PROGRESS IN GEOGRAPHY ›› 2020, Vol. 39 ›› Issue (11): 1944-1958.doi: 10.18306/dlkxjz.2020.11.014
• Articles • Previous Articles Next Articles
CHEN Rui1,2,3(), YANG Meixue1,*(
), WAN Guoning1, WANG Xuejia1
Received:
2019-11-18
Revised:
2020-06-10
Online:
2020-11-28
Published:
2021-01-28
Contact:
YANG Meixue
E-mail:rui.chen@awi.de;mxyang@lzb.ac.cn
Supported by:
CHEN Rui, YANG Meixue, WAN Guoning, WANG Xuejia. Soil freezing-thawing processes on the Tibetan Plateau: A review based on hydrothermal dynamics[J].PROGRESS IN GEOGRAPHY, 2020, 39(11): 1944-1958.
Tab.1
The duration (days) of frozen soil at various depths for different sites [16] (d)"
站点名称 | 土壤深度 | ||||||||
---|---|---|---|---|---|---|---|---|---|
4 cm | 20 cm | 40 cm | 60 cm | 80 cm | 100 cm | 130 cm | 160 cm | 200 cm | |
D66 | 172 | 177 | 182 | 175 | 174 | 177 | 178 | 180 | 185 |
TUOTUOHE | 170 | 169 | 171 | 170 | 169 | 165 | 165 | 162 | 157 |
D110 | 202 | 206 | 206 | 210 | 205 | 202 | 213 | 173 | 180 |
WADD | 200 | 194 | 209 | 209 | 164 | ||||
NODA | 185 | 186 | 182 | 184 | 176 | 172 | 176 | ||
AMDO | 184 | 179 | 174 | 177 | 173 | 172 | 163 | 162 | 155 |
MS3608 | 158 | 155 | 162 | 155 | 143 | 147 | 141 | 130 | |
MS3637 | 159 | 165 | 148 | 138 | 132 | 95 |
Tab.2
Change of surface soil freeze-thaw state obtained by different methods"
时间尺度 | 研究区 | 资料来源 | 冻结起始时间/d | 滞后天数/d | 融化起始时间/d | 提前 天数/d | 冻结持续时间/d | 缩短天数/d | 冻结天数/d | 缩短天数/d | 活动层 厚度/m | 活动层厚度变化速率/(cm/a) | 最大冻结 深度/m | 最大冻结深度变化速率 /(cm/a) | 冻结/融化指数变化速率 /( | 参考 文献 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1995—2007年 | 青藏公路沿线 | 实测资料 | — | — | — | — | — | — | — | — | 2.41 | 7.5 | — | — | — | [33] |
1988—2007年 | 青藏高原 | 遥感资料 | — | 10.1 | — | 14.3 | — | — | — | 33.7 | — | — | — | — | — | [62] |
2006—2010年 | 青藏铁路沿线 | 实测资料 | — | — | — | — | — | — | — | — | 3.1 | 6.3 | — | — | — | [63] |
1981—2010年 | 青藏高原 | 模式模拟 | 290 | 5.1 | 107 | 14.1 | 182 | 19.2 | — | — | 2.01 | 1.5 | 2.47 | 3.4 | — | [37, 64] |
1980—2007年 | 青藏高原中部 | 实测资料 | — | — | — | — | — | — | — | — | — | — | — | — | 11.12/12.50 | [65] |
1954—2006年 | 黑河流域 | 实测资料 | — | — | — | — | — | — | — | — | — | — | — | — | 3.54/— | [66] |
1972—2006年 | 黑河流域 | 实测资料 | — | 7 | — | 14 | — | 21 | — | — | — | — | — | 1960—2007年: 0.4 | — | [67] |
1990—2015年 | 北半球 | 实测资料 | — | — | — | — | — | — | — | — | 2.3 | — | — | — | — | [68] |
1960—2014年 | 三江源 | 实测资料 | — | 17.6 | — | 19.5 | — | 41.4 | — | — | — | — | — | 0.398 | — | [69] |
1970—2000年 | 中国境内 | 实测资料 | — | — | — | — | — | — | — | — | — | — | 1.658 | 0.22 | — | [35] |
1980—2013年 | 黑河流域 | 模式模拟 | — | — | — | — | — | — | SFG: 21.4~115.4 PF: 176.8~210 | SFG: 9.7~11 PF: 7~13 | — | — | — | — | — | [70] |
2002—2011年 | 黄河源区 | 遥感资料 | — | 0.9 | — | 3.1 | — | 5.2 | — | — | — | — | — | — | — | [71] |
1980—2013年 | 青藏高原 | 模式模拟 | — | — | — | — | — | — | — | — | 2.30 | 3.1 | — | — | — | [72] |
1980—2015年 | 青藏高原 | 实测资料 | — | 26 | — | 14 | — | 41 | — | 33 | — | — | — | — | — | [73] |
1971—2013年 | 黑河上游 | 模式模拟 | — | — | — | — | — | — | — | — | — | 0.43 | — | 0.32 | — | [74] |
1965—2014年 | 黄河源区 | 模式模拟 | — | — | — | — | — | — | — | — | — | — | — | 0.347 | — | [75] |
1980—2013年 | 青藏高原 | 实测资料 | — | — | — | — | — | — | — | — | — | — | — | — | 13.6/13.9 | [76] |
1981—2018年 | 青藏公路沿线 | 实测资料 | — | — | — | — | — | — | — | — | — | 1.95 | — | — | — | [77] |
1901—2015年 | 北半球 | 再分析资料 | — | — | — | — | — | — | — | — | — | — | — | — | 1.58/0.98 | [78] |
1961—2010年 | 中国境内 | 实测资料 | — | 11 | — | 17.5 | — | 29.5 | — | 24 | — | — | — | 0.47 | — | [79] |
1988—2008年 | 怒江上游 | 遥感资料 | 275 | — | — | — | — | — | — | — | — | — | — | — | — | [80] |
[1] | Pavlov A V. Current changes of climate and permafrost in the Arctic and sub-Arctic of Russia[J]. Permafrost and Periglacial Processes, 1994,5(2):101-110. |
[2] | 周幼吾, 邱国庆, 郭东信. 中国冻土[M]. 北京: 科学出版社, 2000. |
[ Zhou Youwu, Qiu Guoqing, Guo Dongxin. China permafrost. Beijing, China: Science Press, 2000. ] | |
[3] | 刘帅, 于贵瑞, 浅沼顺, 等. 蒙古高原中部草地土壤冻融过程及土壤含水量分布[J]. 土壤通报, 2009,46(1):46-51. |
[ Liu Shuai, Yu Guirui, Qian Zhaoshun, et al. The thawing-freezing processes and soil moisture distribution of the steppe in central Mongolian Plateau. Acta Pedologica Sinica, 2009,46(1):46-51. ] | |
[4] | Cheng G D, Jin H J. Permafrost and groundwater on the Qinghai-Tibet Plateau and in Northeast China[J]. Hydrogeology Journal, 2013,21(1):5-23. |
[5] | Chang J, Wang G X, Li C J, et al. Seasonal dynamics of suprapermafrost groundwater and its response to the freezing-thawing processes of soil in the permafrost region of Qinghai-Tibet Plateau[J]. Science China: Earth Sciences, 2015,58:727-738. |
[6] | Wang G X, Mao T X, Chang J, et al. Processes of runoff generation operating during the spring and autumn seasons in a permafrost catchment on semi-arid plateaus[J]. Journal of Hydrology, 2017,550:307-317. |
[7] | Zhang T J, Baker T H W, Cheng G D. The Qinghai-Tibet Railroad: A milestone project and its environment impact[J]. Cold Regions Science and Technology, 2008,53(3):229-240. |
[8] | Li G Y, Yu Q H, Ma W, et al. Freeze-thaw properties and long-term thermal stability of the unprotected tower foundation soils in permafrost regions along the Qinghai-Tibet Power Transmission Line[J]. Cold Regions Science and Technology, 2016,121:258-274. |
[9] | Wu Q B, Zhong Z Q, Gao S R, et al. Thermal impacts of engineering activities and vegetation layer on permafrost in different alpine ecosystems of the Qinghai-Tibet Plateau, China[J]. The Cryosphere, 2016,10(4):1695-1706. |
[10] | Wilson R M, Fitzhugh L, Whiting G J, et al. Greenhouse gas balance over thaw-freeze cycles in discontinuous zone permafrost[J]. Journal of Geophysical Research: Biogeosciences, 2017,122(2):387-404. |
[11] | Congreves K A, Wagner-Riddle C, Si B C, et al. Nitrous oxide emissions and biogeochemical responses to soil freezing-thawing and drying-wetting[J]. Soil Biology and Biochemistry, 2018,117:5-15. |
[12] |
Mu C C, Li L L, Wu X D, et al. Greenhouse gas released from the deep permafrost in the northern Qinghai-Tibetan Plateau[J]. Scientific Reports, 2018,8:4205. doi: 10.1038/s41598-018-22530-3.
doi: 10.1038/s41598-018-22530-3 pmid: 29523853 |
[13] | Keryling J, Beierkuhnlein C, Jentsch A. Effects of soil freeze-thaw cycles differ between experimental plant communities[J]. Basic and Applied Ecology, 2010,11(1):65-75. |
[14] | Wang G X, Liu G S, Li C H, et al. The variability of soil thermal and hydrological dynamics with vegetation cover in a permafrost region[J]. Agricultural and Forest Meteorology, 2012,162:44-57. |
[15] |
Satio K, Zhang T J, Yang D Q, et al. Influence of the physical terrestrial Arctic in the eco-climate system[J]. Ecological Applications, 2013,23(8):1778-1797.
doi: 10.1890/11-1062.1 pmid: 24555309 |
[16] | Yang M X, Yao T D, Gou X H, et al. The soil moisture distribution, thawing-freezing processes and their effects on the seasonal transition on the Qinghai-Xizang (Tibetan) Plateau[J]. Journal of Asian Earth Sciences, 2003,21(5):457-465. |
[17] | Yang M X, Yao T D, Gou X H, et al. Diurnal thaw/freeze cycles of the surface ground on the Tibetan Plateau[J]. Chinese Science Bulletin, 2007,52(1):136-139. |
[18] | Matsumura S, Yamazaki K. A longer climate memory carried by soil freeze-thaw processes in Siberia[J]. Environmental Research Letters, 2012,7(4):045402. doi: 10.1088/1748-9326/7/4/045402. |
[19] |
Rawlins M A, Nicolsky D J, McDonald K C, et al. Simulating soil freeze/thaw dynamics with an improved pan-Arctic water balance model[J]. Journal of Advances in Modeling Earth Systems, 2013,5(4):659-675.
doi: 10.1002/jame.20045 |
[20] | You Q G, Xue X, Peng F, et al. Surface water and heat exchange comparison between alpine meadow and bare land in a permafrost region of the Tibetan Plateau[J]. Agricultural and Forest Meteorology, 2017,232:48-65. |
[21] | Zheng D H, Van der Velde R, Su Z B, et al. Evaluation of noah frozen soil parameterization for application to a Tibetan meadow ecosystem[J]. Journal of Hydrometeorology, 2017,18(6):1749-1763. |
[22] |
Qiu J. The third pole[J]. Nature, 2008,454:393-396.
doi: 10.1038/454393a pmid: 18650887 |
[23] |
Immerzeel W W, van Beek L P H, Bierkens M F P. Climate change will affect the Asian water towers[J]. Science, 2010,328:1382-1385.
doi: 10.1126/science.1183188 pmid: 20538947 |
[24] |
姚檀栋. “第三极环境(TPE)国际计划”: 应对区域未来环境生态重大挑战问题的国家计划[J]. 地理科学进展, 2014,33(7):884-892.
doi: 10.11820/dlkxjz.2014.07.003 |
[ Yao Tandong. TPE international program: A program for coping with major future environmental challenges of The Third Pole region. Progress in Geography, 2014,33(7):884-892. ] | |
[25] | Zou D F, Zhao L, Sheng Y, et al. A new map of permafrost distribution on the Tibetan Plateau[J]. The Cryosphere, 2017,11(6):2527-2542. |
[26] | Wang B L, French H M. Permafrost on the Tibet Plateau, China[J]. Quaternary Science Reviews, 1995,14(3):255-274. |
[27] |
Duan A M, Xiao Z X. Does the climate warming hiatus exist over the Tibetan Plateau?[J]. Scientific Reports, 2015,5:13711. doi: 10.1038/srep13711.
doi: 10.1038/srep13711 pmid: 26329678 |
[28] | You Q L, Min J Z, Kang S C. Rapid warming in the Tibetan Plateau from observations and CMIP5 models in recent decades[J]. International Journal of Climatology, 2016,36(6):2660-2670. |
[29] | Wang X J, Pang G J, Yang M X, et al. Evaluation of climate on the Tibetan Plateau using ERA-Interim reanalysis and gridded observations during the period 1979—2012[J]. Quaternary International, 2017,444:76-86. |
[30] | IPCC. Climate change 2013: The physical science basis[M]. Cambridge, UK: Cambridge University Press, 2013. |
[31] | Wu Q B, Zhang T J, Liu Y Z. Permafrost temperatures and thickness on the Qinghai-Tibet Plateau[J]. Global and Planetary Change, 2010,72(1-2):32-38. |
[32] | Zhu F X, Cuo L, Zhang Y X, et al. Spatiotemporal variations of annual shallow soil temperature on the Tibetan Plateau during 1983-2013[J]. Climate Dynamics, 2018,51(5-6):2209-2227. |
[33] | Wu Q B, Zhang T J. Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007[J]. Journal of Geophysical Research: Atmospheres, 2010,115(D9):D09107. doi: 10.1029/2009JD012974. |
[34] | Wu Q B, Hou Y D, Yun H B, et al. Changes in active-layer thickness and near-surface permafrost between 2002 and 2012 in alpine ecosystems, Qinghai-Xizang (Tibet) Plateau, China[J]. Global and Planetary Change, 2015,124:149-155. |
[35] | Peng X Q, Zhang T J, Frauenfeld O W, et al. Response of seasonal soil freeze depth to climate change across China[J]. The Cryosphere, 2017,11(3):1059-1073. |
[36] | Wang T H, Yang D W, Qin Y, et al. Historical and future changes of frozen ground in the upper Yellow River Basin[J]. Global and Planetary Change, 2018,162:199-211. |
[37] | Guo D L, Wang H J. Simulation of permafrost and seasonally frozen ground conditions on the Tibetan Plateau, 1981-2010[J]. Journal of Geophysical Research: Atmospheres, 2013,118(11):5216-5230. |
[38] | Ran Y H, Li X, Cheng G D. Climate warming over the past half century has led to thermal degradation of permafrost on the Qinghai-Tibet Plateau[J]. The Cryosphere, 2018,12(2):595-608. |
[39] | 杨梅学, 姚檀栋, 勾晓华. 青藏公路沿线土壤的冻融过程及水热分布特征[J]. 自然科学进展, 2000,10(5):443-450. |
[ Yang Meixue, Yao Tandong, Gou Xiaohua. Soil melting-freezing processes and water-heat distribution feature along the Qinghai-Xizang highway. Progress in Natural Science, 2000,10(5):443-450. ] | |
[40] | 杨梅学, 姚檀栋, 何元庆. 青藏高原土壤水热分布特征及冻融过程在季节转换中的作用[J]. 山地学报, 2002,20(5):553-558. |
[ Yang Meixue, Yao Tandong, He Yuanqing. The role of soil moisture-energy distribution and melting-freezing processes on seasonal shift in Tibetan Plateau. Mountain Research, 2002,20(5):553-558. ] | |
[41] | 丁永建, 叶佰生, 刘时银, 等. 青藏高原大尺度冻土水文监测研究[J]. 科学通报, 2000,45(2):208-211. |
[ Ding Yongjian, Ye Baisheng, Liu Shiying, et al. Monitoring and study of large scale permafrost hydrological process in Tibetan Plateau. Chinese Science Bulletin, 2000,45(2):208-211. ] | |
[42] | 陈学龙, 马耀明, 李茂善, 等. 藏北地区近地层大气和土壤特征量分析[J]. 高原气象, 2008,27(5):941-948. |
[ Chen Xuelong, Ma Yaoming, Li Maoshan, et al. Analyses on near surface layer atmospheric characteristics and soil features in Northern Tibetan Plateau. Plateau Meteorology, 2008,27(5):941-948. ] | |
[43] | Guo D L, Yang M X, Wang H J. Characteristics of land surface heat and water exchange under different soil freeze/thaw conditions over the central Tibetan Plateau[J]. Hydrological Processes, 2011,25(16):2531-2541. |
[44] | Guo D L, Yang M X, Wang H J. Sensible and latent heat flux response to diurnal variation in soil surface temperature and moisture under different freeze/thaw soil conditions in the seasonal frozen soil region of the central Tibetan Plateau[J]. Environmental Earth Sciences, 2011,63(1):97-107. |
[45] | 张明礼, 温智, 薛珂. 北麓河多年冻土活动层水热迁移规律分析[J]. 干旱区资源与环境, 2015,29(9):176-181. |
[ Zhang Mingli, Wen Zhi, Xue Ke. Soil moisture-heat migration characteristics within the permafrost active layer in Beiluhe. Journal of Arid Land Resources and Environment, 2015,29(9):176-181. ] | |
[46] | Zhang Z Q, Wu Q B, Gao S R, et al. Response of the soil hydrothermal process to difference underlying conditions in the Beiluhe permafrost region[J]. Environmental Earth Science, 2017,76(5):194. doi: 10.1007/s12665-017-6518-8. |
[47] | 赵林, 程国栋, 李述训, 等. 青藏高原五道梁附近多年冻土活动层冻结和融化过程[J]. 科学通报, 2000,45(11):1205-1211. |
[ Zhao Lin, Cheng Guodong, Li Shuxun, et al. Thawing and freezing processes of active layer in Wudaoliang region of Tibetan Plateau. Chinese Science Bulletin, 2000,45(11):1205-1211. ] | |
[48] | 王庆锋, 金会军, 张廷军, 等. 祁连山区黑河上游高山多年冻土区活动层季节冻融过程及其影响因素[J]. 科学通报, 2016,61(24):2742-2756. |
[ Wang Qingfeng, Jin Huijun, Zhang Tingjun, et al. Active layer seasonal freeze-thaw processes and influencing factors in the alpine permafrost regions in the upper reaches of the Heihe River in Qilian Mountains. Chinese Science Bulletin, 2016,61(24):2742-2756. ] | |
[49] | Wang Q F, Zhang T J, Jin H J, et al. Observational study on the active layer freeze-thaw cycle in the upper reaches of the Heihe River of the north-eastern Qinghai-Tibet Plateau[J]. Quaternary International, 2017,440(Part B):13-22. |
[50] | Wang Q F, Jin H J, Zhang T J, et al. Hydro-thermal processes and thermal offsets of peat soils in the active layer in an alpine permafrost region, NE Qinghai- Tibet Plateau[J]. Global and Planetary Change, 2017,156:1-12. |
[51] | Wang Q F, Yang Q Q, Guo H, et al. Hydrothermal variations in soils resulting from the freezing and thawing processes in the active layer of an alpine grassland in the Qilian Mountains, northeastern Tibetan Plateau[J]. Theoretical and Applied Climatology, 2019,136(3-4):929-941. |
[52] | 胡国杰, 赵林, 李韧, 等. 青藏高原多年冻土区土壤冻融期间水热运移特征分析[J]. 土壤, 2014,46(2):355-360. |
[ Hu Guojie, Zhao Lin, Li Ren, et al. Characteristics of hydro-thermal transfer during freezing and thawing period in permafrost regions. Soils, 2014,46(2):355-360. ] | |
[53] | 焦永亮, 李韧, 赵林, 等. 多年冻土区活动层冻融状况及土壤水分运移特征[J]. 冰川冻土, 2014,36(2):237-247. |
[ Jiao Yongliang, Li Ren, Zhao Lin, et al. Processes of soil thawing-freezing and features of soil moisture migration in the permafrost active layer. Journal of Glaciology and Geocryology, 2014,36(2):237-247. ] | |
[54] | 罗栋梁, 金会军, 吕兰芝, 等. 黄河源区多年冻土活动层和季节冻土冻融过程时空特征[J]. 科学通报, 2014,59(14):1327-1336. |
[ Luo Dongliang, Jin Huijun, Lv Lanzhi, et al. Spatiotemporal characteristics of freezing and thawing of the active layer in the source areas of the Yellow River (SAYR). Chinese Science Bulletin, 2014,59(14):1327-1336. ] | |
[55] | 李卫鹏, 范继辉, 沙玉坤, 等. 藏北高原草原土壤温度变化与冻融特征[J]. 山地学报, 2014,32(4):407-416. |
[ Li Weipeng, Fan Jihui, Sha Yukun, et al. Soil temperature variation and thaw-freezing cycle in the alpine cold steppe, northern Tibetan Plateau. Mountain Research, 2014,32(4):407-416. ] | |
[56] | 范继辉, 鲁旭阳, 王小丹. 藏北高原草地土壤冻融循环过程及水热分布特征[J]. 山地学报, 2014,32(4):385-392. |
[ Fan Jihui, Lu Xuyang, Wang Xiaodan. The freezing-thawing processes and soil moisture-energy distribution in permafrost active layer, Northern Tibet. Mountain Research, 2014,32(4):385-392. ] | |
[57] | 李韧, 赵林, 丁永建, 等. 青藏公路沿线多年冻土区活动层动态变化及区域差异特征[J]. 科学通报, 2012,57(30):2864-2871. |
[ Li Ren, Zhao Lin, Ding Yongjian, et al. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chinese Science Bulletin, 2012,57(30):2864-2871. ] | |
[58] | 张寅生, 马颖钊, 张艳林, 等. 青藏高原坡面尺度冻融循环与水热条件空间分析[J]. 科学通报, 2015,60(7):664-673. |
[ Zhang Yingsheng, Ma Yingzhao, Zhang Yanlin, et al. Hillslope patterns in thaw-freeze cycle and hydrothermal regions on Tibetan Plateau. Chinese Science Bulletin, 2015,60(7):664-673. ] | |
[59] | 王学佳, 杨梅学, 万国宁. 藏北高原D105点土壤冻融状况与温湿特征分析[J]. 冰川冻土, 2012,34(1):56-63. |
[ Wang Xuejia, Yang Meixue, Wan Guoning. Processes of soil thawing-freezing and features of ground temperature and moisture at D105 on the northern Tibetan Plateau. Journal of Glaciology and Geocryology, 2012,34(1):56-63. ] | |
[60] | 万国宁. 青藏高原中部土壤冻融过程及水热时空变化研究[D]. 兰州: 中国科学院寒区旱区环境与工程研究所, 2012. |
[ Wan Guoning. Study on soil freezing-thawing processes and spatiotemporal variations in soil hydrological and thermal regimes on the central Tibetan Plateau. Lanzhou, China: Cold and Arid Regions Environmental and Engineering Research Institute, CAS, 2012. ] | |
[61] | Wang X J, Pang G J, Yang M X. Precipitation over the Tibetan Plateau during recent decades: A review based on observations and simulations[J]. International Journal of Climatology, 2018,38(3):1116-1131. |
[62] | Li X, Jin R, Pan X D, et al. Changes in the near-surface soil freeze-thaw cycle on the Qinghai-Tibetan Plateau[J]. International Journal of Applied Earth Observation and Geoinformation, 2012,17:33-42. |
[63] | Wu Q B, Zhan T J, Liu Y Z. Thermal state of the active layer and permafrost along the Qinghai-Xizang (Tibet) Railway from 2006 to 2010[J]. The Cryosphere, 2012,6(3):607-612. |
[64] | Guo D L, Wang H J. Simulated change in the near-surface soil freeze/thaw cycle on the Tibetan Plateau from 1981 to 2010[J]. Chinese Science Bulletin, 2014,59(20):2439-2448. |
[65] | Wu T H, Zhao L, Li R, et al. Recent ground surface warming and its effect on permafrost on the central Qinghai-Tibet Plateau[J]. International Journal of Climatology, 2013,33(4):920-930. |
[66] | 曹斌, 张廷军, 彭小清, 等. 黑河流域年冻融指数及其时空变化特征分析[J]. 地球科学进展, 2015,30(3):357-366. |
[ Cao Bin, Zhang Tingjun, Peng Xiaoqing, et al. Spatial variability of freezing-thawing index over the Heihe River Basin. Advances in Earth Science, 2015,30(3):357-366. ] | |
[67] | Wang Q F, Zhang T J, Peng X Q, et al. Changes of soil thermal regimes in the Heihe River Basin over Western China[J]. Arctic, Antarctic, and Alpine Research, 2015,47(2):231-241. |
[68] |
Luo D L, Wu Q B, Jin H J, et al. Recent changes in the active layer thickness across the northern hemisphere[J]. Environmental Earth Sciences, 2016,75(7):555. doi: 10.1007/s12665-015-5229-2.
doi: 10.1007/s12665-015-5229-2 |
[69] | Luo S Q, Fang X W, Lyu S H, et al. Interdecadal changes in the freeze depth and period of frozen soil on the three rivers source region in China from 1960 to 2014[J]. Advances in Meteorology, 2017,5931467. doi: 10.1155/2017/5931467. |
[70] |
Peng X Q, Mu C C. Changes of soil thermal and hydraulic regimes in the Heihe River Basin[J]. Environmental Monitoring and Assessment, 2017,189(10):483. doi: 10.1007/s10661-017-6195-9.
pmid: 28866853 |
[71] | Wang R, Zhu Q K, Ma H, et al. Spatial-temporal variations in near-surface soil freeze-thaw cycles in the source region of the Yellow River during the period 2002-2011 based on the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) data[J]. Journal of Arid Land, 2017,9(6):850-864. |
[72] | Qin Y H, Wu T H, Zhao L, et al. Numerical modeling of the active layer thickness and permafrost thermal state across Qinghai-Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2017,122(21):11604-11620. |
[73] | 杨淑华, 吴通华, 李韧, 等. 青藏高原近地表土壤冻融状况的时空变化特征[J]. 高原气象, 2018,37(1):43-53. |
[ Yang Shuhua, Wu Tonghua, Li Ren, et al. Spatial-temporal changes of the near surface soil freeze-thaw status over the Qinghai-Tibetan Plateau. Plateau Meteorology, 2018,37(1):43-53. ] | |
[74] |
Gao B, Yang D W, Qin Y, et al. Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai-Tibetan Plateau[J]. The Cryosphere, 2018,12(2):657-673.
doi: 10.5194/tc-12-657-2018 |
[75] |
Wang T H, Yang D W, Qin Y, et al. Historical and future changes of frozen ground in the upper Yellow River Basin[J]. Global and Planetary Change, 2018,162:199-211.
doi: 10.1016/j.gloplacha.2018.01.009 |
[76] |
Wu T H, Qin Y H, Wu X D, et al. Spatiotemporal changes of freezing/thawing indices and their response to recent climate change on the Qinghai-Tibet Plateau from 1980-2013[J]. Theoretical and Applied Climatology, 2017,132(3-4):1187-1199.
doi: 10.1007/s00704-017-2157-y |
[77] | 程国栋, 赵林, 李韧, 等. 青藏高原多年冻土特征、变化及影响[J]. 科学通报, 2019,64(27):2783-2795. |
[ Cheng Guodong, Zhao Lin, Li Ren, et al. Characteristics, changes and impacts of permafrost on Qinghai-Tibet Plateau. Chinese Science Bulletin, 2019,64(27):2783-2795. ] | |
[78] |
Shi Y Y, Niu F J, Lin Z J, et al. Freezing/thawing index variations over the circum-Arctic from 1901-2015 and the permafrost extent[J]. Science of the Total Environment, 2019,660:1294-1305.
doi: 10.1016/j.scitotenv.2019.01.121 |
[79] |
Wang X Q, Chen R S, Liu G H, et al. Spatial distributions and temporal variations of the near-surface soil freeze state across China under climate change[J]. Global and Planetary Change, 2019,172:150-158.
doi: 10.1016/j.gloplacha.2018.09.016 |
[80] |
Luo X, Fan X M, Ji X, et al. Hydrological impacts of interannual variations in surface soil freezing processes in the upper Nu-Salween River Basin[J]. Arctic, Antarctic, and Alpine Research, 2020,52(1):1-12.
doi: 10.1080/15230430.2019.1698893 |
[81] | Wood E F. Land surface-atmosphere interactions for climate modeling[M]. Dordrecht, Netherlands: Kluwer Academic Publishers, 1991. |
[82] | 孙菽芬. 陆面过程的物理、生化机理和参数化模型 [M]. 北京: 气象出版社, 2005. |
[ Sun Shufen. Parameterization study of physical and biochemical mechanism in land surface process. Beijing, China: China Meteorology Press, 2005. ] | |
[83] |
Zheng D H, Van der Velde R, Su Z B, et al. Impacts of Noah model physics on catchment-scale runoff simulations[J]. Journal of Geophysical Research: Atmospheres, 2016,121(2):807-832.
doi: 10.1002/2015JD023695 |
[84] |
Luo S Q, Lv S H, Zhang Y. Development and validation of the frozen soil parameterization scheme in Common Land Model[J]. Cold Regions Science and Technology, 2009,55(1):130-140.
doi: 10.1016/j.coldregions.2008.07.009 |
[85] | 陈渤黎, 罗斯琼, 吕世华, 等. 陆面模式CLM对若尔盖站冻融期模拟性能的检验与对比[J]. 气候与环境研究, 2014,19(5):649-658. |
[ Chen Boli, Luo Siqiong, Lv Shihua, et al. Validation and comparison of the simulation at Zoige Station during freezing and thawing with land surface model CLM. Climate and Environmental Research, 2014,19(5):649-658. ] | |
[86] |
刘火霖, 胡泽勇, 杨耀先, 等. 青藏高原那曲地区冻融过程的数值模拟研究[J]. 高原气象, 2015,34(3):676-683.
doi: 10.7522/j.issn.1000-0534.2015.00021 |
[ Liu Huolin, Hu Zeyong, Yang Yaoxian, et al. Simulation of the freezing-thawing processes at Nagqu area over the Qinghai-Xizang Plateau. Plateau Meteorology, 2015,34(3):676-683. ] | |
[87] |
罗斯琼, 吕世华, 张宇, 等. 青藏高原中部土壤热传导率参数化方案的确立及在数值模式中的应用[J]. 地球物理学报, 2009,52(4):919-928.
doi: 10.3969/j.issn.0001-5733.2009.04.008 |
[ Luo Siqiong, Lv Shihua, Zhang Yu, et al. Soil thermal conductivity parameterization establishment and application in numerical model of central Tibetan Plateau. Chinese Journal of Geophysics, 2009,52(4):919-928. ] | |
[88] | Gao Z Q, Chae N, Kim J, et al. Modeling of surface energy partitioning, surface temperature, and soil wetness in the Tibetan prairie using the Simple Biosphere Model 2(SiB2)[J]. Journal of Geophysical Research: Atmospheres, 2004,109, D06102. doi: 10.1029/2003JD004089. |
[89] |
Zheng D H, van der Velde R, Su Z B, et al. Evaluation of Noah frozen soil parameterization for application to a Tibetan meadow ecosystem[J]. Journal of Hydrometeorology, 2017,18(6):1749-1763.
doi: 10.1175/JHM-D-16-0199.1 |
[90] |
Chen Y Y, Yang K, Qin J, et al. Evaluation of AMSR-E retrievals and GLDAS simulations against observations of a soil moisture network on the central Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2013,118(10):4466-4475.
doi: 10.1002/jgrd.50301 |
[91] |
Bi H Y, Ma J W, Zhang W J, et al. Comparison of soil moisture in GLDAS model simulations and in situ observations over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2016,121(6):2658-2678.
doi: 10.1002/2015JD024131 |
[92] | 夏坤, 罗勇, 李伟平. 青藏高原东北部土壤冻融过程的数值模拟[J]. 科学通报, 2011,56(22):1828-1838. |
[ Xia Kun, Luo Yong, Li Weiping. Simulation of freezing and melting of soil on the northeast Tibetan Plateau. Chinese Science Bulletin, 2011,56(22):1828-1838. ] | |
[93] |
Xiao Y, Zhao L, Dai Y J, et al. Representing permafrost properties in CoLM for the Qinghai-Xizang (Tibetan) Plateau[J]. Cold Regions Science and Technology, 2013,87:68-77.
doi: 10.1016/j.coldregions.2012.12.004 |
[94] | Li Q, Sun S F, Xue Y K. Analyses and development of a hierarchy of frozen soil models for cold region study[J]. Journal of Geophysical Research: Atmospheres, 2010,115:D03107. doi: 10.1029/2009JD012530. |
[95] | Yang M X, Yao T D, Gou X H, et al. The spatially heterogeneous distribution of precipitation of the Anduo area, Tibetan Plateau, in summer 1998[J]. Hydrological Sciences Journal: Journal des Sciences Hydeologiques, 2007,52(4):645-653. |
[96] |
Yang M X, Yao T D, Gou X H, et al. Water recycling between the land surface and atmosphere on the northern Tibetan Plateau: A case study at flat observation sites[J]. Arctic, Antarctic and Alpine Research, 2007,39(4):694-698.
doi: 10.1657/1523-0430(07-509)[YANG]2.0.CO;2 |
[97] |
占车生, 宁理科, 邹靖, 等. 陆面水文—气候耦合模拟研究进展[J]. 地理学报, 2018,73(5):893-905.
doi: 10.11821/dlxb201805009 |
[ Zhan Chesheng, Ning Like, Zou Jing, et al. A review on the fully coupled atmosphere-hydrology simulations. Acta Geographica Sinica, 2018,73(5):893-905. ] | |
[98] |
Gao Y H, Li K, Chen F, et al. Assessing and improving Noah-MP land model simulations for the central Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2015,120(18):9258-9278.
doi: 10.1002/jgrd.v120.18 |
[99] |
Sun S B, Chen B Z, Chen J, et al. Comparison of remotely-sensed and modeled soil moisture using CLM4.0 with in situ measurements in the central Tibetan Plateau area[J]. Cold Regions Science and Technology, 2016,129:31-44.
doi: 10.1016/j.coldregions.2016.06.005 |
[100] |
杨大文, 徐宗学, 李哲, 等. 水文学研究进展与展望[J]. 地理科学进展, 2018,37(1):36-45.
doi: 10.18306/dlkxjz.2018.01.005 |
[ Yang Dawen, Xu Zongxue, Li Zhe, et al. Progress and prospect of hydrological sciences. Progress in Geography, 2018,37(1):36-45. ] | |
[101] |
Li X, Koike T. Frozen soil parameterization in SiB2 and its validation with GAME-Tibet observations[J]. Cold Regions Science and Technology, 2003,36(1-3):165-182.
doi: 10.1016/S0165-232X(03)00009-0 |
[102] |
Wang X J, Yang X M, Pang G J. Simulation and improvement of land surface processes in Nameqie, Central Tibetan Plateau, using the Community Land Model (CLM3.5)[J]. Environment Earth Sciences, 2015,73(11):7343-7357.
doi: 10.1007/s12665-014-3911-4 |
[103] | 李倩, 孙菽芬. 冻土模式的改进与发展[J]. 地球科学进展, 2006,21(12):1339-1349. |
[ Li Qian, Sun Shufen. Development of frozen soil model. Advances in Earth Science, 2006,21(12):1339-1349. ] | |
[104] |
Zhang X, Sun S F, Xue Y K. Development and testing of a frozen soil parameterization for cold region studies[J]. Journal of Hydrometeorology, 2006,8(4):690-701.
doi: 10.1175/JHM605.1 |
[105] | 刘火霖, 胡泽勇, 韩庚, 等. 基于Noah-MP模式的影响青藏高原冻融过程参数化方案评估[J]. 高原气象, 2020,39(1):1-14. |
[ Liu Huolin, Hu Zeyong, Han Geng, et al. Assessment of freeze-thaw process simulation in Qinghai-Tibetan Plateau by different parameterization schemes based on Noah-MP land surface model. Plateau Meteorology, 2020,39(1):1-14. ] | |
[106] | 李倩, 孙菽芬. 通用的土壤水热传输耦合模型的发展和改进研究[J]. 中国科学: 地球科学, 2007,37(11):1522-1535. |
[ Li Qian, Sun Shufen. Development of the university and simplified soil model coupling heat and water transport. Scientia Sinica Terrae, 2007,37(11):1522-1535. ] | |
[107] |
Bao H Y, Koike T, Yang K, et al. Development of an enthalpy-based frozen soil model and its validation in a cold region in China[J]. Journal of Geophysical Research: Atmospheres, 2016,121(10):5259-5280.
doi: 10.1002/2015JD024451 |
[108] |
Wang C H, Yang K. A new scheme of considering soil water-heat transport coupling based on Community Land Model: Model description and preliminary validation[J]. Journal of Advances in Modeling Earth Systems, 2018,10(4):927-950.
doi: 10.1002/jame.v10.4 |
[109] | Yang K, Wang C H, Li S Y. Improved simulation of frozen-thawing process in land surface model (CLM4.5)[J]. Journal of Geophysical Research: Atmospheres, 2018,123(23):13238-13258. |
[110] |
Liu Y M, Lu M M, Yang H J, et al. Land-atmosphere-ocean coupling associated with the Tibetan Plateau and its climate impacts[J]. National Science Review, 2020,7(3):534-552.
doi: 10.1093/nsr/nwaa011 |
[111] |
王澄海, 董文杰, 韦志刚. 青藏高原季节性冻土年际变化的异常特征[J]. 地理学报, 2001,68(5):523-531.
doi: 10.11821/xb200105003 |
[ Wang Chenghai, Dong Wenjie, Wei Zhigang. The feature of seasonal frozen soil in Qinghai Tibet Plateau. Acta Geographica Sinica, 2001,68(5):523-531. ] | |
[112] | 王澄海, 董文杰, 韦志刚. 青藏高原季节冻融过程与东亚大气环流关系的研究[J]. 地球物理学报, 2003,46(3):309-316. |
[ Wang Chenghai, Dong Wenjie, Wei Zhigang. Study on relationship between the frozen-thaw process in Qinghai-Xizang Plateau and circulation in East-Asia. Chinese Journal of Geophysics, 2003,46(3):309-316. ] | |
[113] | 张宇, 宋敏红, 吕世华, 等. 冻土过程参数化方案与中尺度大气模式的耦合[J]. 冰川冻土, 2003,25(5):541-546. |
[ Zhang Yu, Song Minhong, Lv Shihua, et al. Frozen soil parameterization scheme coupled with mesoscale model. Journal of Glaciology and Geocryology, 2003,25(5):541-546. ] | |
[114] |
Yang K, Wang C H. Seasonal persistence of soil moisture anomalies related to freeze-thaw over the Tibetan Plateau and prediction signal of summer precipitation in eastern China[J]. Climate Dynamics, 2019,53(3-4):2411-2424.
doi: 10.1007/s00382-019-04867-1 |
[115] |
Yang K, Wang C H. Water storage effect of soil freeze-thaw process and its impacts on soil hydro-thermal regime variations[J]. Agricultural and Forest Meteorology, 2019,265:280-294.
doi: 10.1016/j.agrformet.2018.11.011 |
[116] | 王澄海, 尚大成. 藏北高原土壤温湿度变化在高原干湿季转换中的作用[J]. 高原气象, 2007,26(4):677-685. |
[ Wang Chenghai, Shang Dacheng. Effect of the variation of the soil temperature and moisture in the transition from dry season to wet season over Northern Tibetan Plateau. Plateau Meteorology, 2007,26(4):677-685. ] | |
[117] |
Li R, Zhao L, Wu T H, et al. The impact of surface energy exchange on the thawing process of active layer over the northern Qinghai-Xizang Plateau, China[J]. Environmental Earth Sciences, 2014,72(6):2091-2099.
doi: 10.1007/s12665-014-3117-9 |
[118] |
Shang L Y, Zhang Y, Lv S H, et al. Energy exchange of an alpine grassland on the eastern Qinghai-Tibetan Plateau[J]. Science Bulletin, 2015,60(4):435-446.
doi: 10.1007/s11434-014-0685-8 |
[119] | 陈渤黎, 罗斯琼, 吕世华, 等. 基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J]. 冰川冻土, 39(4):760-770. |
[ Chen Boli, Luo Siqiong, Lv Shihua, et al. Lang surface characteristics in soil freezing and thawing process on the Tibetan Plateau based on Community Land Model. Journal of Glaciology and Geocryology, 2017,39(4):760-770. ] | |
[120] |
Wang X J, Pang G J, Yang M X, et al. Effects of modified soil water‐heat physics on RegCM4 simulations of climate over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2016,121(12):6692-6712.
doi: 10.1002/2015JD024407 |
|