.5°×0.5° | 年平均伤亡人数的等级和年平均经济损失的等级 | 以评估得分的10%、35%、65%、90%分位数为界 |
Tab.4
Comparison of risk assessment equations in the five risk assessment reports
报告 | 模型类型 | 模型公式 | 参数含义 |
---|---|---|---|
GAR | 定量风险评估 | AAL为灾害年期望损失,E(P|Event i)为事件i造成的期望损失,FA(Event i)为事件i年发生频次,Events为事件总数 | |
WNDR | 半定量风险评估 | TRI指综合自然灾害相对风险等级;ri指灾种i的风险等级;wi指灾种i在综合自然灾害风险中所占的权重;n指自然灾害风险种类数 | |
INFORM | 半定量风险评估 | ||
WRI | 半定量风险评估 | ||
CRI | 半定量风险评估 |
Tab.5
Comparison of the five risk assessment reports on China's risk ranking
报告 | 评估指标 | 得分 | 全球中位数 | 排名 | 国家(地区)总数 | 全球百分位次 |
---|---|---|---|---|---|---|
WNDR | 绝对人口风险 | 无 | 无 | 2 | 195 | 1.03% |
绝对经济风险 | 无 | 无 | 3 | 196 | 1.53% | |
GAR | 绝对损失风险 | 无 | 无 | 3 | 216 | 1.39% |
CRI | CRI score | 42.83 | 79.67 | 32 | 130 | 24.62% |
INFORM | INFORM risk index | 4.20 | 3.70 | 71 | 191 | 37.17% |
WRI | World risk index | 5.84 | 6.42 | 100 | 181 | 55.25% |
Tab.8
Advantages and disadvantages of the five authoritative global reports
报告 | 主要优点 | 主要缺点 |
---|---|---|
GAR | ① 专业性和科学性强 ② 不同灾种采取不同评估方法 ③ 根据不同地理条件划分各灾种分区 | ① 模型模拟要求高、计算较复杂 ② 缺乏持续动态更新机制 ③ 原有空间数据信息平台关停,普通大众难以获取 |
INFORM | ① 评估模型易操作、输入数据来源有保障 ② 考虑暴力冲突等人为灾害 ③ 充分考虑各种社会经济因素 | ① 没有考虑预警系统对风险的影响 ② 风险因子权重设定受主观因素影响 |
WRI | ① 评估方法明确 ② 各项指标数据给出清晰来源 ③ 考虑海平面上升带来的风险 | ① 没有考虑灾害的致灾强度 ② 脆弱性维度覆盖领域较少 ③ 风险因子权重受主观因素影响 |
WNDR | ① 灾种覆盖全面 ② 对各灾种不同强度进行分级 ③ 分别计算人口损失和经济损失 | ① 评估流程比较复杂 ② 缺乏动态评估更新机制 |
CRI | ① 评估目的明确 ② 评估方法简便,易于推广 | ① 仅考虑历史灾害损失特征 ② 未应用国际通用的灾害风险分析框架 |
[1] | 史培军. 五论灾害系统研究的理论与实践[J]. 自然灾害学报, 2009, 18(5): 1-9. |
[Shi Peijun. Theory and practice on disaster system research in a fifth time. Journal of Natural Disasters, 2009, 18(5): 1-9. ] | |
[2] | Unitied Nations. Agenda 21 [EB/OL]. 1992-06-14 [2021-03-12]. https://www.un.org/zh/node/181627. |
[3] | Kappes M. Multi-hazard risk analyses: A concept and its implementation[D]. Vienna, Austria: University of Vienna, 2011. |
[4] | Kappes M S, Keiler M, Glade T. From single to multi-hazard risk analyses: A concept addressing emerging challenges[C]// Malet J P, Glade T, Casagli N. Mountain risks:Bringing science to society. Strassbourg, France: CERG Editions, 2010: 351-356. |
[5] |
Tilloy A, Malamud B D, Winter H, et al. A review of quantification methodologies for multi-hazard interrelationships[J]. Earth-Science Reviews, 2019, 196: 102881. doi: 10.1016/j.earscirev.2019.102881.
doi: 10.1016/j.earscirev.2019.102881 |
[6] | 姚清林. 自然灾害链的场效机理与区链观[J]. 气象与减灾研究, 2007, 30(3): 31-36. |
[Yao Qinglin. Field effect and regional conversion as the mechanism of natural hazard chains. Meteorology and Disaster Reduction Research, 2007, 30(3): 31-36. ] | |
[7] | 史培军, 吕丽莉, 汪明, 等. 灾害系统: 灾害群、灾害链、灾害遭遇[J]. 自然灾害学报, 2014, 23(6): 1-12. |
[Shi Peijun, Lv Lili, Wang Ming, et al. Disaster system: Disaster cluster, disaster chain and disaster compound. Journal of Natural Disasters, 2014, 23(6): 1-12. ] | |
[8] |
Quigley M C, Attanayake J, King A, et al. A multi-hazards earth science perspective on the COVID-19 pandemic: The potential for concurrent and cascading crises[J]. Environment Systems and Decisions, 2020, 40(2): 199-215.
doi: 10.1007/s10669-020-09772-1 |
[9] |
Argyroudis S A, Mitoulis S Α, Winter M G, et al. Fragility of transport assets exposed to multiple hazards: State-of-the-art review toward infrastructural resilience[J]. Reliability Engineering & System Safety, 2019, 191: 106567. doi: 10.1016/j.ress.2019.106567.
doi: 10.1016/j.ress.2019.106567 |
[10] |
Li Y, Ahuja A, Padgett J E. Review of methods to assess, design for, and mitigate multiple hazards[J]. Journal of Performance of Constructed Facilities, 2012, 26(1): 104-117.
doi: 10.1061/(ASCE)CF.1943-5509.0000279 |
[11] |
Argyroudis S A, Mitoulis S A. Vulnerability of bridges to individual and multiple hazards-floods and earthquakes[J]. Reliability Engineering & System Safety, 2021, 210: 107564. doi: 10.1016/j.ress.2021.107564.
doi: 10.1016/j.ress.2021.107564 |
[12] |
Kappes M S, Papathoma-Kohle M, Keiler M. Assessing physical vulnerability for multi-hazards using an indicator-based methodology[J]. Applied Geography, 2012, 32(2): 577-590.
doi: 10.1016/j.apgeog.2011.07.002 |
[13] |
Hagenlocher M, Renaud F G, Haas S, et al. Vulnerability and risk of deltaic social-ecological systems exposed to multiple hazards[J]. Science of the Total Environment, 2018, 631/632: 71-80.
doi: 10.1016/j.scitotenv.2018.03.013 |
[14] |
余瀚, 王静爱, 柴玫, 等. 灾害链灾情累积放大研究方法进展[J]. 地理科学进展, 2014, 33(11): 1498-1511.
doi: 10.11820/dlkxjz.2014.11.007 |
[Yu Han, Wang Jing'ai, Chai Mei, et al. Review on research methods of disaster loss accumulation and amplification of disaster chains. Progress in Geography, 2014, 33(11): 1498-1511. ]
doi: 10.11820/dlkxjz.2014.11.007 |
|
[15] | Okada N. Urban diagnosis and integrated disaster risk management[J]. Journal of Natural Disaster Science, 2004, 26: 49-54. |
[16] | Mileti D S. Disasters by design: A reassessment of natural hazards in the United States[M]. Washington D C, USA: Joseph Henry Press, 1999. |
[17] | Cardona O, Schroder M G O, Reinoso E, et al. Comprehensive approach for probabilistic risk assessment (CAPRA): International initiative for disaster risk management effectiveness[R]. 14th European Conference on Earthquake Engineering. Ohrid, Northern Macedonia, 2010. |
[18] |
IPCC. Climate change 2014:Impacts, adaptation and vulnerability, Part A:Global and sectoral aspects. Contribution of working group II to the Fifth assessment report of the intergovernmental panel on climate change[M]. Cambridge, UK: Cambridge University Press, 2014. doi:10.1017/CBO9781107415379.
doi: 10.1017/CBO9781107415379 |
[19] | 史培军. 三论灾害研究的理论与实践[J]. 自然灾害学报, 2002, 11(3): 1-9. |
[Shi Peijun. Theory on disaster science and disaster dynamics. Journal of Natural Disasters. 2002, 11(3): 1-9. ] | |
[20] | 史培军. 四论灾害系统研究的理论与实践[J]. 自然灾害学报, 2005, 14(6): 1-7. |
[Shi Peijun. Theory and practice on disaster system research in a fourth time. Journal of Natural Disasters, 2005, 14(6): 1-7. ] | |
[21] | FEMA. Using HAZUS-MH for risk assessment[R]. Washington D C, USA: Federal Emergency Management Agency, 2004. |
[22] | Dilley M, Chen R S, Deichmann U, et al. Natural disaster hotspots: A global risk analysis[M]. Washington D C, USA: World Bank Publications, 2005. |
[23] | 张卫星, 周洪建. 灾害链风险评估的概念模型: 以汶川5·12特大地震为例[J]. 地理科学进展, 2013, 32(1): 130-138. |
[Zhang Weixing, Zhou Hongjian. Conceptual model of disaster chain risk assessment: Taking Wenchuan Earthquake on 12 May 2008 as a case. Progress in Geography, 2013, 32(1): 130-138. ]
doi: 10.11820/dlkxjz.2013.01.014 |
|
[24] | 刘文方, 肖盛燮, 隋严春, 等. 自然灾害链及其断链减灾模式分析[J]. 岩石力学与工程学报, 2006, 25(S1): 2675-2681. |
[Liu Wenfang, Xiao Shengxie, Sui Yanchun, et al. Analysis of natural disaster chain and chain-cutting disaster mitigation mode. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S1): 2675-2681. ] | |
[25] | Eckstein D, Künzel V, Schäfer L. Global climate risk index 2021[R]. Bonn, Germany: Germanwatch e.V., 2021. |
[26] | United Nations Office for Disaster Risk Reduction (UNDRR). Global assessment report on disaster risk reduction 2019[R]. Geneva, Switzerland: UNDRR, 2019. |
[27] | Benedikt B, Rouven D, Carsten F, et al. World risk report 2020[R]. Berlin, Germany: Bündnis Entwicklung Hilft, 2020. |
[28] |
Inter-Agency Standing Committee and the European Commission. INFORM report 2020: Shared evidence for managing crises and disasters[R]. Luxembourg, Luxembourg: Publications Office of the European Union, 2020. doi: 10.2760/953633.
doi: 10.2760/953633 |
[29] | Shi P J, Kasperson R. World atlas of natural disaster risk[M]. Berlin, Germany: Springer, 2015: 309-323. |
[30] | 国家统计局. 中国统计年鉴[J]. 北京: 中国统计出版社, 2020. |
[National Bureau of Statistics. Chinese statistical yearbook. Beijing, China: China Statistics Press, 2020. ] | |
[31] | 中国一带一路网. 已同中国签订共建“一带一路”合作文件的国家一览[EB/OL]. 2021-01-30 [2021-03-12]. https://www.yidaiyilu.gov.cn/xwzx/roll/77298.htm. |
[Belt and the Road Portal. A list of countries that have signed Belt and Road cooperation documents with China. 2021-01-30 [2021-03-12]. https://www.yidaiyilu.gov.cn/xwzx/roll/77298.htm. ] | |
[32] | Montserrat M F, Luca V, Karmen P. Index for risk management INFORM concept and methodology report, Version 2017[R]. Luxembourg, Luxembourg: Publications Office of the European Union, 2017. |
[33] |
Brooks N, Adger W N, Kelly P M. The determinants of vulnerability and adaptive capacity at the national level and the implications for adaptation[J]. Global Environmental Change, 2005, 15(2): 151-163.
doi: 10.1016/j.gloenvcha.2004.12.006 |
[34] | 孔锋. 透视大尺度综合自然灾害风险评估的主要进展和展望[J]. 灾害学, 2020, 35(2): 148-153. |
[Kong Feng. Perspective on the main progress and prospect of large-scale integrated natural disaster risk assessment. Journal of Catastrophology, 2020, 35(2): 148-153. ] | |
[35] | 崔鹏, 邹强, 陈曦, 等. “一带一路”自然灾害风险与综合减灾[J]. 中国科学院院刊, 2018, 33(S2): 38-43. |
[Cui Peng, Zou Qiang, Chen Xi, et al. Natural disaster risk and comprehensive disaster reduction along the Belt and Road. Bulletin of Chinese Academy of Sciences, 2018, 33(S2): 38-43. ] | |
[36] |
邬柯杰, 吴吉东, 叶梦琪. 社交媒体数据在自然灾害应急管理中的应用研究综述[J]. 地理科学进展, 2020, 39(8): 1412-1422.
doi: 10.18306/dlkxjz.2020.08.014 |
[Wu Kejie, Wu Jidong, Ye Mengqi. A review on the application of social media data in natural disaster emergency management. Progress in Geography, 2020, 39(8): 1412-1422. ]
doi: 10.18306/dlkxjz.2020.08.014 |
|
[37] |
Gill J C, Malamud B D. Reviewing and visualizing the interactions of natural hazards[J]. Reviews of Geophysics, 2014, 52(4): 680-722.
doi: 10.1002/2013RG000445 |
[38] |
Kappes M S, Keiler M, von Elverfeldt K, et al. Challenges of analyzing multi-hazard risk: A review[J]. Natural Hazards, 2012, 64(2): 1925-1958.
doi: 10.1007/s11069-012-0294-2 |
[39] |
Gallina V, Torresan S, Critto A, et al. A review of multi-risk methodologies for natural hazards: Consequences and challenges for a climate change impact assessment[J]. Journal of Environmental Management, 2016, 168: 123-132.
doi: 10.1016/j.jenvman.2015.11.011 pmid: 26704454 |
[40] |
Rusk J, Maharjan A, Tiwari P, et al. Multi-hazard susceptibility and exposure assessment of the Hindu Kush Himalaya[J]. Science of the Total Environment, 2022, 804: 150039. doi: 10.1016/j.scitotenv.2021.150039.
doi: 10.1016/j.scitotenv.2021.150039 |
[1] | Kan ZHOU, Jie FAN, Yong XU. Paradigm and prospects of emergent evaluation of post-disaster resource and environmental carrying capacity for reconstruction planning [J]. PROGRESS IN GEOGRAPHY, 2017, 36(3): 286-295. |
[2] | HU Aijun1,2, LI Ning1, ZHU Yande2, WU Jidong1, GUO Haifeng2, LI Chunhua3. Integrated Risk Governance Paradigm for Meteorological Disasters: Thoughts on the Low-temperature Freezing Rain and Snow Disaster in Southern China of 2008 [J]. PROGRESS IN GEOGRAPHY, 2010, 29(2): 159-165. |
|