PROGRESS IN GEOGRAPHY ›› 2023, Vol. 42 ›› Issue (1): 161-172.doi: 10.18306/dlkxjz.2023.01.013
• Articles • Previous Articles Next Articles
LI Shuangshuang(), HE Jinping, DUAN Keqin, REN Taotao, YAN Junping
Received:
2022-06-17
Revised:
2022-09-19
Online:
2023-01-28
Published:
2023-03-28
Supported by:
LI Shuangshuang, HE Jinping, DUAN Keqin, REN Taotao, YAN Junping. Identifying the spatiotemporal pattern of snowfall and influencing factors in the south and north of the Qinling Mountains[J].PROGRESS IN GEOGRAPHY, 2023, 42(1): 161-172.
Fig.3
Detrend correlation analysis of time series of the first mode of snowfall anomaly in the south and north of the Qinling Mountains with geopotential height and wind field at 500 hPa, water vapor transport and sea level pressure, and spatial pattern of isotherm from December in a given year to the following March for positive and negative phase years during 1970/1971-2019/2020
Fig.4
Detrend correlation analysis of time series of the second mode of snowfall anomaly in the south and north of the Qinling Mountains with geopotential height and wind field at 500 hPa, water vapor transport and sea level pressure, and spatial pattern of isotherm from December in a given year to the following March for positive and negative phase years during 1970/1971-2019/2020
Tab.2
Years of the two leading modes of cold-season snowfall anomaly in positive and negative phases and their correspondence to El Ni?o, La Ni?a, and Normal conditions
正相位异常年 | 负相位异常年 | |
---|---|---|
第1模态 | 1987(E)、1988(L)、1991(E)、1993(N) 2005(L)、2007(L)、2009(E)、2016(N)、2017(L) | 1980(N)、1982(E)、1983(L) 1998(L)、2006(E)、2008(L) |
第2模态 | 1970(L)、1980(N)、1983(L)、1993(N)、1998(L)、1999(L)、2007(L) | 1972(E)、1979(E)、1981(N) 1987(E)、1990(N)、1994(E) |
Tab.3
Atmospheric circulation and sea surface temperature for two leading modes of cold-season snowfall anomaly in the south and north of the Qinling Mountains during 1970/1971-2019/2020
指标 | 第1模态 | 第2模态 |
---|---|---|
空间特征 | 正相位:全区一致增加 | 正相位:山地主导下降 |
年代特征 | 年际波动为主 | 年代转折为主 |
气压异常 | 西西伯利亚高亚偏弱,中国西北地区气压偏弱;日本海附近气压偏强, 中国东部沿海反气旋异常 | 中西伯利亚高原气压偏强:日本海附近气压偏弱; 低纬度海区气压偏弱 |
海温异常 | 无明显ENSO信号 | 中部型拉尼娜 |
风场条件 | 1—2月中国东部基本为较暖的偏南气流 | 无明显异常 |
水汽异常 | 自南向北输送水汽 | 无明显水汽输送异常 |
气温条件 | 无明显异常 | 1—2月偏冷,3月偏暖 |
[1] |
Qin Y, Abatzoglou J T, Siebert S, et al. Agricultural risks from changing snowmelt[J]. Nature Climate Change, 2020, 10(5): 459-465.
doi: 10.1038/s41558-020-0746-8 |
[2] |
侯丽陶, 蒲旭凡, 李哲, 等. 1980—2019年中国西北地区降雪和融雪时空变化特征[J]. 地理研究, 2022, 41(3): 880-902.
doi: 10.11821/dlyj020201224 |
[Hou Litao, Pu Xufan, Li Zhe, et al. Spatial and temporal characteristics of snowfall and snowmelt in Northwest China from 1980 to 2019. Geographical Research, 2022, 41(3): 880-902. ]
doi: 10.11821/dlyj020201224 |
|
[3] |
Zhou B Z, Gu L H, Ding Y H, et al. The great 2008 Chinese ice storm: Its socioeconomic-ecological impact and sustainability lessons learned[J]. Bulletin of the American Meteorological Society, 2011, 92(1): 47-60.
doi: 10.1175/2010BAMS2857.1 |
[4] |
马恒, 张钢锋, 史培军. 畜牧业雪灾致灾成害过程和风险评估研究进展与展望[J]. 地理科学进展, 2021, 40(12): 2116-2129.
doi: 10.18306/dlkxjz.2021.12.011 |
[Ma Heng, Zhang Gangfeng, Shi Peijun. Advances and prospects of livestock snow disaster mechanism research and risk assessment. Progress in Geography, 2021, 40(12): 2116-2129. ]
doi: 10.18306/dlkxjz.2021.12.011 |
|
[5] | IPCC. AR6 Climate change: The physical science basis[M]. Cambridge, UK: Cambridge University Press, 2021. |
[6] |
Pierce D Weng, Cayan D R. The uneven response of different snow measures to human-induced climate warming[J]. Journal of Climate, 2013, 26(12): 4148-4167.
doi: 10.1175/JCLI-D-12-00534.1 |
[7] |
Mir R A, Jain S K, Saraf A K, et al. Decline in snowfall in response to temperature in Satluj Basin, western Himalaya[J]. Journal of Earth System Science, 2015, 124(2): 365-382.
doi: 10.1007/s12040-015-0539-z |
[8] |
Scherrer S C, Wüthrich C, Croci-Maspoli M, et al. Snow variability in the Swiss Alps 1864-2009[J]. International Journal of Climatology, 2013, 33(15): 3162-3173.
doi: 10.1002/joc.3653 |
[9] |
Pederson G T, Betancourt J L, McCabe G J. Regional patterns and proximal causes of the recent snowpack decline in the Rocky Mountains, US[J]. Geophysical Research Letters, 2013, 40(9): 1811-1816.
doi: 10.1002/grl.50424 |
[10] |
王杰, 张明军, 王圣杰, 等. 基于高分辨率格点数据的1961—2013年青藏高原雪雨比变化[J]. 地理学报, 2016, 71(1): 142-152.
doi: 10.11821/dlxb201601011 |
[Wang Jie, Zhang Mingjun, Wang Shengjie, et al. Change of snowfall/rainfall ratio in the Tibetan Plateau based on a gridded dataset with high resolution during 1961-2013. Acta Geographica Sinica, 2016, 71(1): 142-152. ]
doi: 10.11821/dlxb201601011 |
|
[11] |
Thomas R, Frederick E, Krabill W, et al. Progressive increase in ice loss from Greenland[J]. Geophysical Research Letters, 2006, 33: L10503. doi: 10.1029/2006GL026075.
doi: 10.1029/2006GL026075 |
[12] |
赵求东, 赵传成, 秦艳, 等. 中国西北干旱区降雪和极端降雪变化特征及未来趋势[J]. 冰川冻土, 2020, 42(1): 81-90.
doi: 10.7522/j.issn.1000-0240.2020.0025 |
[Zhao Qiudong, Zhao Chuancheng, Qin Yan, et al. The change features and future trend of snowfall and extreme snowfall in the arid areas of Northwest China. Journal of Glaciology and Geocryology, 2020, 42(1): 81-90. ]
doi: 10.7522/j.issn.1000-0240.2020.0025 |
|
[13] |
Wang H J, He S P. The increase of snowfall in Northeast China after the mid-1980s[J]. Chinese Science Bulletin, 2013, 58(12): 1350-1354.
doi: 10.1007/s11434-012-5508-1 |
[14] |
Chen H P, Sun J Q, Lin W Q. Anthropogenic influence would increase intense snowfall events over parts of the Northern Hemisphere in the future[J]. Environmental Research Letters, 2020, 15(11): 114022. doi: 10.1088/1748-9326/abbc93.
doi: 10.1088/1748-9326/abbc93 |
[15] |
Bai L, Shi C X, Shi Q D, et al. Change in the spatiotemporal pattern of snowfall during the cold season under climate change in a snow-dominated region of China[J]. International Journal of Climatology, 2019, 39(15): 5702-5719.
doi: 10.1002/joc.6182 |
[16] |
游庆龙, 康世昌, 李剑东, 等. 青藏高原气候变化若干前沿科学问题[J]. 冰川冻土, 2021, 43(3): 885-901.
doi: 10.7522/j.issn.1000-0240.2021.0029 |
[You Qinglong, Kang Shichang, Li Jiandong, et al. Several research frontiers of climate change over the Tibetan Plateau. Journal of Glaciology and Geocryology, 2021, 43(3): 885-901. ]
doi: 10.7522/j.issn.1000-0240.2021.0029 |
|
[17] |
寇志翔, 姚永慧, 胡宇凡. 基于地理探测器的中国亚热带北界探讨[J]. 地理研究, 2020, 39(12): 2821-2832.
doi: 10.11821/dlyj020191026 |
[Kou Zhixiang, Yao Yonghui, Hu Yufan. Delimitation of the northern boundary of the subtropical zone in China by geodetector. Geographical Research, 2020, 39(12): 2821-2832. ]
doi: 10.11821/dlyj020191026 |
|
[18] |
刘玉莲, 任国玉, 于宏敏. 中国降雪气候学特征[J]. 地理科学, 2012, 32(10): 1176-1185.
doi: 10.13249/j.cnki.sgs.2012.010.1176 |
[Liu Yulian, Ren Guoyu, Yu Hongmin. Climatology of snow in China. Scientia Geographica Sinica, 2012, 32(10): 1176-1185. ]
doi: 10.13249/j.cnki.sgs.2012.010.1176 |
|
[19] |
李双双, 芦佳玉, 延军平, 等. 1970—2015年秦岭南北气温时空变化及其气候分界意义[J]. 地理学报, 2018, 73(1): 13-24.
doi: 10.11821/dlxb201801002 |
[Li Shuangshuang, Lu Jiayu, Yan Junping, et al. Spatiotemporal variability of temperature in northern and southern Qingling Mountains and its influence on climatic boundary. Acta Geographica Sinica, 2018, 73(1): 13-24. ]
doi: 10.11821/dlxb201801002 |
|
[20] | 齐瑛, 傅抱璞, 李兆元. 秦岭山脉对冷空气屏障的理论研究[J]. 气象学报, 1995, 53(2): 186-193. |
[Qi Ying, Fu Baopu, Li Zhaoyuan. Theoretical study on cold-air damping of the Qinling Mountains. Acta Meteorologica Sinica, 1995, 53(2): 186-193. ] | |
[21] | 雷向杰, 李亚丽, 李茜, 等. 1962—2014年秦岭主峰太白山地区积雪变化特征及其成因分析[J]. 冰川冻土, 2016, 38(5): 1201-1210. |
[Lei Xiangjie, Li Yali, Li Qian, et al. The characteristics and causes of the snow cover variation in the Taibai Mountains during 1962-2014. Journal of Glaciology and Geocryology, 2016, 38(5): 1201-1210. ] | |
[22] |
韩婷, 雷向杰, 李亚丽, 等. 秦岭区域性高山积雪事件变化特征分析[J]. 冰川冻土, 2021, 43(4): 1040-1048.
doi: 10.7522/j.issn.1000-0240.2021.0129 |
[Han Ting, Lei Xiangjie, Li Yali, et al. Analysis on the variation characteristics of regional alpine snow cover events in the Qinling Mountains. Journal of Glaciology and Geocryology, 2021, 43(4): 1040-1048. ]
doi: 10.7522/j.issn.1000-0240.2021.0129 |
|
[23] |
李亚丽, 雷向杰, 李茜, 等. 1953—2016 年华山积雪变化特征及其与气温和降水的关系[J]. 冰川冻土, 2020, 42(3): 791-800.
doi: 10.7522/j.issn.1000-0240.2019.0077 |
[Li Yali, Lei Xiangjie, Li Qian, et al. The variation characteristics of snow cover in the Mount Hua from 1953 to 2016 and its relationship to air temperature and precipitation. Journal of Glaciology and Geocryology, 2020, 42(3): 791-800. ]
doi: 10.7522/j.issn.1000-0240.2019.0077 |
|
[24] |
李双双, 段克勤, 王婷, 等. 1970—2018年秦岭南北冷季降雪量时空变化及其影响因素[J]. 地理科学, 2022, 42(1): 163-173.
doi: 10.13249/j.cnki.sgs.2022.01.016 |
[Li Shuangshuang, Duan Keqin, Wang Ting, et al. Spatio-temporal variation of cold-season snowfall in the south and north of the Qinling Mountains during 1970-2018. Scientia Geographica Sinica, 2022, 42(1): 163-173. ]
doi: 10.13249/j.cnki.sgs.2022.01.016 |
|
[25] |
Ding B H, Yang K, Qin J, et al. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization[J]. Journal of Hydrology, 2014, 513: 154-163.
doi: 10.1016/j.jhydrol.2014.03.038 |
[26] | 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999. |
[Wei Fengying. Modern statistical diagnosis and prediction of climate. Beijing, China: China Meteorological Press, 1999. ] | |
[27] |
North G R, Bell T L, Cahalan R F, et al. Sampling errors in the estimation of empirical orthogonal functions[J]. Monthly Weather Review, 1982, 110(7): 699-706.
doi: 10.1175/1520-0493(1982)110<0699:SEITEO>2.0.CO;2 |
[28] |
Wang L, Liu Y Y, Zhang Y, et al. Time-varying structure of the wintertime Eurasian pattern: Role of the North Atlantic sea surface temperature and atmospheric mean flow[J]. Climate Dynamics, 2019, 52(3): 2467-2479.
doi: 10.1007/s00382-018-4261-9 |
[29] |
Liu Y Y, Wang L, Zhou W, et al. Three Eurasian teleconnection patterns: Spatial structures, temporal variability, and associated winter climate anomalies[J]. Climate Dynamics, 2014, 42(11): 2817-2839.
doi: 10.1007/s00382-014-2163-z |
[30] |
Li J P, Zheng F, Sun C, et al. Pathways of influence of the Northern Hemisphere mid-high latitudes on East Asian climate: A review[J]. Advances in Atmospheric Sciences, 2019, 36(9): 902-921.
doi: 10.1007/s00376-019-8236-5 |
[31] |
Wang L, Chen W. An intensity index for the East Asian winter monsoon[J]. Journal of Climate, 2014, 27(6): 2361-2374.
doi: 10.1175/JCLI-D-13-00086.1 |
[32] | 左志燕, 李明倩, 安宁, 等. 中国冬季大范围极端冷、暖日的变化与成因[J]. 中国科学: 地球科学, 2022, 52(2): 238-252. |
[Zuo Zhiyan, Li Mingqian, An Ning, et al. Changes and causes of extreme cold and warm days in China in winter. Scientia Sinica (Terrae), 2022, 52(2): 238-252. ] | |
[33] |
Sun B, Wang H J, Wu B W, et al. Dynamic control of the dominant modes of interannual variability of snowfall frequency in China[J]. Journal of Climate, 2021, 34(7): 2777-2790.
doi: 10.1175/JCLI-D-20-0705.1 |
[34] | 孙博, 王会军, 周波涛, 等. 中国水汽输送年际和年代际变化研究进展[J]. 水科学进展, 2020, 31(5): 644-653. |
[Sun Bo, Wang Huijun, Zhou Botao, et al. A review on the interannual and interdecadal variations of water vapor transport over China during past decades. Advances in Water Science, 2020, 31(5): 644-653. ] | |
[35] |
李大伟, 段克勤, 石培宏, 等. 秦岭中部山地降水的垂直变化研究[J]. 地理学报, 2022, 77(7): 1762-1774.
doi: 10.11821/dlxb202207013 |
[Li Dawei, Duan Keqin, Shi Peihong, et al. Vertical variation of precipitation in the central Qinling Mountains. Acta Geographica Sinica, 2022, 77(7): 1762-1774. ]
doi: 10.11821/dlxb202207013 |
|
[36] | 陈文, 兰晓青, 王林, 等. ENSO 和北极涛动对东亚冬季气候异常的综合影响[J]. 科学通报, 2013, 58(8): 634-641. |
[Chen Wen, Lan Xiaoqing, Wang Lin, et al. Comprehensive influence of ENSO and Arctic Oscillation on winter climate anomalies in East Asia. Chinese Science Bulletin, 2013, 58(8): 634-641. ]
doi: 10.1007/s11434-012-5460-0 |
[1] | YANG Yong, SUI Xiayun, LIU Zhen. Spatial pattern change of the network structure of China's inter-provincial virtual tourism flow [J]. PROGRESS IN GEOGRAPHY, 2022, 41(8): 1349-1363. |
[2] | LIU Zhe, CUO Lan. Investigating the mechanisms of streamflow change in the Beichuan River Basin, Qinghai Province: Based on modeling and statistic analyses [J]. PROGRESS IN GEOGRAPHY, 2022, 41(2): 304-315. |
[3] | LI Shuangshuang, ZHANG Yufeng, WANG Chengbo, WANG Ting, YAN Junping. Coupling effects of climate change and ecological restoration on vegetation dynamics in the Qinling-Huaihe region [J]. PROGRESS IN GEOGRAPHY, 2021, 40(6): 1026-1036. |
[4] | WEN Zhihong, DENG Guorong, ZHAO Jianjun, ZHANG Hongyan, GUO Xiaoyi. Response of velocity of vegetation greenup to frost in the Greater Khingan Mountains [J]. PROGRESS IN GEOGRAPHY, 2021, 40(5): 839-847. |
[5] | WANG Jun, TAN Jinkai. Understanding the climate change and disaster risks in coastal areas of China to develop coping strategies [J]. PROGRESS IN GEOGRAPHY, 2021, 40(5): 870-882. |
[6] | DENG Guofu, LI Mingqi. Advances of study on the relationship between tree-ring density and climate and climate reconstruction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 343-356. |
[7] | LI Shuangshuang, ZHANG Yufeng, ZHANG Liwei, WANG Ting, YAN Junping. Spatio-temporal variation of actual evapotranspiration in the south and north of the Qinling Mountains during 2000-2019 [J]. PROGRESS IN GEOGRAPHY, 2021, 40(11): 1900-1910. |
[8] | JIAN Yiwei, FU Jin, ZHOU Feng. A review of studies on the impacts of extreme precipitation on rice yields [J]. PROGRESS IN GEOGRAPHY, 2021, 40(10): 1746-1760. |
[9] | AO Xue, ZHAI Qingfei, CUI Yan, ZHOU Xiaoyu, SHEN Lidu, ZHAO Chunyu, Ning Xilong. Detection of urbanization effect on the climate change in Liaoning Province based on empirical orthogonal function methods [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1532-1543. |
[10] | ZHOU Meijun, LI Fei, SHAO Jiaqi, YANG Haijuan. Change characteristics of maize production potential under the background of climate change in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 443-453. |
[11] | SONG Zhen, SHI Xingmin. Path analysis of influencing factors of farmers’ adaptive behaviors to climate change in the rain-fed agricultural areas [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 461-473. |
[12] | ZHANG Xuezhen, ZHENG Jingyun, HAO Zhixin. Climate change assessments for the main economic zones of China during recent decades [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1609-1618. |
[13] | XIE Zhenghui, LIU Bin, YAN Xiaodong, MENG Chunlei, XU Xianli, LIU Yu, QIN Peihua, JIA Binghao, XIE Jinbo, LI Ruichao, WANG Longhuan, WANG Yan, CHEN Si. Effects of implementation of urban planning in response to climate change [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 120-131. |
[14] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[15] | Yuke ZHOU. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 718-730. |
|