PROGRESS IN GEOGRAPHY ›› 2021, Vol. 40 ›› Issue (9): 1503-1515.doi: 10.18306/dlkxjz.2021.09.006
• Operation Supervision of UAV • Previous Articles Next Articles
HE Hongbo1,2(), XU Chenchen1,3,4, YE Huping1,*(
)
Received:
2020-11-30
Revised:
2021-02-26
Online:
2021-09-28
Published:
2021-09-28
Contact:
YE Huping
E-mail:20b@igsnrr.ac.cn;yehp@igsnrr.ac.cn
Supported by:
HE Hongbo, XU Chenchen, YE Huping. Environmental risk assessment of obstacles in low-altitude flight of unmanned aerial vehicle: Taking the Beijing-Tianjin New Town as an example[J].PROGRESS IN GEOGRAPHY, 2021, 40(9): 1503-1515.
Tab.1
Distance limitation between UAV and various obstacles
障碍物等级 | 障碍物类型 | 不同类型的无人机应保持的最小距离 | ||
---|---|---|---|---|
微型 | 轻型 | 小型 | ||
Ⅰ | 民用航路 | 10 km | ||
国界线、边境线 | 我方一侧5 km | |||
Ⅱ | 军事机场净空区、民用机场障碍物限制面 | 2 km | ||
有人驾驶航空器临时起降点 | 2 km | |||
Ⅲ | 军事禁区及管理区、党政机关、核电站 | 10 m | 20 m | 1000 m |
易燃易爆危险品相关企业和仓库、电力设施、加油站、车站码头 | 10 m | 20 m | 1000 m | |
高塔、电网、风力发电 | 5 m | 10 m | 1000 m | |
Ⅳ | 建筑物、高铁、公路 | 5 m | 10 m | 500 m |
电线杆、交通设施 | 5 m | 5 m | 200 m | |
Ⅴ | 农田、树林、江河湖泊、操场、山川、无人机飞行验证场 | 获得空域申请后,保证安全前提下,可以飞行 |
Tab.5
Parameters and expansion distance settings for micro and light and small-sized UAVs
相关参数 | 微型无人机 | 轻型无人机 | 小型无人机 |
---|---|---|---|
型号 | 大疆Mini 2 | 大疆御Mavic 2 | 智航V330 |
类型 | 多旋翼无人机 | 多旋翼无人机 | 垂直起降固定翼无人机 |
长、宽、高/mm | 159×203×56 | 322×242×84 | 1650×3300×680 |
机身重量/g | 249 g | 905g | 15000g |
最大飞行高度/m | 500 | 500 | 3500 |
最大水平飞行速度/(km/h) | 40 | 72 | 91 |
续航/min | 25~30 min | 25~30 | 90 |
最小转弯半径 | 无 | 无 | 30 m |
障碍物扩张距离参数影响因子 | 外形+障碍物等级约束 | 外形+障碍物等级约束 | 外形+最小转弯半径 +障碍物等级约束 |
[1] |
廖小罕, 周成虎, 苏奋振, 等. 无人机遥感众创时代[J]. 地球信息科学学报, 2016, 18(11):1439-1447.
doi: 10.3724/SP.J.1047.2016.01439 |
[ Liao Xiaohan, Zhou Chenghu, Su Fenzhen, et al. The mass innovation era of UAV remote sensing. Journal of Geo-information Science, 2016, 18(11):1439-1447. ] | |
[2] | 民用无人机检验中心. 2019年无人机云数据统计报告 [EB/OL]. 2020-07-13 [2020-11-02]. http://news.carnoc.com/list/538/538437.html. |
[Civil UAV Test Center. UAV cloud data statistical report in 2019. 2020-07-13 [2020-11-02]. http://news.carnoc.com/list/538/538437.html.] | |
[3] | 深圳统计局. 深圳市2018年国民经济和社会发展统计公报 [EB/OL]. 2019-04-19 [2020-11-02]. http://tjj.sz.gov.cn/zwgk/zfxxgkml/tjsj/tjgb/content/post_3084909.html. |
[Shenzhen Statistical Bureau. Shenzhen statistical bulletin of national economic and social development in 2018. 2019-04-19 [2020-11-02]. http://tjj.sz.gov.cn/zwgk/zfxxgkml/tjsj/tjgb/content/post_3084909.html.] | |
[4] |
廖小罕. 地理科学发展与新技术应用[J]. 地理科学进展, 2020, 39(5):709-715.
doi: 10.18306/dlkxjz.2020.05.001 |
[ Liao Xiaohan. Advance of geographic sciences and new technology applications. Progress in Geography, 2020, 39(5):709-715. ] | |
[5] | 廖小罕, 肖青, 张颢. 无人机遥感: 大众化与拓展应用发展趋势[J]. 遥感学报, 2019, 23(6):1046-1052. |
[ Liao Xiaohan, Xiao Qing, Zhang Hao. UAV remote sensing: Popularization and expand application development trend. Journal of Remote Sensing, 2019, 23(6):1046-1052. ] | |
[6] | 廖小罕, 徐晨晨, 岳焕印. 基于地理信息的无人机低空公共航路规划研究[J]. 无人机, 2018(2):45-49. |
[ Liao Xiaohan, Xu Chenchen, Yue Huanyin. Research on UAV low-altitude public air route planning based on geographic information. Unmanned Vehicles, 2018(2):45-49. ] | |
[7] |
徐晨晨, 叶虎平, 岳焕印, 等. 城镇化区域无人机低空航路网迭代构建的理论体系与技术路径[J]. 地理学报, 2020, 75(5):917-930.
doi: 10.11821/dlxb202005003 |
[ Xu Chenchen, Ye Huping, Yue Huanyin, et al. Iterative construction of UAV low-altitude air route network in an urbanized region: Theoretical system and technical roadmap. Acta Geographica Sinica, 2020, 75(5):917-930. ] | |
[8] | Lum C, Waggoner B. A risk based paradigm and model for unmanned aerial systems in the national airspace[R]. AIAA 2011-1424. Reston, USA: American Institute of Aeronautics and Astronautics, 2011. |
[9] | Primatesta S, Rizzo A, la Cour-Harbo A. Ground risk map for unmanned aircraft in urban environments[J]. Journal of Intelligent & Robotic Systems, 2020, 97:489-509. |
[10] | Primatesta S, Guglieri G, Rizzo A. A risk-aware path planning strategy for UAVs in urban environments[J]. Journal of Intelligent & Robotic Systems, 2019, 95(2):629-643. |
[11] | 杨乐. 面向海岛航拍的无人机航迹规划算法研究[D]. 青岛: 中国海洋大学, 2014. |
[ Yang Le. Research on the algorithm of UAV route planning for island's aerial photography. Qingdao, China: Ocean University of China, 2014. ] | |
[12] | 中国民航局. 无人驾驶航空器飞行管理暂行条例(征求意见稿) [EB/OL]. 2018-01-26 [2020-11-02]. http://www.caac.gov.cn/HDJL/YJZJ/201801/t20180126_48853.html. |
[Civil Aviation Administration of China. Interim regulations on flight management of unmanned aircraft (Draft for solicitation of comments). 2018-01-26 [2020-11-02]. http://www.caac.gov.cn/HDJL/YJZJ/201801/t20180126_48853.html.] | |
[13] | 陈麒杰, 晋玉强, 韩露. 无人机路径规划算法研究综述[J]. 飞航导弹, 2020(5):54-58. |
[ Chen Qijie, Jin Yuqiang, Han Lu. Overview of UAV path planning algorithm. Aerodynamic Missile, 2020(5):54-58. ] | |
[14] |
Wein R. Exact and approximate construction of offset polygons[J]. Computer-Aided Design, 2007, 39(6):518-527.
doi: 10.1016/j.cad.2007.01.010 |
[15] |
张会, 李铖, 程炯, 等. 基于"H-E-V"框架的城市洪涝风险评估研究进展[J]. 地理科学进展, 2019, 38(2):175-190.
doi: 10.18306/dlkxjz.2019.02.003 |
[ Zhang Hui, Li Cheng, Cheng Jiong, et al. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability. Progress in Geography, 2019, 38(2):175-190. ] | |
[16] |
Ahmed M, Abdel-Aty M. A data fusion framework for real-time risk assessment on freeways[J]. Transportation Research Part C: Emerging Technologies, 2013, 26:203-213.
doi: 10.1016/j.trc.2012.09.002 |
[17] |
Stevenson J D, O'Young S, Rolland L. Estimated levels of safety for small unmanned aerial vehicles and risk mitigation strategies[J]. Journal of Unmanned Vehicle Systems, 2015, 3(4):205-221.
doi: 10.1139/juvs-2014-0016 |
[18] |
Di Donato P F A, Atkins E M. Evaluating risk to people and property for aircraft emergency landing planning[J]. Journal of Aerospace Information Systems, 2017, 14(5):259-278.
doi: 10.2514/1.I010513 |
[19] | 杨宙翔. 无人机航空摄影测量技术在地形测量中的应用[J]. 资源信息与工程, 2018, 33(5):127-128. |
[ Yang Zhouxiang. Application of UAV aerial photogrammetry technology in topographic survey. Resource Information and Engineering, 2018, 33(5):127-128. ] | |
[20] | la Cour-Harbo A. Quantifying risk of ground impact fatalities for small unmanned aircraft[J]. Journal of Intelligent & Robotic Systems, 2019, 93(1/2):367-384. |
[21] |
Raghuvanshi T K, Negassa L, Kala P M. GIS based Grid overlay method versus modeling approach: A comparative study for landslide hazard zonation (LHZ) in Meta Robi District of West Showa Zone in Ethiopia[J]. The Egyptian Journal of Remote Sensing and Space Science, 2015, 18(2):235-250.
doi: 10.1016/j.ejrs.2015.08.001 |
[22] |
Mishra A K, Deep S, Choudhary A. Identification of suitable sites for organic farming using AHP & GIS[J]. The Egyptian Journal of Remote Sensing and Space Science, 2015, 18(2):181-193.
doi: 10.1016/j.ejrs.2015.06.005 |
[23] |
Hescock J, Newman C, Agioutantis Z. Development of a new algorithm for implementing the edge effect offset for subsidence calculations[J]. International Journal of Mining Science and Technology, 2018, 28(1):61-66.
doi: 10.1016/j.ijmst.2017.11.010 |
[24] |
Duan Y X, Zhang Y M, Li S, et al. An integrated method of health risk assessment based on spatial interpolation and source apportionment[J]. Journal of Cleaner Production, 2020, 276:123218. doi: 10.1016/j.jclepro.2020.123218.
doi: 10.1016/j.jclepro.2020.123218 |
[25] |
Teodoro A C, Duarte L. Forest fire risk maps: A GIS open source application: A case study in Norwest of Portugal[J]. International Journal of Geographical Information Science, 2013, 27(4):699-720.
doi: 10.1080/13658816.2012.721554 |
[26] |
Yang B, Liu L, Lan M X, et al. A spatio-temporal method for crime prediction using historical crime data and transitional zones identified from nightlight imagery[J]. International Journal of Geographical Information Science, 2020, 34(9):1740-1764.
doi: 10.1080/13658816.2020.1737701 |
[27] |
Lyu H M, Sun W J, Shen S L, et al. Flood risk assessment in metro systems of mega-cities using a GIS-based modeling approach[J]. Science of the Total Environment, 2018, 626:1012-1025.
doi: 10.1016/j.scitotenv.2018.01.138 |
[28] |
Kumar S, Agrawal S. Prevention of vector-borne disease by the identification and risk assessment of mosquito vector habitats using GIS and remote sensing: A case study of Gorakhpur, India[J]. Nanotechnology for Environmental Engineering, 2020, 5(2):1-15.
doi: 10.1007/s41204-019-0065-3 |
[29] | 葛声, 刘聪锋, 蔡啸. 无人机航路规划评估[J]. 舰船电子对抗, 2018, 41(1):20-25, 50. |
[ Ge Sheng, Liu Congfeng, Cai Xiao. Assessment of UAV route planning. Shipboard Electronic Countermeasure, 2018, 41(1):20-25, 50. ] | |
[30] | 彭珍妮, 裴锦华. 我国民用无人机管理现状与思考[J]. 科技资讯, 2017, 15(31): 136, 138. |
[ Peng Zhenni, Pei Jinhua. Current situation and reflection on civil UAV management in China. Science & Technology Information, 2017, 15(31): 136, 138.] | |
[31] | 刘向君. 基于蚁群算法的无人机未知环境路径规划[D]. 太原: 中北大学, 2020. |
[ Liu Xiangjun. Path planning of UAV in unknown environment based on ant colony algorithm. Taiyuan, China: North University of China, 2020. ] | |
[32] | 邓晓斌. 基于ArcGIS两种空间插值方法的比较[J]. 地理空间信息, 2008, 6(6):85-87. |
[ Deng Xiaobin. Comparison between two space interpolation methods based on ArcGIS. Geospatial Information, 2008, 6(6):85-87. ] | |
[33] | 王翰章. 小型无人机室外非结构化环境中的自主路径规划[D]. 大连: 大连海事大学, 2020. |
[ Wang Hanzhang. Autonomous path planning of small UAV in outdoor unstructured environment. Dalian, China: Dalian Maritime University, 2020. ] |
[1] | FAN Bangkui, LI Yun, ZHANG Ruiyu. Initial analysis of low-altitude internet of intelligences (IOI) and the applications of unmanned aerial vehicle industry [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1441-1450. |
[2] | TAN Junming, LIAO Xiaohan. Development of unmanned aerial vehicle cloud management system with the application of geographic information technology [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1451-1466. |
[3] | WANG Yong, YANG Yusen, WANG Shibo, YANG Yu, ZHANG Rui. A review on the architecture construction of remote sensing data from unmanned aerial vehicle networking [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1467-1479. |
[4] | JIAO Qingyu, CHEN Xinfeng, ZHENG Zhigang, BAI Yiqin, LIU Yansi, ZHANG Zhengjuan, SUN Longni. Dynamic path planning of unmanned aerial vehicle based on crowd density prediction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1516-1527. |
[5] | ZHONG Ruomei, WEN Xiaohang, XU Chenchen. Simulation and analysis of wind speed and direction of unmanned aerial vehicle route in the Beijing-Tianjin-Hebei region based on high resolution model [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1528-1539. |
[6] | YANG Rui, LIU Yang. Evaluation method based on fuzzy assessment model for unmanned aerial vehicle detection system in civil airports [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1540-1549. |
[7] | GUO Qinghua, HU Tianyu, LIU Jin, JIN Shichao, XIAO Qing, YANG Guijun, GAO Xianlian, XU Qiang, XIE Pinhua, PENG Chigang, YAN Li. Advances in light weight unmanned aerial vehicle remote sensing and major industrial applications [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1550-1569. |
[8] | DAI Wen, TANG Guo'an, HU Guanghui, YANG Xin, XIONG Liyang, WANG Lei. Modelling sediment transport in space in a watershed based on topographic change detection by UAV survey [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1570-1580. |
[9] | XUE Yu'ang, JING Zhefan, KANG Shichang. Application of unmanned aerial vehicle in glacier change monitoring: Taking the Xiao Dongkemadi Glacier in the Tanggula Mountains as an example [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1590-1599. |
[10] | CHEN Xiliang, LI Gang, XU Feng, YU Yue, ZHANG Qianxi. City image perception of Xi’an based on unmanned aerial vehicle photography photos [J]. PROGRESS IN GEOGRAPHY, 2021, 40(9): 1600-1612. |
|