PROGRESS IN GEOGRAPHY ›› 2023, Vol. 42 ›› Issue (1): 185-196.doi: 10.18306/dlkxjz.2023.01.015
• Reviews • Previous Articles Next Articles
REN Zhihui1,5(), SANG Yanfang1,2,5,*(
), YANG Moyuan3, WANG Yueling1, SHANG Li4
Received:
2022-05-27
Revised:
2022-09-08
Online:
2023-01-28
Published:
2023-03-28
Contact:
SANG Yanfang
E-mail:renzhihui068@163.com;sangyf@igsnrr.ac.cn
Supported by:
REN Zhihui, SANG Yanfang, YANG Moyuan, WANG Yueling, SHANG Li. Progress of research on the methods for the early warning of mountain flash flood disasters[J].PROGRESS IN GEOGRAPHY, 2023, 42(1): 185-196.
Tab.1
Main characteristics of mountain flash flood disasters in three prevention regions in China
灾害组成要素 | 东部季风区 | 蒙新干旱区 | 青藏高寒区 | |
---|---|---|---|---|
孕灾环境 | 地形地貌 | 海拔较低,以平原、丘陵地貌为主 | 海拔较高,以高山、荒漠和盆地地貌为主 | 海拔高,以高原、高山冰川和局地河谷地貌为主 |
气候特征 | 东亚季风气候特征显著,降雨丰富,多台风和暴雨等极端天气 | 大陆性气候特征显著,降雨频率低,雨量少,易出现局地强降雨 | 高寒气候特征显著,降雨时空分配极不均匀,局地气候对暴雨影响显著 | |
土壤条件 | 林下发育,淋溶性强,多为饱和—半饱和状态,有利于山洪发生 | 有机质含量低,地表松散物源丰富,水土流失严重,泥石流发育 | 土层浅薄,冻土层发育;半干旱区地表松散物源丰富,泥石流发育 | |
植被条件 | 以森林、草原为主,植被覆盖度高 | 以草原、荒漠为主,植被覆盖度适中 | 以荒漠、草原、高山草甸为主,生态环境脆弱 | |
人类活动 | 强度高且范围广 | 强度适中 | 强度较低 | |
致灾因子 | 以暴雨为主 | 以局地强降雨为主 | 冰雪融水、冰湖溃决、局地强降雨共同作用 | |
承灾体 | 人口密度高,社会财产比重较高,社会经济发展水平高 | 人口较少,分布集中,社会财产比重适中 | 人口稀少,重要城镇和主要人口集中分布在河谷地区,社会经济发展水平较低 |
Tab.2
Typical mountain flash flood warning systems in the United States, Europe, Japan and China
国家/区域 | 预警系统 | 功能 | 预警指标 | 优势 |
---|---|---|---|---|
美国 | Flash Flood Guidance | 考虑降雨、土壤含水量与下垫面特性等因素,通过产汇流与洪水演进模拟,对预警指标进行反推 | 时段降雨量 | 考虑洪水产生的物理机制与诸多影响因素,结构清晰、功能强大 |
欧洲 | European Flood Alert System | 耦合气候模型与水文模型,通过输入不同分辨率的降雨预报产品,对洪水过程进行模拟与预警 | EPIC指数、ERICHA指数 | 可以提供早期洪水预警与短期洪水预报,预见期较长 |
日本 | 基于流域雨量指数的山洪预警系统 | 考虑土壤湿度、河网分布、土地利用等,采用水箱模型模拟流域出口断面流量,实现洪水预警 | 流域雨量指数 | 考虑城市与非城市下垫面产流能力的差异,计算简便 |
中国 | 基于实时监测与预报信息的山洪预警体系 | 集成山洪灾害调查结果、水文模型、实时监测与预报信息,实现中长期预警风险评估与短期实时预警 | 网格预报降雨量、 实时雨量/水位/流量 | 可实现气象预警、雨量预警和水文预报预警的有机结合,适用性强 |
Tab.3
Basic principles and deficiencies of different methods used for the estimation of critical rainfall amount
方法 | 基本原理 | 预警结果 | 存在缺陷 |
---|---|---|---|
固定临界雨量估计方法 | 雨量达到/超过某一量级和强度时,引发洪水灾害 | 洪水灾害发生概率为0 或100% | 未考虑前期土壤含水量、暴雨时空变异性、流域下垫面情况等复杂因素的影响 |
动态临界雨量估计方法 | 考虑不同因素影响的基础上,雨量达到/超过某一量级和强度时,引发洪水灾害 | 不同因素影响下,洪水灾害概率为0或100% | 通过临界雨量阈值判断洪水灾害发生或不发生,即发生概率为0或100%,但未考虑洪水灾害发生的概率与不确定性 |
[1] |
Shen M X, Chui T F M. Characterizing the responses of local floods to changing climate in three different hydroclimatic regions across the United States[J]. Advances in Water Resources, 2021, 150: 103885. doi: 10.1016/j.advwatres.2021.103885.
doi: 10.1016/j.advwatres.2021.103885 |
[2] | 涂勇, 吴泽斌, 何秉顺. 2011—2019年全国山洪灾害事件特征分析[J]. 中国防汛抗旱, 2020, 30(S1): 22-25. |
[Tu Yong, Wu Zebin, He Bingshun. Analysis on the characteristics of flash flood disasters in China from 2011 to 2019. China Flood & Drought Management, 2020, 30(S1): 22-25. ] | |
[3] | 郭良, 丁留谦, 孙东亚, 等. 中国山洪灾害防御关键技术[J]. 水利学报, 2018, 49(9): 1123-1136. |
[Guo Liang, Ding Liuqian, Sun Dongya, et al. Key techniques of flash flood disaster prevention in China. Journal of Hydraulic Engineering, 2018, 49(9): 1123-1136. ] | |
[4] | 翟晓燕, 郭良, 张永勇. 基于洪水行为特征指标的我国山洪类型辨识与模拟[J]. 中国科学: 地球科学, 2021, 51(7): 1092-1106. |
[Zhai Xiaoyan, Guo Liang, Zhang Yongyong. Identification and simulation of mountain torrents in China based on flood behavior characteristics. Scientia Sinica (Terrae), 2021, 51(7): 1092-1106. ] | |
[5] | 张平仓, 丁文峰, 王协康. 山洪灾害监测预警关键技术与集成示范研究构想和成果展望[J]. 工程科学与技术, 2018, 50(5): 1-11. |
[Zhang Pingcang, Ding Wenfeng, Wang Xiekang. Research framework and anticipated results of the key technology and integrated demonstration of mountain torrent disaster monitoring and early warning. Advanced Engineering Sciences, 2018, 50(5): 1-11. ] | |
[6] |
Carpenter T M, Sperfslage J A, Georgakakos K P, et al. National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems[J]. Journal of Hydrology, 1999, 224(1/2): 21-44.
doi: 10.1016/S0022-1694(99)00115-8 |
[7] | 李海辰, 解家毕, 郭良, 等. 中国山洪预警研究综述[J]. 人民珠江, 2017, 38(6): 29-35. |
[Li Haichen, Xie Jiabi, Guo Liang, et al. A review of the study on flash flood early warning in China. Pearl River, 2017, 38(6): 29-35. ] | |
[8] | 赵刚, 庞博, 徐宗学, 等. 中国山洪灾害危险性评价[J]. 水利学报, 2016, 47(9): 1133-1142, 1152. |
[Zhao Gang, Pang Bo, Xu Zongxue, et al. Assessment on the hazard of flash flood disasters in China. Journal of Hydraulic Engineering, 2016, 47(9): 1133-1142, 1152. ] | |
[9] |
刘樯漪, 程维明, 孙东亚, 等. 中国历史山洪灾害分布特征研究[J]. 地球信息科学学报, 2017, 19(12): 1557-1566.
doi: 10.3724/SP.J.1047.2017.01557 |
[Liu Qiangyi, Cheng Weiming, Sun Dongya, et al. Distribution characteristics of historical mountain flood in China. Journal of Geo-information Science, 2017, 19(12): 1557-1566. ] | |
[10] | 张平仓, 任洪玉, 胡维忠, 等. 中国山洪灾害区域特征及防治对策[J]. 长江科学院院报, 2007, 24(2): 9-12, 21. |
[Zhang Pingcang, Ren Hongyu, Hu Weizhong, et al. Zone characteristics of Chinese mountain torrent disasters and countermeasures. Journal of Yangtze River Scientific Research Institute, 2007, 24(2): 9-12, 21. ] | |
[11] | 赵士鹏. 中国山洪灾害系统的整体特征及其危险度区划的初步研究[J]. 自然灾害学报, 1996, 5(3): 93-99. |
[Zhao Shipeng. An elementary study on whole characteristics of mountain torrents disaster system in China and its hazard regionalization. Journal of Natural Disasters, 1996, 5(3): 93-99. ] | |
[12] | 张平仓, 赵健, 胡维忠, 等. 中国山洪灾害防治区划[M]. 武汉: 长江出版社, 2009: 126-128. |
[Zhang Pingcang, Zhao Jian, Hu Weizhong, et al. Division of mountain flood disaster prevention and control in China. Wuhan, China: Changjiang Press, 2009: 126-128. ] | |
[13] | 崔鹏, 苏凤环, 邹强, 等. 青藏高原山地灾害与气象灾害风险评估与减灾对策[J]. 科学通报, 2015, 60(32): 3067-3077. |
[Cui Peng, Su Fenghuan, Zou Qiang, et al. Risk assessment and disaster reduction strategies for mountainous and meteorological hazards in Tibetan Plateau. Chinese Science Bulletin, 2015, 60(32): 3067-3077. ] | |
[14] | 王英. 基于GIS及综合权重法的甘肃黄土高原区山洪灾害风险区划研究[J]. 中国农村水利水电, 2018(8): 118-122. |
[Wang Ying. The risk regionalization of torrential flood disaster in Loess Plateau region in Gansu based on GIS and comprehensive weight method. China Rural Water and Hydropower, 2018(8): 118-122. ] | |
[15] |
Ma W D, Liu F G, Zhou Q, et al. Estimation of critical rainfall for flood disasters in the Qinghai-Tibet Plateau[J]. Journal of Resources and Ecology, 2021, 12(5): 600-608.
doi: 10.5814/j.issn.1674-764x.2021.05.003 |
[16] |
Liu Y S, Yuan X M, Guo L, et al. Driving force analysis of the temporal and spatial distribution of flash floods in Sichuan Province[J]. Sustainability, 2017, 9(9): 1527. doi: 10.3390/su9091527.
doi: 10.3390/su9091527 |
[17] | 翟晓燕, 孙东亚, 刘荣华, 等. 山洪灾害动态预警指标分析技术框架[J]. 中国防汛抗旱, 2021, 31(10): 26-30. |
[Zhai Xiaoyan, Sun Dongya, Liu Ronghua, et al. Technical framework for dynamic early warning index analysis of flash flood disasters. China Flood & Drought Management, 2021, 31(10): 26-30. ] | |
[18] |
Ntelekos A A, Georgakakos K P, Krajewski W F. On the uncertainties of flash flood guidance: Toward probabilistic forecasting of flash floods[J]. Journal of Hydrometeorology, 2006, 7(5): 896-915.
doi: 10.1175/JHM529.1 |
[19] | 刘荣华, 周燕怡, 郭良, 等. 美国山洪灾害预警研究进展[J]. 中国防汛抗旱, 2020, 30(S1): 141-148. |
[Liu Ronghua, Zhou Yanyi, Guo Liang, et al. Research progress on early warning of flash flood disasters in the United States. China Flood & Drought Management, 2020, 30(S1): 141-148. ] | |
[20] |
Park S, Berenguer M, Sempere-Torres D. Long-term analysis of gauge-adjusted radar rainfall accumulations at European scale[J]. Journal of Hydrology, 2019, 573: 768-777.
doi: 10.1016/j.jhydrol.2019.03.093 |
[21] |
Thielen J, Bartholmes J, Ramos M H, et al. The European flood alert system, part 1: Concept and development[J]. Hydrology and Earth System Sciences, 2009, 13(2): 125-140.
doi: 10.5194/hess-13-125-2009 |
[22] |
Bartholmes J C, Thielen J, Ramos M H, et al. The European flood alert system EFAS, part 2: Statistical skill assessment of probabilistic and deterministic operational forecasts[J]. Hydrology and Earth System Sciences, 2009, 13(2): 141-153.
doi: 10.5194/hess-13-141-2009 |
[23] | 何秉顺. 日本气象厅山洪预警方法概述[J]. 中国防汛抗旱, 2020, 30(S1): 149-152. |
[He Bingshun. Overview of flash flood early warning methods of Japan Meteorological Agency. China Flood & Drought Management, 2020, 30(S1): 149-152. ] | |
[24] | 翟晓燕, 郭良, 刘荣华, 等. 中国山洪水文模型研制与应用: 以安徽省中小流域为例[J]. 应用基础与工程科学学报, 2020, 28(5): 1018-1036. |
[Zhai Xiaoyan, Guo Liang, Liu Ronghua, et al. Development and application of China flash flood hydrological model: Case study in small and medium-sized catchments of Anhui Province. Journal of Basic Science and Engineering, 2020, 28(5): 1018-1036. ] | |
[25] | 林志强, 洪健昌, 尼玛吉, 等. 基于HBV模型的尼洋曲流域上游洪水致灾临界面雨量研究[J]. 水土保持通报, 2016, 36(4): 22-26. |
[Lin Zhiqiang, Hong Jianchang, Ni Maji, et al. Critical rainfall inducing flood disaster of Nyang River based on HBV model. Bulletin of Soil and Water Conservation, 2016, 36(4): 22-26. ] | |
[26] | 訾丽, 杨文发, 袁雅鸣, 等. 基于临界雨量的山洪灾害预警技术试验研究[J]. 人民长江, 2015, 46(11): 10-14. |
[Zi Li, Yang Wenfa, Yuan Yaming, et al. Experimental study of forecasting and early-warning technology for mountain torrent disasters based on rainfall threshold. Yangtze River, 2015, 46(11): 10-14. ] | |
[27] | 熊朕, 田宏岭. 我国山洪灾害监测现状与发展趋势[J]. 灾害学, 2019, 34(3): 140-145. |
[Xiong Zhen, Tian Hong-ling. A review and trend: Flash flood disaster monitoring in China. Journal of Catastrophology, 2019, 34(3): 140-145. ] | |
[28] | 王燕云, 原文林, 龙爱华, 等. 基于SVR的无实测资料小流域山洪灾害临界雨量预估模型及应用: 以河南新县为例[J]. 水文, 2020, 40(2): 42-47. |
[Wang Yanyun, Yuan Wenlin, Long Aihua, et al. Threshold rainfall prediction model for flash flood disaster in ungauged small watersheds based on SVR: A study case in Xinxian County of Henan Province. Journal of China Hydrology, 2020, 40(2): 42-47. ] | |
[29] | 李德, 陈广才, 谢平, 等. 乌鲁木齐市无资料地区山洪泥石流临界雨量推求[J]. 干旱区地理, 2005, 28(4): 441-444. |
[Li De, Chen Guangcai, Xie Ping, et al. Estimation of the critical rainfall resulting in outburst of floods and debris flows in the ungauged areas in Urumqi, Xinjiang. Arid Land Geography, 2005, 28(4): 441-444. ] | |
[30] | 刘春烨, 吴建华, 高洁, 等. 资料匮乏地区山洪灾害临界雨量计算方法研究[J]. 中国农村水利水电, 2017(5): 166-169. |
[Liu Chunye, Wu Jianhua, Gao Jie, et al. Research on calculation method of critical rainfall of flash flood disaster in data deficient region. China Rural Water and Hydropower, 2017(5): 166-169. ] | |
[31] | 江锦红, 邵利萍. 基于降雨观测资料的山洪预警标准[J]. 水利学报, 2010, 41(4): 458-463. |
[Jiang Jinhong, Shao Liping. Standard of mountain flood warning based on the precipitation observation data. Journal of Hydraulic Engineering, 2010, 41(4): 458-463. ] | |
[32] | 王路, 王文川, 李浩, 等. 基于复合雨量指标的山洪预警方法及其应用[J]. 水利水电快报, 2017, 38(10): 32-36. |
[Wang Lu, Wang Wenchuan, Li Hao, et al. Mountain torrent warning method based on composite rainfall index and its application. Express Water Resources & Hydropower Information, 2017, 38(10): 32-36. ] | |
[33] | 陈宏新, 江善虎, 李国芳, 等. 基于临界雨量推求复合预警指标的方法及应用[J]. 南水北调与水利科技, 2019, 17(4): 46-53. |
[Chen Hongxin, Jiang Shanhu, Li Guofang, et al. Method for deriving composite warning index based on critical rainfall and its application. South-to-North Water Transfers and Water Science & Technology, 2019, 17(4): 46-53. ] | |
[34] |
翟晓燕, 郭良, 刘荣华, 等. 前期土壤湿度和降雨对小流域山洪预警指标的影响评估[J]. 地理研究, 2019, 38(12): 2957-2965.
doi: 10.11821/dlyj020181338 |
[Zhai Xiaoyan, Guo Liang, Liu Ronghua, et al. Impact assessment of antecedent soil moisture conditions and rainfall variability on flash flood warning index at catchment scale. Geographical Research, 2019, 38(12): 2957-2965. ]
doi: 10.11821/dlyj020181338 |
|
[35] |
Yuan W L, Tu X Y, Su C G, et al. Research on the critical rainfall of flash floods in small watersheds based on the design of characteristic rainfall patterns[J]. Water Resources Management, 2021, 35(10): 3297-3319.
doi: 10.1007/s11269-021-02893-5 |
[36] | 俞彦, 张行南, 张鹏, 等. 基于SCS模型和新安江模型的雨量预警指标综合动态阈值对比[J]. 水资源保护, 2020, 36(3): 28-33, 51. |
[Yu Yan, Zhang Xingnan, Zhang Peng, et al. Comparison of comprehensive dynamic threshold of rainfall warning indicators based on SCS model and Xin'anjiang model. Water Resources Protection, 2020, 36(3): 28-33, 51. ] | |
[37] | 罗倩, 李厚永, 毛北平. 降雨量空间分布对山洪临界雨量的影响[J]. 人民长江, 2017, 48(24): 15-19, 100. |
[Luo Qian, Li Houyong, Mao Beiping. Influence of rainfall spatial distribution on critical rainfall calculation for early warning of flash floods. Yangtze River, 2017, 48(24): 15-19, 100. ] | |
[38] | 闫宝伟, 刘昱, 江慧宁, 等. 考虑降雨空间异质性的动态临界雨量预警指标推求[J]. 水利学报, 2020, 51(3): 342-348. |
[Yan Baowei, Liu Yu, Jiang Huining, et al. Study on dynamic critical rainfall warning index considering spatial heterogeneity of rainfall. Journal of Hydraulic Engineering, 2020, 51(3): 342-348. ] | |
[39] |
Martina M L V, Todini E, Libralon A. A Bayesian decision approach to rainfall thresholds based flood warning[J]. Hydrology and Earth System Sciences, 2006, 10(3): 413-426.
doi: 10.5194/hess-10-413-2006 |
[40] |
Lin K R, Zhou J Q, Liang R H, et al. Identifying rainfall threshold of flash flood using entropy decision approach and hydrological model method[J]. Natural Hazards, 2021, 108(2): 1427-1448.
doi: 10.1007/s11069-021-04739-0 |
[41] |
Zhong M, Jiang T, Hong Y, et al. Performance of multi-level association rule mining for the relationship between causal factor patterns and flash flood magnitudes in a humid area[J]. Geomatics, Natural Hazards and Risk, 2019, 10(1): 1967-1987.
doi: 10.1080/19475705.2019.1655102 |
[42] |
Wang W S, Ma X X. Determination of dynamic critical rainfall based on geomorphological instantaneous unit hydrograph and radial basis function neural network[J]. Applied Ecology and Environmental Research, 2019, 17(4): 8915-8930.
doi: 10.15666/aeer/1704_89158930 |
[43] | 程卫帅. 山洪灾害临界雨量研究综述[J]. 水科学进展, 2013, 24(6): 901-908. |
[Cheng Weishuai. A review of rainfall thresholds for triggering flash floods. Advances in Water Science, 2013, 24(6): 901-908. ] | |
[44] | 练继建, 杨伟超, 徐奎, 等. 山洪灾害预警研究进展与展望[J]. 水力发电学报, 2018, 37(11): 1-14. |
[Lian Jijian, Yang Weichao, Xu Kui, et al. Advances and prospect of flash flood forecasting. Journal of Hydroelectric Engineering, 2018, 37(11): 1-14. ] | |
[45] |
Newman A J, Stone A G, Saharia M, et al. Identifying sensitivities in flood frequency analyses using a stochastic hydrologic modeling system[J]. Hydrology and Earth System Sciences, 2021, 25(10): 5603-5621.
doi: 10.5194/hess-25-5603-2021 |
[46] | 卢燕宇, 谢五三, 田红. 基于水文模型与统计方法的中小河流致洪临界雨量分析[J]. 自然灾害学报, 2016, 25(3): 38-47. |
[Lu Yanyu, Xie Wusan, Tian Hong. Analysis of critical flood causing rainfalls in medium and small rivers based on hydrological model and statistical method. Journal of Natural Disasters, 2016, 25(3): 38-47. ] | |
[47] | 马细霞, 王慧丽, 程旭, 等. 基于降雨时空不确定性的山洪灾害三级预警模式[J]. 南水北调与水利科技(中英文), 2022, 20(2): 297-307. |
[Ma Xixia, Wang Huili, Cheng Xu, et al. Mountain torrent disaster three-level warning model based on rainfall uncertainty. South-to-North Water Transfers and Water Science & Technology, 2022, 20(2): 297-307. ] | |
[48] |
Lu L, Yuan W L, Su C G, et al. Study on the early warning and forecasting of flash floods in small watersheds based on the rainfall pattern of risk probability combination[J]. Stochastic Environmental Research and Risk Assessment, 2022, 36: 1-16.
doi: 10.1007/s00477-021-02059-0 |
[49] | 原文林, 付磊, 高倩雨. 基于极端降水概率分布的山洪灾害预警指标估算模型研究[J]. 水利水电技术, 2019, 50(3): 17-24. |
[Yuan Wenlin, Fu Lei, Gao Qianyu. Study on extreme precipitation probability distribution-based estimation model of early warning index for mountain torrent disaster. Water Resources and Hydropower Engineering, 2019, 50(3): 17-24. ] | |
[50] |
Ma M H, Wang H X, Yang Y, et al. Development of a new rainfall-triggering index of flash flood warning-case study in Yunnan Province, China[J]. Journal of Flood Risk Management, 2021, 14(1): e12676. doi: 10.1111/jfr3.12676.
doi: 10.1111/jfr3.12676 |
[51] | Huang J, Ju N P, Liao Y J, et al. Determination of rainfall thresholds for shallow landslides by a probabilistic and empirical method[J]. Natural Hazards and Earth System Sciences, 2015, 15(12): 2715-2723. |
[52] |
Piotrowski A, Napiórkowski J J, Rowiński P M. Flash-flood forecasting by means of neural networks and nearest neighbour approach: A comparative study[J]. Nonlinear Processes in Geophysics, 2006, 13(4): 443-448.
doi: 10.5194/npg-13-443-2006 |
[53] |
Pan T Y, Lin H T, Liao H Y. A data-driven probabilistic rainfall-inundation model for flash-flood warnings[J]. Water (Switzerland), 2019, 11(12): 2534. doi: 10.3390/w11122534.
doi: 10.3390/w11122534 |
[54] |
Zhao G, Liu R H, Yang M X, et al. Large-scale flash flood warning in China using deep learning[J]. Journal of Hydrology, 2022, 604: 127222. doi: 10.1016/j.jhydrol.2021.127222.
doi: 10.1016/j.jhydrol.2021.127222 |
[55] |
Hardy J, Gourley J J, Kirstetter P E, et al. A method for probabilistic flash flood forecasting[J]. Journal of Hydrology, 2016, 541: 480-494.
doi: 10.1016/j.jhydrol.2016.04.007 |
[56] |
Krzysztofowicz R. Probabilistic hydrometeorological forecasts: Toward a new era in operational forecasting[J]. Bulletin of the American Meteorological Society, 1998, 79(2): 243-252.
doi: 10.1175/1520-0477(1998)079<0243:PHFTAN>2.0.CO;2 |
[57] |
Raynaud D, Thielen J, Salamon P, et al. A dynamic runoff co-efficient to improve flash flood early warning in Europe: Evaluation on the 2013 central European floods in Germany[J]. Meteorological Applications, 2015, 22(3): 410-418.
doi: 10.1002/met.1469 |
[58] | Vincendon B, Ducrocq V, Nuissier O, et al. Perturbation of convection-permitting NWP forecasts for flash-flood ensemble forecasting[J]. Natural Hazards and Earth System Sciences, 2011, 11(5): 1529-1544. |
[59] |
Amengual A, Homar V, Jaume O. Potential of a probabilistic hydrometeorological forecasting approach for the 28 September 2012 extreme flash flood in Murcia, Spain[J]. Atmospheric Research, 2015, 166: 10-23.
doi: 10.1016/j.atmosres.2015.06.012 |
[60] | 刘章君, 郭生练, 许新发, 等. 贝叶斯概率水文预报研究进展与展望[J]. 水利学报, 2019, 50(12): 1467-1478. |
[Liu Zhangjun, Guo Shenglian, Xu Xinfa, et al. Bayesian probabilistic hydrological forecasting: Progress and prospects. Journal of Hydraulic Engineering, 2019, 50(12): 1467-1478. ] | |
[61] |
Krzysztofowicz R. Bayesian theory of probabilistic forecasting via deterministic hydrologic model[J]. Water Resources Research, 1999, 35(9): 2739-2750.
doi: 10.1029/1999WR900099 |
[62] |
Yoon H N, Marshall L, Sharma A, et al. Bayesian model calibration using surrogate streamflow in ungauged catchments[J]. Water Resources Research, 2022, 58(1): e2021WR031287. doi: 10.1029/2021WR031287.
doi: 10.1029/2021WR031287 |
[63] |
Shirzadi A, Asadi S, Shahabi H, et al. A novel ensemble learning based on Bayesian Belief Network coupled with an extreme learning machine for flash flood susceptibility mapping[J]. Engineering Applications of Artificial Intelligence, 2020, 96: 103971. doi: 10.1016/j.engappai.2020.103971.
doi: 10.1016/j.engappai.2020.103971 |
[64] |
Hosseini F S, Choubin B, Mosavi A, et al. Flash-flood hazard assessment using ensembles and Bayesian-based machine learning models: Application of the simulated annealing feature selection method[J]. Science of the Total Environment, 2020, 711: 135161. doi: 10.1016/j.scitotenv.2019.135161.
doi: 10.1016/j.scitotenv.2019.135161 |
[65] | 李向阳, 程春田, 林剑艺. 基于BP神经网络的贝叶斯概率水文预报模型[J]. 水利学报, 2006, 37(3): 354-359. |
[Li Xiangyang, Cheng Chuntian, Lin Jianyi. Bayesian probabilistic forecasting model based on BP ANN. Journal of Hydraulic Engineering, 2006, 37(3): 354-359. ] | |
[66] | 张铭, 李承军, 张勇传. 贝叶斯概率水文预报系统在中长期径流预报中的应用[J]. 水科学进展, 2009, 20(1): 40-44. |
[Zhang Ming, Li Chengjun, Zhang Yongchuan. Application of the Bayesian statistic hydrological forecast system to middle-and long-term runoff forecast. Advances in Water Science, 2009, 20(1): 40-44. ] | |
[67] | 刘章君, 郭生练, 何绍坤, 等. 基于Copula函数的多变量水文不确定性处理器[J]. 水利学报, 2018, 49(3): 332-342. |
[Liu Zhangjun, Guo Shenglian, He Shaokun, et al. Multivariate hydrologic uncertainty processor based on Copula function. Journal of Hydraulic Engineering, 2018, 49(3): 332-342. ] | |
[68] | 桑燕芳, 谢平, 顾海挺, 等. 水文过程非平稳性研究若干问题探讨[J]. 科学通报, 2017, 62(4): 254-261. |
[Sang Yanfang, Xie Ping, Gu Haiting, et al. Discussion on several major issues in the studies of hydrological nonstationarity. Chinese Science Bulletin, 2017, 62(4): 254-261. ] |
[1] | GOU Jiaojiao, MIAO Chiyuan, DUAN Qingyun. Progress in parameter sensitivity analysis-optimization-regionalization methods for hydrological models [J]. PROGRESS IN GEOGRAPHY, 2022, 41(7): 1338-1348. |
[2] | Xianwu SHI, Zhixing GUO, Yao ZHANG, Jiayi FANG, Kejia HU, Qinzheng LIU. A review of research on vulnerability to storm surges [J]. PROGRESS IN GEOGRAPHY, 2016, 35(7): 889-897. |
[3] | SANG Yanfang, WANG Zhonggen, LIU Changming. Applications of wavelet analysis to hydrology: Status and prospects [J]. PROGRESS IN GEOGRAPHY, 2013, 9(9): 1413-1422. |
[4] | LIU Lifang, LIU Changming, WANG Zhonggen, JIANG Yan, ZHANG Yongqiang, SANG Yanfang, WANG Hu. Parameter uncertainty of HIMS model and its influence factor analysis [J]. PROGRESS IN GEOGRAPHY, 2013, 32(4): 532-537. |
[5] | YANG Xuan, TANG Xu, CHEN Baode, TAN Yan, TIAN Zhan. Uncertainty of ensemble winter wheat yield simulation in North China based on CMIP5 [J]. PROGRESS IN GEOGRAPHY, 2013, 32(4): 627-636. |
[6] | SANG Yanfang, WANG Zhonggen, LIU Changming. Research progress on the time series analysis methods in hydrology [J]. PROGRESS IN GEOGRAPHY, 2013, 32(1): 20-30. |
[7] | ZHANG Shujie, ZHU Axing, LIU Jing, YANG Lin. An Integrative Sampling Scheme for Digital Soil Mapping [J]. PROGRESS IN GEOGRAPHY, 2012, 31(10): 1318-1325. |
[8] | BAO Lili, QIN Chengzhi, ZHU A-Xing, HU Xuemei. Effect of DEM Error on Landslide Susceptibility Mapping Models [J]. PROGRESS IN GEOGRAPHY, 2012, 31(10): 1326-1333. |
[9] | WANG Yuli, WANG Xuan, YANG Zhifeng, TAN Yayi. Progress in the Research and Application of Uncertainty Analysis Methods for Hydrological System [J]. PROGRESS IN GEOGRAPHY, 2011, 30(9): 1167-1172. |
[10] | RENWei, WANG Qiufeng, LIU Yinghui, HE Nianpeng, LIU Yingchun, FU Chao, YU Guirui. Certified Carbon Inventory Methods of Carbon Sequestration Rate and Potential in Terrestrial Ecosystem at Region Scale and Their Uncertainty Analysis [J]. PROGRESS IN GEOGRAPHY, 2011, 30(7): 795-804. |
[11] | GU Wen,CHEN Baode,YANG Yuhua,DONG Guangtao. Simulation Evaluation and Uncertainty Analysis for Climate Change Projections in East China Made by IPCC-AR4 Models [J]. PROGRESS IN GEOGRAPHY, 2010, 29(7): 818-826. |
[12] | ZHU Huiyi, JIA Shaofeng. Uncertainty in the Spatial Interpolation of Rainfall Data [J]. PROGRESS IN GEOGRAPHY, 2004, 23(2): 34-42. |
[13] | HAO Fanghua, CHEN Liqun, LIU Changming, ZHANG xuesong. Model Output Uncertainty Due to Spatial Variability of Rainfall [J]. PROGRESS IN GEOGRAPHY, 2003, 22(5): 446-453. |
|