PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (9): 1581-1589.doi: 10.18306/dlkxjz.2021.09.012
• Industrial Applications of UAV • Previous Articles Next Articles
WU Kunpeng1,2,3(), LIU Shiyin1,2,3,*(
), ZHU Yu1, XIE Fuming1, GAO Yongpeng1
Received:
2020-08-03
Revised:
2020-09-29
Online:
2021-09-28
Published:
2021-09-28
Contact:
LIU Shiyin
E-mail:wukunpeng@ynu.edu.cn;shiyin.liu@ynu.edu.cn
Supported by:
WU Kunpeng, LIU Shiyin, ZHU Yu, XIE Fuming, GAO Yongpeng. High-resolution monitoring of glacier dynamics based on unmanned aerial vehicle survey in the Meili Snow Mountain[J].PROGRESS IN GEOGRAPHY, 2021, 40(9): 1581-1589.
Tab.2
A summary of glacier surface elevation changes in the High Asia Mountains
研究区 | 时段 | 冰川表面高程 变化/(m·a-1) | 文献来源 |
---|---|---|---|
天山 | 2000—2012年 | -0.40 ± 0.22 | [31] |
帕米尔 | 2000—2011年 | -0.02 ± 0.13 | [15] |
喀喇昆仑山 | 2000—2011年 | -0.33 ± 0.16 | [15] |
西昆仑山 | 2003—2009年 | 0.04 ± 0.29 | [32] |
青藏高原内流区 | 2003—2009年 | -0.05 ± 0.26 | [32] |
唐古拉山 | 2003—2009年 | -0.68 ± 0.35 | [32] |
喜马拉雅山 | 2003—2009年 | -1.15 ± 0.44 | [32] |
念青唐古拉山 | 2000—2014年 | -1.50 ± 0.15 | [30] |
梅里雪山 | 2018—2019年 | -1.67 ± 0.05 | 本文 |
[1] |
Oerlemans J. Extracting a climate signal from 169 glacier records[J]. Science, 2005, 308:675-677.
pmid: 15746388 |
[2] |
Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010, 328:1382-1385.
doi: 10.1126/science.1183188 pmid: 20538947 |
[3] | IPCC. Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge, UK: Cambridge University Press, 2013. |
[4] | 秦大河, 姚檀栋, 丁永建, 等. 冰冻圈科学概论[M]. 北京: 科学出版社, 2017. |
[ Qin Dahe, Yao Tandong, Ding Yongjian, et al. Introduction to cryosphere science. Beijing, China: Science Press, 2017. ] | |
[5] | 姚檀栋, 邬光剑, 徐柏青, 等. “亚洲水塔”变化与影响[J]. 中国科学院院刊, 2019, 34(11):1203-1209. |
[ Yao Tandong, Wu Guangjian, Xu Baiqing, et al. Asian water tower change and its impacts. Bulletin of Chinese Academy of Sciences, 2019, 34(11):1203-1209. ] | |
[6] |
Bhambri R, Scott Watson C, Hewitt K, et al. The hazardous 2017-2019 surge and river damming by Shispare Glacier, Karakoram[J]. Scientific Reports, 2020, 10(1):4685. doi: 10.1038/s41598-020-61277-8.
doi: 10.1038/s41598-020-61277-8 pmid: 32170170 |
[7] | 崔鹏, 郭晓军, 姜天海, 等. “亚洲水塔”变化的灾害效应与减灾对策[J]. 中国科学院院刊, 2019, 34(11):1313-1321. |
[ Cui Peng, Guo Xiaojun, Jiang Tianhai, et al. Disaster effect induced by Asian water tower change and mitigation strategies. Bulletin of Chinese Academy of Sciences, 2019, 34(11):1313-1321. ] | |
[8] | 邬光剑, 姚檀栋, 王伟财, 等. 青藏高原及周边地区的冰川灾害[J]. 中国科学院院刊, 2019, 34(11):1285-1292. |
[ Wu Guangjian, Yao Tandong, Wang Weicai, et al. Glacial hazards on Tibetan Plateau and surrounding alpines. Bulletin of Chinese Academy of Sciences, 2019, 34(11):1285-1292. ] | |
[9] |
Shean D E, Bhushan S, Montesano P, et al. A systematic, regional assessment of high mountain Asia glacier mass balance[J]. Frontiers in Earth Science, 2020, 7:363. doi: 10.3389/feart.2019.00363.
doi: 10.3389/feart.2019.00363 |
[10] |
IMBIE Team. Mass balance of the Greenland Ice Sheet from 1992 to 2018[J]. Nature, 2020, 579:233-239.
doi: 10.1038/s41586-019-1855-2 |
[11] |
Yao T D, Thompson L, Yang W, et al. Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings[J]. Nature Climate Change, 2012, 2:663-667.
doi: 10.1038/nclimate1580 |
[12] |
Zemp M, Huss M, Thibert E, et al. Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016[J]. Nature, 2019, 568:382-386.
doi: 10.1038/s41586-019-1071-0 |
[13] |
Ke L H, Song C Q, Yong B, et al. Which heterogeneous glacier melting patterns can be robustly observed from space? A multi-scale assessment in southeastern Tibetan Plateau[J]. Remote Sensing of Environment, 2020, 242, 111777. doi: 10.1016/j.rse.2020.111777.
doi: 10.1016/j.rse.2020.111777 |
[14] |
Wu K P, Liu S Y, Jiang Z L, et al. Glacier mass balance over the central Nyainqentanglha Range during recent decades derived from remote-sensing data[J]. Journal of Glaciology, 2019, 65:422-439.
doi: 10.1017/jog.2019.20 |
[15] |
Gardelle J, Berthier E, Arnaud Y, et al. Region-wide glacier mass balances over the Pamir-Karakoram-Himalaya during 1999-2011[J]. The Cryosphere, 2013, 7(4):1263-1286.
doi: 10.5194/tc-7-1263-2013 |
[16] |
Kääb A, Berthier E, Nuth C, et al. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas[J]. Nature, 2012, 488:495-498.
doi: 10.1038/nature11324 |
[17] |
Jacob T, Wahr J, Pfeffer W T, et al. Recent contributions of glaciers and ice caps to sea level rise[J]. Nature, 2012, 482:514-518.
doi: 10.1038/nature10847 |
[18] | 施雅风, 刘朝海, 王宗太, 等. 简明中国冰川目录 [M]. 上海: 上海科学普及出版社, 2005. |
[ Shi Yafeng, Liu Chaohai, Wang Zongtai, et al. Concise glacier inventory of China. Shanghai, China: Shanghai Popular Science Press, 2005. ] | |
[19] |
Immerzeel W W, Kraaijenbrink P D A, Shea J M, et al. High-resolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles[J]. Remote Sensing of Environment, 2014, 150:93-103.
doi: 10.1016/j.rse.2014.04.025 |
[20] |
Kraaijenbrink P D A, Shea J M, Pellicciotti F, et al. Object-based analysis of unmanned aerial vehicle imagery to map and characterise surface features on a debris-covered glacier[J]. Remote Sensing of Environment, 2016, 186:581-595.
doi: 10.1016/j.rse.2016.09.013 |
[21] |
Wigmore O, Mark B. Monitoring tropical debris-covered glacier dynamics from high-resolution unmanned aerial vehicle photogrammetry, Cordillera Blanca, Peru[J]. The Cryosphere, 2017, 11:2463-2480.
doi: 10.5194/tc-11-2463-2017 |
[22] |
Yang W, Zhao C X, Westoby M, et al. Seasonal dynamics of a temperate Tibetan glacier revealed by high-resolution UAV photogrammetry and in situ measurements[J]. Remote Sensing, 2020, 12:2389. doi: 10.3390/rs12152389.
doi: 10.3390/rs12152389 |
[23] | 车彦军, 王世金, 刘婧. 无人机在冰川复杂地形监测中的应用: 以玉龙雪山白水河1号冰川为例[J]. 冰川冻土, 2020, 42(4):1391-1399. |
[ Che Yanjun, Wang Shijin, Liu Jing. Application of Unmanned Aerial Vehicle (UAV) in the glacier region with complex terrain: A case study in Baishui River Glacier No.1 located in the Yulong Snow Mountain. Journal of Glaciology and Geocryology, 2020, 42(4):1391-1399. ] | |
[24] | 刘宇硕, 秦翔, 郭万钦, 等. 控制点布设对冰川区无人机摄影测量精度的影响[J]. 遥感学报, 2020, 24(2):161-172. |
[ Liu Yushuo, Qin Xiang, Guo Wanqin, et al. Influence of the use of photogrammetric measurement precision on low-altitude micro-UAVs in the glacier region. Journal of Remote Sensing, 2020, 24(2):161-172. ] | |
[25] | 蓝永如, 刘高焕, 邵雪梅. 近40a来基于树轮年代学的梅里雪山明永冰川变化研究[J]. 冰川冻土, 2011, 33(6):1229-1234. |
[ Lan Yongru, Liu Gaohuan, Shao Xuemei. Variation of the Melang Glacier in Mount Kawa Karpo in the past 40 years, based on Dendrochronolog. Journal of Glaciology and Geocryology, 2011, 33(6):1229-1234. ] | |
[26] | 欧晓昆, 张志明, 王崇云. 梅里雪山植被研究 [M]. 北京: 科学出版社, 2006. |
[ Ou Xiaokun, Zhang Zhiming, Wang Chongyun. Vegetation research in Meili Snow Mountain. Beijing, China: Science Press, 2006. ] | |
[27] | 郑本兴, 赵希涛, 李铁松, 等. 梅里雪山明永冰川的特征与变化[J]. 冰川冻土, 1999, 21(2):145-150. |
[ Zheng Benxing, Zhao Xitao, Li Tiesong, et al. Features and fluctuation of the Melang Glacier in the Mainri Mountain. Journal of Glaciology and Geocryology, 1999, 21(2):145-150. ] | |
[28] | 谢自楚, 刘潮海. 冰川学导论 [M]. 上海: 上海科学普及出版社, 2010. |
[ Xie Zichu, Liu Chaohai. The introduction of glacier. Shanghai, China: Shanghai Popular Science Press, 2010. ] | |
[29] | 卞敏, 徐亮, 骆元鹏, 等. 空地一体精细化三维模型构建方法[J]. 测绘通报, 2019(7):83-86. |
[ Bian Min, Xu Liang, Luo Yuanpeng, et al. Method of refined 3D model construction of space-ground integration. Bulletin of Surveying and Mapping, 2019(7):83-86. ] | |
[30] |
Wu K P, Liu S Y, Jiang Z L, et al. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories[J]. The Cryosphere, 2018, 12:103-121.
doi: 10.5194/tc-12-103-2018 |
[31] |
Li J, Li Z W, Zhu J J, et al. Early 21st century glacier thickness changes in the Central Tien Shan[J]. Remote Sensing of Environment, 2017, 192:12-29.
doi: 10.1016/j.rse.2017.02.003 |
[32] |
Neckel N, Kropáček J, Bolch T, et al. Glacier mass changes on the Tibetan Plateau 2003-2009 derived from ICESat laser altimetry measurements[J]. Environmental Research Letters, 2014, 9:014009. doi: 10.1088/1748-9326/9/1/014009.
doi: 10.1088/1748-9326/9/1/014009 |
[1] | LI Guo, JIANG Kaiwen, WANG Yong, SUN Shanlin, YANG Ming, LI Yun, ZHAO Haimeng, YAN Lei. Redundancy and fault tolerance of unmanned aerial vehicle remote sensing network [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1480-1487. |
[2] | DAI Wen, TANG Guo'an, HU Guanghui, YANG Xin, XIONG Liyang, WANG Lei. Modelling sediment transport in space in a watershed based on topographic change detection by UAV survey [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1570-1580. |
[3] | XUE Yu'ang, JING Zhefan, KANG Shichang. Application of unmanned aerial vehicle in glacier change monitoring: Taking the Xiao Dongkemadi Glacier in the Tanggula Mountains as an example [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1590-1599. |
[4] | Wei ZHANG, Qianyu TANG. Spatiotemporal characteristics and the environment of Quaternary glacier deposits in the middle Tenasserim Chain [J]. PROGRESS IN GEOGRAPHY, 2019, 38(6): 904-917. |
[5] | Limin LIU, Linsheng ZHONG, Hu YU. Progress of glacier tourism research and implications [J]. PROGRESS IN GEOGRAPHY, 2019, 38(4): 533-545. |
[6] | Zhen ZHANG, Shiyin LIU, Junfeng WEI, Zongli JIANG. Monitoring a glacier surge in the Kungey Mountain, eastern Pamir Plateau using remote sensing [J]. PROGRESS IN GEOGRAPHY, 2018, 37(11): 1545-1554. |
[7] | Aiwen XU, Taibao YANG, Congqiang WANG, Qin JI. Variation of glaciers in the Shaksgam River Basin, Karakoram Mountains during 1978-2015 [J]. PROGRESS IN GEOGRAPHY, 2016, 35(7): 878-888. |
[8] | Wei ZHANG, Rui LIU, Liang LIU. Control factors on glaciation during the last glacial period in the East Asia monsoon area [J]. PROGRESS IN GEOGRAPHY, 2015, 34(7): 871-882. |
[9] | Xiaolei WANG, Lin SUN, Yiqing ZHANG, Yi LUO. Runoff generation in the headwater of Amu Darya, Central Asia [J]. PROGRESS IN GEOGRAPHY, 2015, 34(3): 364-372. |
[10] | ZHANG Wei, HE Daiwen, LIU Libo, LIU Beibei, RI Haibujiere, LI Yincai. Evolution of glacial trough and influence factors of the Qingshui Valley in Luoji Mountain, Sichuan Province [J]. PROGRESS IN GEOGRAPHY, 2014, 33(10): 1397-1404. |
[11] | Yi HE, Taibao YANG. Climate variation and glacier response in the Bogda region, Tianshan Mountains [J]. PROGRESS IN GEOGRAPHY, 2014, 33(10): 1387-1396. |
[12] | LI Chengxiu, YANG Taibao, TIAN Hongzhen. Variation of West Kunlun Mountains glacier during 1990-2011 [J]. PROGRESS IN GEOGRAPHY, 2013, 32(4): 548-559. |
[13] | DUAN Jianping, WANG Lily, REN Jiawen, LI Lun. Progress in Glacier Variations in China and Its Sensitivity to Climatic Change during the Past Century [J]. PROGRESS IN GEOGRAPHY, 2009, 28(2): 231-237. |
|