PROGRESS IN GEOGRAPHY ›› 2020, Vol. 39 ›› Issue (10): 1758-1769.doi: 10.18306/dlkxjz.2020.10.014
• Reviews • Previous Articles Next Articles
WU Zemian1,2,3(), QIU Jianxiu1,2,3,*(
), LIU Suxia4,5, MO Xingguo4,5
Received:
2019-12-19
Revised:
2020-05-25
Online:
2020-10-28
Published:
2020-12-28
Contact:
QIU Jianxiu
E-mail:wuzm5@mail2.sysu.edu.cn;qiujianxiu@mail.sysu.edu.cn
Supported by:
WU Zemian, QIU Jianxiu, LIU Suxia, MO Xingguo. Advances in agricultural drought monitoring based on soil moisture[J].PROGRESS IN GEOGRAPHY, 2020, 39(10): 1758-1769.
Tab.1
Information of microwave soil moisture products"
卫星 | 传感器 | 产品名称 | 波段 | 产品空间分辨率/km | 数据起始时间 | 参考文献 |
---|---|---|---|---|---|---|
MetOp-A/B | ASCAT | C | 25 | 2007-01 | [53] | |
SMOS | MIRAS | SMOS-L3 | L | 25 | 2009-11 | [28] |
SMOS-IC | L | 25 | [54] | |||
GCOM-W1 | AMSR2 | LPRM | X | 25 | 2012-07 | [55] |
JAXA | X | 25 | [56] | |||
SMAP | Radiometer | L3_SM_P | L | 36 | 2015-03 | [29] |
L3_SM_P_E | L | 9 | ||||
SMAP/Sentinel-1 | Radiometer/SAR | L2_SM_SP | L/C | 3 | 2015-03 | [57] |
FY-3B/C | MWRI | X | 25 | 2011-07 | [58] |
[1] | 中国气象局. 中国气象灾害年鉴(2018) [M]. 北京: 气象出版社, 2019. |
[ China Meteorological Administration. Yearbook of meteorological disasters in China. Beijing, China: China Meteorological Press, 2019. ] | |
[2] | 莫兴国, 胡实, 卢洪健, 等. GCM预测情景下中国21世纪干旱演变趋势分析[J]. 自然资源学报, 2018,33(7):1244-1256. |
[ Mo Xingguo, Hu Shi, Lu Hongjian, et al. Drought trends over the terrestrial China in the 21st century in climate change scenarios with ensemble GCM projections. Journal of Natural Resources, 2018,33(7):1244-1256. ] | |
[3] | Wilhite D A, Glantz M H. Understanding: The drought phenomenon: The role of definitions[J]. Water International, 1985,10(3):111-120. |
[4] | 何斌, 武建军, 吕爱锋. 农业干旱风险研究进展[J]. 地理科学进展, 2010,29(5):557-564. |
[ He Bin, Wu Jianjun, Lv Aifeng. New advances in agricultural drought risk study. Progress in Geography, 2010,29(5):557-564. ] | |
[5] | Mishra A K, Singh V P. A review of drought concepts[J]. Journal of Hydrology, 2010,391(1):202-216. |
[6] | 宋扬, 房世波, 卫亚星. 农业干旱遥感监测指数及其适用性研究[J]. 科技导报, 2016,34(5):45-52. |
[ Song Yang, Fang Shibo, Wei Yaxing. Comparison of typical remote sensing drought indexes and their adaptability in agricultural. Science & Technology Review, 2016,34(5):45-52. ] | |
[7] | Narasimhan B, Srinivasan R. Development and evaluation of Soil Moisture Deficit Index (SMDI) and Evapotranspiration Deficit Index (ETDI) for agricultural drought monitoring[J]. Agricultural and Forest Meteorology, 2005,133(1):69-88. |
[8] | Hao Z, Singh V P. Drought characterization from a multivariate perspective: A review[J]. Journal of Hydrology, 2015,527:668-678. |
[9] | Steinemann A, Iacobellis S F, Cayan D R. Developing and evaluating drought indicators for decision-making[J]. Journal of Hydrometeorology, 2015,16(4):1793-1803. |
[10] | Hayes M J, Alvord C, Lowrey J. Drought indices[J]. Intermountain West Climate Summary, 2007,3(6):2-6. |
[11] | Allen R, Pereira L, Raes D, et al. Crop evapotranspiration: Guidelines for computing crop water requirements - FAO Irrigation and Drainage Paper 56 [R]. Rome, Italy: Food and Agriculture Organization of United Nations, 1998. |
[12] | Martínez-Fernández J, González-Zamora A, Sánchez N, et al. A soil water based index as a suitable agricultural drought indicator[J]. Journal of Hydrology, 2015,522:265-273. |
[13] | 朱青, 廖凯华, 赖晓明, 等. 流域多尺度土壤水分监测与模拟研究进展[J]. 地理科学进展, 2019,38(8):1150-1158. |
[ Zhu Qing, Liao Kaihua, Lai Xiaoming, et al. A review of soil water monitoring and modelling across spatial scales in the watershed. Progress in Geography, 2019,38(8):1150-1158. ] | |
[14] | Dai A. Drought under global warming: A review[J]. Wiley Interdisciplinary Reviews: Climate Change, 2011,2(1):45-65. |
[15] | Palmer W C. Meteorological drought [R]. Washington D C, USA: US Department of Commerce, Weather Bureau, 1965. |
[16] | Palmer W C. Keeping track of crop moisture conditions, nationwide: The new crop moisture index[J]. Weatherwise, 1968,21(4):156-161. |
[17] | Mckee T B, Doesken N J, Kleist J. The relationship of drought frequency and duration to time scales [C]// American Meteorological Society. Proceedings of the eighth conference on applied climatology. Washington D C, USA: American Meteorological Society, 1993: 179-183. |
[18] | Vicente-Serrano S M, Beguería S, López-Moreno J I. A multiscalar drought index sensitive to global warming: the standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010,23(7):1696-1718. |
[19] | Lu H, Mo X, Liu S. Intercomparison of three indices for addressing drought variability in North China Plain during 1962-2012[J]. Proceedings of the International Association of Hydrological Sciences, 2015,366:141. doi: 10.5194/piahs-366-141-2015. |
[20] | 黄友昕, 刘修国, 沈永林, 等. 农业干旱遥感监测指标及其适应性评价方法研究进展[J]. 农业工程学报, 2015,31(16):186-195. |
[ Huang Youxin, Liu Xiuguo, Shen Yonglin, et al. Advances in remote sensing derived agricultural drought monitoring indices and adaptability evaluation methods. Transactions of the CSAE, 2015,31(16):186-195. ] | |
[21] | 杨绍锷, 闫娜娜, 吴炳方. 农业干旱遥感监测研究进展[J]. 遥感信息, 2010,25(1):103-109. |
[ Yang Shao'e, Yan Nana, Wu Bingfang. Advances in agricultural drought monitoring by remote sensing. Remote Sensing Information, 2010,25(1):103-109. ] | |
[22] | Jackson R D, Kustas W P, Choudhury B J. A reexamination of the crop water stress index[J]. Irrigation Science, 1988,9(4):309-317. |
[23] | Kogan F N. Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data[J]. Bulletin of the American Meteorological Society, 1995,76(5):655-668. |
[24] | Gao B. NDWI: A normalized difference water index for remote sensing of vegetation liquid water from space[J]. Remote Sensing of Environment, 1996,58(3):257-266. |
[25] | Price J C. The potential of remotely sensed thermal infrared data to infer surface soil moisture and evaporation[J]. Water Resources Research, 1980,16(4):787-795. |
[26] | Petropoulos G P, Carlson T N, Wooster M J, et al. A review of Ts/VI remote sensing based methods for the retrieval of land surface energy fluxes and soil surface moisture[J]. Progress in Physical Geography, 2009,33(2):224-250. |
[27] | Ochsner T E, Cosh M H, Cuenca R H, et al. State of the art in large-scale soil moisture monitoring[J]. Soil Science Society of America Journal, 2013,77(6):1888. doi: 10.2136/sssaj2013.03.0093. |
[28] | Kerr Y H, Waldteufel P, Wigneron J, et al. The SMOS mission: New tool for monitoring key elements of the global water cycle[J]. Proceedings of the IEEE, 2010,98(5):666-687. |
[29] | Entekhabi D, Njoku E G, O'Neill P E, et al. The soil moisture active passive (SMAP) mission[J]. Proceedings of the IEEE, 2010,98(5):704-716. |
[30] | Hunt E D, Hubbard K G, Wilhite D A, et al. The development and evaluation of a soil moisture index[J]. International Journal of Climatology, 2009,29(5):747-759. |
[31] | Hao Z, Aghakouchak A. Multivariate standardized drought index: A parametric multi-index model[J]. Advances in Water Resources, 2013,57:12-18. |
[32] | Martínez-Fernández J, González-Zamora A, Sánchez N, et al. Satellite soil moisture for agricultural drought monitoring: Assessment of the SMOS Derived Soil Water Deficit Index[J]. Remote Sensing of Environment, 2016,177:277-286. |
[33] | Mishra A, Vu T, Veettil A V, et al. Drought monitoring with soil moisture active passive (SMAP) measurements[J]. Journal of Hydrology, 2017,552:620-632. |
[34] | Bai J, Cui Q, Chen D, et al. Assessment of the SMAP-Derived Soil Water Deficit Index (SWDI-SMAP) as an agricultural drought index in China[J]. Remote Sensing, 2018,10(8):1302. doi: 10.3390/rs10081302. |
[35] | Zhu Q, Luo Y, Xu Y, et al. Satellite soil moisture for agricultural drought monitoring: Assessment of SMAP-derived soil water deficit index in Xiang River Basin, China[J]. Remote Sensing, 2019,11(3):362. doi: 10.3390/rs11030362. |
[36] | Robinson D A, Campbell C S, Hopmans J W, et al. Soil moisture measurement for ecological and hydrological watershed-scale observatories: A review[J]. Vadose Zone Journal, 2008,7(1):358-389. |
[37] | Dorigo W A, Wagner W, Hohensinn R, et al. The international soil moisture network: A data hosting facility for global in situ soil moisture measurements[J]. Hydrology and Earth System Sciences, 2011,15(5):1675-1698. |
[38] | 史舟, 徐冬云, 滕洪芬, 等. 土壤星地传感技术现状与发展趋势[J]. 地理科学进展, 2018,37(1):79-92. |
[ Shi Zhou, Xu Dongyun, Teng Hongfen, et al. Soil information acquisition based on remote sensing and proximal soil sensing: Current status and prospect. Progress in Geography, 2018,37(1):79-92. ] | |
[39] | Vereecken H, Huisman J A, Hendricks Franssen H J, et al. Soil hydrology: Recent methodological advances, challenges, and perspectives[J]. Water Resources Research, 2015,51(4):2616-2633. |
[40] | Bogena H R, Huisman J A, Güntner A, et al. Emerging methods for noninvasive sensing of soil moisture dynamics from field to catchment scale: A review[J]. Wiley Interdisciplinary Reviews: Water, 2015,2(6):635-647. |
[41] |
Babaeian E, Sadeghi M, Jones S B, et al. Ground, proximal and satellite remote sensing of soil moisture[J]. Reviews of Geophysics, 2019,57(2):530-616. doi: 10.1029/2018rg000618.
doi: 10.1029/2018RG000618 |
[42] |
Seneviratne S I, Corti T, Davin E L, et al. Investigating soil moisture-climate interactions in a changing climate: A review[J]. Earth-Science Reviews, 2010,99(3):125-161.
doi: 10.1016/j.earscirev.2010.02.004 |
[43] | 吴东丽, 梁海河, 曹婷婷, 等. 中国自动土壤水分观测网运行监控系统建设[J]. 气象科技, 2014,42(2):278-282. |
[ Wu Dongli, Liang Haihe, Cao Tingting, et al. Construction of operation monitoring system of automatic soil moisture observation network in China. Meteorological Science and Technology, 2014,42(2):278-282. ] | |
[44] |
Liu S, Mo X, Li H, et al. Spatial variation of soil moisture in China: Geostatistical characterization[J]. Journal of the Meteorological Society of Japan, 2001,79(1B):555-574.
doi: 10.2151/jmsj.79.555 |
[45] |
Robock A, Vinnikov K Y, Srinivasan G, et al. The global soil moisture data bank[J]. Bulletin of the American Meteorological Society, 2000,81(6):1281-1300.
doi: 10.1175/1520-0477(2000)081<1281:TGSMDB>2.3.CO;2 |
[46] |
Su Z, Wen J, Dente L, et al. The Tibetan Plateau observatory of plateau scale soil moisture and soil temperature (Tibet-Obs) for quantifying uncertainties in coarse resolution satellite and model products[J]. Hydrology and Earth System Sciences, 2011,15(7):2303-2316.
doi: 10.5194/hess-15-2303-2011 |
[47] | 李新, 刘绍民, 马明国, 等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J]. 地球科学进展, 2012,27(5):481-498. |
[ Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin. Advances in Earth Science, 2012,27(5):481-498. ] | |
[48] |
Dorigo W A, Xaver A, Vreugdenhil M, et al. Global automated quality control of in situ soil moisture data from the International Soil Moisture Network[J]. Vadose Zone Journal, 2013,12(3). doi: 10.2136/vzj2012.0097.
doi: 10.2136/vzj2012.0157 pmid: 24795543 |
[49] | Dorigo W, Oevelen P, Wagner W, et al. A new international network for in situ soil moisture data[J]. Eos, Transactions American Geophysical Union, 2011,92(17):141-142. |
[50] | Ulaby F T, Moore R K, Fung A K. Microwave remote sensing: Active and passive. Volume II: Radar remote sensing and surface scattering and emission theory[M]. Hoboken, USA: Addison-Wesley, 1982. |
[51] |
Wagner W, Calvet J, Bloeschl G, et al. Operational readiness of microwave remote sensing of soil moisture for hydrologic applications[J]. Nordic Hydrology, 2007,38(1):1-20.
doi: 10.2166/nh.2007.029 |
[52] |
赵天杰. 被动微波反演土壤水分的L波段新发展及未来展望[J]. 地理科学进展, 2018,37(2):198-213.
doi: 10.18306/dlkxjz.2018.02.003 |
[ Zhao Tianjie. Recent advances of L-band application in the passive microwave remotes sensing of soil moisture and its prospects. Progress in Geography, 2018,37(2):198-213. ] | |
[53] |
Wagner W, Hahn S, Kidd R, et al. The ASCAT soil moisture product: A review of its specifications, validation results, and emerging applications[J]. Meteorologische Zeitschrift, 2013,22(1):5-33.
doi: 10.1127/0941-2948/2013/0399 |
[54] |
Fernandez-Moran R, Al-Yaari A, Mialon A, et al. SMOS-IC: An alternative SMOS soil moisture and vegetation optical depth product[J]. Remote Sensing, 2017,9(5):457. doi: 10.3390/rs9050457.
doi: 10.3390/rs9050457 |
[55] | Imaoka K, Maeda T, Kachi M, et al. Status of AMSR2 instrument on GCOM-W1 [C]// Shimoda H, Xiong X X, Cao C Y, et al. Proceedings SPIE 8528, Earth observing missions and sensors: Development, implementation, and characterization II. Bellingham, USA: International Society for Optics and Photonics, 2012. |
[56] |
Koike T, Nakamura Y, Kaihotsu I, et al. Development of an advanced microwave scanning radiometer (AMSR-E) algorithm for soil moisture and vegetation water content[J]. Proceedings of Hydraulic Engineering, 2004,48:217-222.
doi: 10.2208/prohe.48.217 |
[57] | Das N N, Entekhabi D, Dunbar R S, et al. The SMAP mission combined active-passive soil moisture product at 9 km and 3 km spatial resolutions[J]. Remote Sensing of Environment, 2018,211:204-217. |
[58] | Parinussa R M, Wang G, Holmes T R H, et al. Global surface soil moisture from the microwave radiation imager onboard the Fengyun-3B satellite[J]. International Journal of Remote Sensing, 2014,35(19):7007-7029. |
[59] | Dorigo W A, Scipal K, Parinussa R M, et al. Error characterisation of global active and passive microwave soil moisture data sets[J]. Hydrology and Earth System Sciences, 2010,14(12):2605-2616. |
[60] | Dorigo W, Wagner W, Albergel C, et al. ESA CCI soil moisture for improved earth system understanding: State-of-the art and future directions[J]. Remote Sensing of Environment, 2017,203:185-215. |
[61] | Wang S, Mo X, Liu S, et al. Validation and trend analysis of ECV soil moisture data on cropland in North China Plain during 1981-2010[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,48:110-121. |
[62] | Zhu Y, Li X, Pearson S, et al. Evaluation of Fengyun-3C soil moisture products using in-situ data from the Chinese automatic soil moisture observation stations: A case study in Henan Province, China[J]. Water, 2019,11(2). doi: 10.3390/w11020248. |
[63] | Draper C, Reichle R, de Jeu R, et al. Estimating root mean square errors in remotely sensed soil moisture over continental scale domains[J]. Remote Sensing of Environment, 2013,137:288-298. |
[64] | Gruber A, Su C, Zwieback S, et al. Recent advances in (soil moisture) triple collocation analysis[J]. International Journal of Applied Earth Observation and Geoinformation, 2016,45:200-211. |
[65] | Crow W T, Yilmaz M T. The Auto-Tuned Land Data Assimilation System (ATLAS)[J]. Water Resources Research, 2014,50(1):371-385. |
[66] | Wagner W, Lemoine G, Rott H. A method for estimating soil moisture from ERS scatterometer and soil data[J]. Remote Sensing of Environment, 1999,70(2):191-207. |
[67] | 李新, 黄春林. 数据同化: 一种集成多源地理空间数据的新思路[J]. 科技导报, 2004,22(12):13-16. |
[ Li Xin, Huang Chunlin. Data assimilation: A new means for multi-source geospatial data intergration. Science & Technology Review, 2004,22(12):13-16. ] | |
[68] | 韩旭军, 李新. 非线性滤波方法与陆面数据同化[J]. 地球科学进展, 2008,23(8):813-820. |
[ Han Xujun, Li Xin. Review of the nonlinear filters in the land data assimilation. Advances in Earth Science, 2008,23(8):813-820. ] | |
[69] | Li F, Crow W T, Kustas W P. Towards the estimation root-zone soil moisture via the simultaneous assimilation of thermal and microwave soil moisture retrievals[J]. Advances in Water Resources, 2010,33(2):201-214. |
[70] | Qiu J, Crow W T, Nearing G S, et al. The impact of vertical measurement depth on the information content of soil moisture times series data[J]. Geophysical Research Letters, 2014,41(14):4997-5004. |
[71] | 周洪奎, 武建军, 李小涵, 等. 基于同化数据的标准化土壤湿度指数监测农业干旱的适宜性研究[J]. 生态学报, 2019,39(6):2191-2202. |
[ Zhou Hongkui, Wu Jianjun, Li Xiaohan, et al. Suitability of assimilated data-based standardized soil moisture index for agricultural drought monitoring. Acta Ecologica Sinica, 2019,39(6):2191-2202. ] | |
[72] | Wu W, Geller M A, Dickinson R E. The response of soil moisture to long-term variability of precipitation[J]. Journal of Hydrometeorology, 2002,3(5):604-613. |
[73] | Sheffield J, Goteti G, Wen F, et al. A simulated soil moisture based drought analysis for the United States[J]. Journal of Geophysical Research, 2004,109(D24). doi: 10.1029/2004jd005182. |
[74] | Sheffield J, Wood E F. Characteristics of global and regional drought, 1950-2000: Analysis of soil moisture data from off-line simulation of the terrestrial hydrologic cycle[J]. Journal of Geophysical Research: Atmospheres, 2007,112(D17):D17115. doi: 10.1029/2006JD008288. |
[75] | Dutra E, Viterbo P, Miranda P M A. ERA-40 reanalysis hydrological applications in the characterization of regional drought[J]. Geophysical Research Letters, 2008,35(19):L19402. doi: 10.1029/2008gl035381. |
[76] | Hao Z, Yuan X, Xia Y, et al. An overview of drought monitoring and prediction systems at regional and global scales[J]. Bulletin of the American Meteorological Society, 2017,98(9):1879-1896. |
[77] | Mishra A K, Ines A V M, Das N N, et al. Anatomy of a local-scale drought: Application of assimilated remote sensing products, crop model, and statistical methods to an agricultural drought study[J]. Journal of Hydrology, 2015,526:15-29. |
[78] | Torres G M, Lollato R P, Ochsner T E. Comparison of drought probability assessments based on atmospheric water deficit and soil water deficit [J]. Agronomy Journal, 2013,105(2):428-436. |
[79] | Sridhar V, Hubbard K G, You J, et al. Development of the soil moisture index to quantify agricultural drought and its "user friendliness" in severity-area-duration assessment[J]. Journal of Hydrometeorology, 2008,9(4):660-676. |
[80] | Wieder W R, Boehnert J, Bonan G B, et al. Regridded harmonized world soil database v1. 2 [DB/OL]. Oak Ridge, USA: ORNL DAAC, 2014. doi: 10.3334/ORNLDAAC/1247. |
[81] |
Hengl T, de Jesus J M, Heuvelink G B, et al. SoilGrids250m: Global gridded soil information based on machine learning[J]. PLoS One, 2017,12(2). doi: 10.1371/journal.pone.0169748.
pmid: 28245273 |
[82] | 刘宪锋, 朱秀芳, 潘耀忠, 等. 农业干旱监测研究进展与展望[J]. 地理学报, 2015,70(11):1835-1848. |
[ Liu Xianfeng, Zhu Xiufang, Pan Yaozhong, et al. Agricultural drought monitor: Progress, challenges and prospect. Acta Geographica Sinica, 2015,70(11):1835-1848. ] | |
[83] | Sánchez N, González-Zamora A, Piles M, et al. A new Soil Moisture Agricultural Drought Index (SMADI) integrating MODIS and SMOS products: A case of study over the Iberian Peninsula[J]. Remote Sensing, 2016,8(4):287. doi: 10.3390/rs8040287. |
[84] | Wang S, Mo X, Hu S, et al. Assessment of droughts and wheat yield loss on the North China Plain with an aggregate drought index (ADI) approach[J]. Ecological Indicators, 2018,87:107-116. |
[85] | Du J, Kimball J S, Velicogna I, et al. Multicomponent satellite assessment of drought severity in the contiguous United States from 2002 to 2017 using AMSR‐E and AMSR2[J]. Water Resources Research, 2019,55(7):5394-5412. |
[86] | West H, Quinn N, Horswell M. Remote sensing for drought monitoring & impact assessment: Progress, past challenges and future opportunities[J]. Remote Sensing of Environment, 2019,232:111291. doi: 10.1016/j.rse.2019.111291. |
[87] | Wang C, Fu B, Zhang L, et al. Soil moisture-plant interactions: An ecohydrological review[J]. Journal of Soils and Sediments, 2019,19(1):1-9. |
[88] | 王福祥, 肖开转, 姜身飞, 等. 干旱胁迫下植物体内活性氧的作用机制[J]. 科学通报, 2019,64(17):1765-1779. |
[ Wang Fuxiang, Xiao Kaizhuan, Jiang Shenfei, et al. Mechanisms of reactive oxygen species in plants under drought stress. Chinese Science Bulletin, 2019,64(17):1765-1779. ] | |
[89] | Chen X, Mo X, Zhang Y, et al. Drought detection and assessment with solar-induced chlorophyll fluorescence in summer maize growth period over North China Plain[J]. Ecological Indicators, 2019,104:347-356. |
[90] | Hazaymeh K, K. Hassan Q, Remote sensing of agricultural drought monitoring: A state of art review[J]. AIMS Environmental Science, 2016,3(4):604-630. |
[1] | JIANG Bo, TIAN Jing, SU Hongbo. Estimation of monthly evapotranspiration and soil moisture in the Central Asia [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 433-442. |
[2] | ZHU Qing,LIAO Kaihua,LAI Xiaoming,LIU Ya,LV Ligang. A review of soil water monitoring and modelling across spatial scales in the watershed [J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1150-1158. |
[3] | Tianjie ZHAO. Recent advances of L-band application in the passive microwave remote sensing of soil moisture and its prospects [J]. PROGRESS IN GEOGRAPHY, 2018, 37(2): 198-213. |
[4] | Jian HU, Yihe LÜ. Research progress on stochastic soil moisture dynamic model [J]. PROGRESS IN GEOGRAPHY, 2015, 34(3): 389-400. |
[5] | ZHANG Xianfeng, ZHAO Jiepeng, LIU Yu. Improved soil moisture retrieval model from remotely sensed microwave data [J]. PROGRESS IN GEOGRAPHY, 2013, 32(1): 78-86. |
[6] | SSONG Chunqiao, YOU Songcai, LIU Gaohuan, KE Linghong, ZHONG Xinke. The Spatial Pattern of Soil Moisture in Northern Tibet Based on TVDI Method [J]. PROGRESS IN GEOGRAPHY, 2011, 30(5): 569-576. |
[7] | HE Bin, WU Jianjun, LV Aifeng. New Advances in Agricultural Drought Risk Study [J]. PROGRESS IN GEOGRAPHY, 2010, 29(5): 557-564. |
[8] | XIE Jian1,2, LIU Jingshi1, DU Mingyuan3, KANG Shichang1, IA Shugang1, WANG Zhong. Hydrothermal Characteristics of the Land-Atmospheric System in an Alpine Area of West Nyainqentanglha Mountains [J]. PROGRESS IN GEOGRAPHY, 2010, 29(2): 151-158. |
[9] | LI Yuhuan1,2, WANG Jing1, CAO Yingui1. Retrieved Deduction of Soil Moisture Spatial Distribution and Drought Discrimination Based on Remote Sensing [J]. PROGRESS IN GEOGRAPHY, 2006, 25(2): 123-130. |
[10] | ZhANG Caixia, YANG Qinke, LI Rui. Advancement in Topographic Wetness Index and Its Application [J]. PROGRESS IN GEOGRAPHY, 2005, 24(6): 116-123. |
[11] | SHAO Xiaomei, YAN Changrong, XU Zhenjian. Progress in Monitoring and Simulation of Soil Moisture [J]. PROGRESS IN GEOGRAPHY, 2004, 23(3): 58-66. |
[12] | GAO Lu, CHEN Su ying, HU Chun sheng, HUO Xi liang . A Study on Spatial Variability of Soil Moisture in Wheat Field Under Sprinkling Irrigation Condition [J]. PROGRESS IN GEOGRAPHY, 2002, 21(6): 609-615. |
|