PROGRESS IN GEOGRAPHY ›› 2020, Vol. 39 ›› Issue (1): 120-131.doi: 10.18306/dlkxjz.2020.01.012
• Reviews • Previous Articles Next Articles
XIE Zhenghui1,2, LIU Bin1,2, YAN Xiaodong3, MENG Chunlei4, XU Xianli5, LIU Yu6, QIN Peihua1, JIA Binghao1, XIE Jinbo1, LI Ruichao1,2, WANG Longhuan1,2, WANG Yan1,2, CHEN Si1,2
Received:
2019-03-04
Revised:
2019-07-28
Online:
2020-01-28
Published:
2020-03-28
Supported by:
XIE Zhenghui, LIU Bin, YAN Xiaodong, MENG Chunlei, XU Xianli, LIU Yu, QIN Peihua, JIA Binghao, XIE Jinbo, LI Ruichao, WANG Longhuan, WANG Yan, CHEN Si. Effects of implementation of urban planning in response to climate change[J].PROGRESS IN GEOGRAPHY, 2020, 39(1): 120-131.
Tab.1
Urban spatial morphology index"
空间形态指数 | 量化指标 | 含义 |
---|---|---|
密度 | 人口密度 | 单位面积人口数,表征人口密集程度 |
高度变率 | 建筑物高度标准差,表征垂直方向高度变异性 | |
平均高度 | 建筑物平均高度 | |
平面积指数 | ||
正面积指数 | ||
紧凑度 | 紧凑度指数 | |
复杂度 | 形状指数 | 区域内形状与相同面积的圆或正方形之间的偏离程度,表征形状的复杂程度 |
分形维数 | 面积与周长的关系式: | |
可达性 | 交通可达性指数 | 交通网络中各节点相互作用机会的大小,可简单解释为交通系统中从某一区位到达指定区位的便捷程度 |
居住区形态 | 容积率 | 建筑面积与用地面积的比率,表征用地强度 |
建筑密度 | 建筑基底面积与规划建设用地面积的比率,表征用地范围内的空地率与建筑密集程度 | |
扩张性 | 城市拓展强度指数 | 各空间单位土地面积对其平均扩展速度进行标准化 |
城市扩张各向异性 | 城市扩展速度和强度在不同方位上的差异,表征城市扩展的方向态势 |
Tab.2
Urban planning considered in different land surface models"
陆面模式 | 城市规划作用 | |||||
---|---|---|---|---|---|---|
土地利用 | 城市用水 | 能源消耗 | 空间形态 | 道路交通 | 生态绿化 | |
CLM (Community land model) | ○ | ○ | ○ | |||
CoLM (Common land model) | ○ | |||||
CLASS (Canadian Land Surface Scheme) | ○ | |||||
ISBA (Interactions between Soil, Biosphere, and Atmosphere land surface model) | ○ | |||||
JULES (Joint UK Land Environment Simulator) | ○ | ○ | ||||
CAS-LSM (Chinese Academy of Sciences Land Surface model) | ○ | ○ | ○ | ○ | ○ | |
Noah-MP (Noah-Multiparameterization Land Surface Model) | ○ | ○ | ○ | ○ |
[1] | Luber G, McGeehin M . Climate change and extreme heat events[J]. American Journal of Preventive Medicine, 2008,35(5):429-435. |
[2] | Field C B. Climate change 2014: Impacts, adaptation and vulnerability: Regional aspects [M]. Cambridge, UK: Cambridge University Press, 2014. |
[3] | Godschalk D R . Land use planning challenges: Coping with conflicts in visions of sustainable development and livable communities[J]. Journal of the American Planning Association, 2004,70(1):5-13. |
[4] | Geis D E . By design: The disaster resistant and quality-of-life community[J]. Natural Hazards Review, 2000,1(3):151-160. |
[5] | Blakely E J . Urban planning for climate change [R]. Working Paper. Cambridge, USA: Lincoln Institute of Land Policy, 2007: 1-25. |
[6] | 蔡琴, 黄婧, 齐晔 . 中外低碳城市规划特征比较[J]. 城市发展研究, 2013,20(6):1-7. |
[ Cai Qin, Huan Jing, Qi Ye . A comparative analysis of low carbon city planning in China and abroad. Urban Studies, 2013,20(6):1-7. ] | |
[7] | 方创琳, 周成虎, 顾朝林 , 等. 特大城市群地区城镇化与生态环境交互耦合效应解析的理论框架及技术路径[J]. 地理学报, 2016,71(4):531-550. |
[ Fang Chuanglin, Zhou Chenghu, Gu Chaolin , et al. Theoretical analysis of interactive coupled effects between urbanization and eco-environment in mega-urban agglomerations. Acta Geographica Sinica, 2016,71(4):531-550. ] | |
[8] | 顾朝林, 谭纵波, 刘志林 , 等. 基于低碳理念的城市规划研究框架[J]. 城市与区域规划研究, 2017,9(3):225-244. |
[ Gu Chaolin, Tan Zongbo, Liu Zhilin , et al. A possible approach of urban planning for low-carbon city. Journal of Urban and Regional Planning, 2017,9(3):225-244. ] | |
[9] | 胡明晖 . 城市应对气候变化的国际案例与政策经验[J]. 中原工学院学报, 2016(5):38-42, 46. |
[ Hu Minghui . International case and policy experience of cities in addressing climate change. Journal of Zhongyuan Institute of Technology, 2016(5):38-42, 46. ] | |
[10] | 洪亮平, 华翔 . 应对气候变化的城市规划 [M]. 北京: 中国建筑工业出版社 2015:85-138. |
[ Hong Liangping, Hua Xiang. Urban planning for climate change. Beijing, China: China Architecture and Building Press, 2015: 85-138. ] | |
[11] | 肖登攀, 陶福禄 . 全球变化下地表反照率研究进展[J]. 地球科学进展, 2011,26(11):1217-1224. |
[ Xiao Dengpan, Tao Fulu . Advances in surface albedo research under global change. Advances in Earth Science, 2011,26(11):1217-1224. ] | |
[12] | Lu D, Weng Q . Use of impervious surface in urban land-use classification[J]. Remote Sensing of Environment, 2006,102(1-2):146-160. |
[13] | 苏振华, 何报寅, 丁超 , 等. 基于遥感分析土地利用变化对武汉城市热岛的影响[J]. 华中师范大学学报(自然科学版), 2015,49(1):139-146. |
[ Su Zhenhua, He Baoyin, Ding Chao , et al. The impact of land use change on Wuhan urban heat island was analyzed based on remote sensing. Journal of Central China Normal University: Science Edition, 2015,49(1):139-146. ] | |
[14] | Zhao L, Lee X, Smith R B , et al. Strong contributions of local background climate to urban heat islands[J]. Nature, 2014,511:216-219. |
[15] | Bokaie M, Zarkesh M K, Arasteh P D , et al. Assessment of urban heat island based on the relationship between land surface temperature and land use/land cover in Tehran[J]. Sustainable Cities and Society, 2016,23:94-104. |
[16] | 李晓文, 方精云, 朴世龙 . 上海城市用地扩展强度、模式及其空间分异特征[J]. 自然资源学报, 2003,18(4):412-422. |
[ Li Xiaowen, Fang Jingyun, Piao Shilong . The intensity and modes of urban landuse growth in Shanghai. Journal of Natural Resources, 2003,18(4):412-422. ] | |
[17] | 曹美春 . 城市非均匀下垫面地表粗糙度参数化方案的研制及其与WRF模式的耦合和模拟研究[D]. 北京: 中国科学院大学, 2011. |
[ Cao Meichun . Improvement of the roughness length parameterization scheme over heterogeneous urban surfaces and its coupling with the WRF model. Beijing, China: The University of Chinese Academy of Sciences, 2011. ] | |
[18] | 赵景柱, 宋瑜, 石龙宇 , 等. 城市空间形态紧凑度模型构建方法研究[J]. 生态学报, 2011,31(21):6338-6343. |
[ Zhao Jinzhu, Song Yu, Shi Longyu , et al. Study on the compactness assessment model of urban spatial form. Acta Ecologica Sinica, 2011,31(21):6338-6343. ] | |
[19] | 张治清, 贾敦新, 邓仕虎 , 等. 城市空间形态与特征的定量分析: 以重庆市主城区为例[J]. 地球信息科学学报, 2013,15(2):297-306. |
[ Zhang Zhiqing, Jia Dunxin, Deng Shihu , et al. Quantitative research of urban spatial morphology: A case study of the main urban zone of Chongqing. Geo-information Science, 2013,15(2):297-306. ] | |
[20] | 崔胜辉, 徐礼来, 黄云凤 , 等. 城市空间形态应对气候变化研究进展及展望[J]. 地理科学进展, 2015,34(10):1209-1218. |
[ Cui Shenghui, Xu Lilai, Huang Yunfeng , et al. Research progress and prospect of urban spatial form responding to climate change. Progress in Geography, 2015,34(10):1209-1218. ] | |
[21] | 沙敏敏, 张风丽, 符喜优 , 等. 基于SAR数据的城市空气动力学粗糙度研究[J]. 遥感技术与应用, 2016,31(5):855-863. |
[ Sha Minmin, Zhang Fengli, Fu Xiyou , et al. Research on urban aerodynamic roughness based on SAR data. Remote Sensing and Application, 2016,31(5):855-863. ] | |
[22] | Ichinose T, Shimodozono K, Hanaki K . Impact of anthropogenic heat on urban climate in Tokyo[J]. Atmospheric Environment, 1999,33:3897-3909. |
[23] | Chapman L . Transport and climate change: A review[J]. Journal of Transport Geography, 2007,15(5):354-367. |
[24] | Meyer M, Amekudzi A, O'Har J . Transportation asset management systems and climate change: Adaptive systems management approach[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010,2160(1):12-20. |
[25] | Jayasooriya V M, Ng A W M, Muthukumaran S , et al. Green infrastructure practices for improvement of urban air quality[J]. Urban Forestry and Urban Greening, 2017,21:34-47. |
[26] | 姚焕玫 . 基于GIS技术的湖泊水质污染综合评价的研究[D]. 武汉: 武汉大学, 2005. |
[ Yao huanmei . Research on water pollution synthesized evaluation of lake based on GIS. Wuhan, China: Wuhan University, 2005. ] | |
[27] | Choi B G, Cho T I, Na Y W , et al. A study on the urban climate mapping method using GIS[J]. Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography, 2011,29(2):183-191. |
[28] | 李奇, 刘孔 . 城市规划的大气环境效应评估[J]. 现代农业, 2014(12):66-68. |
[ Li Qi, Liu Kong . Evaluation of atmospheric environmental effects of urban planning. Modern Agriculture, 2014(12):66-68. ] | |
[29] | Park M S, Park S H, Chae J H , et al. High-resolution urban observation network for user-specific meteorological information service in the Seoul Metropolitan Area, South Korea[J]. Atmospheric Measurement Techniques, 2017,10(4):1575-1594. |
[30] | 侯路瑶 . 城市建成因素对于城市气候影响[D]. 上海: 华东师范大学, 2017. |
[ Hou Luyao . Impact of urban construction factors on urban climate: A case study of Shanghai. Shanghai, China: East China Normal University, 2017. ] | |
[31] | 刘琳, 刘京, 肖荣波 , 等. 城市局地气候的可视化评估及分析[J]. 哈尔滨工业大学学报, 2017,49(8):109-115. |
[ Liu Lin, Liu Jing, Xiao Rongbo , et al. Urban local climatic visualized evaluation and analysis. Journal of Harbin Institute of Technology, 2017,49(8):109-115. ] | |
[32] | Best M J, Grimmond C S B . Key conclusions of the first international urban land surface model comparison project[J]. Bulletin of the American Meteorological Society, 2015,96(5):805-819. |
[33] | Pokhrel Y N, Koirala S, Yeh P J F , et al. Incorporation of groundwater pumping in a global land surface model with the representation of human impacts[J]. Water Resources Research, 2015,51(1):78-96. |
[34] | Verseghy D L . CLASS: A Canadian land surface scheme for GCMs. I. Soil model[J]. International Journal of Climatology, 1991,11(2):111-133. |
[35] | Dai Y, Zeng X, Dickinson R E , et al. The common land model[J]. Bulletin of the American Meteorological Society, 2003,84(8):1013-1024. |
[36] | Oleson K W, Bonan G B, Feddema J , et al. Technical description of an urban parameterization for the Community Land Model (CLMU) [R]. Boulder, USA: National Center for Atmospheric Research, 2010: 1-156. |
[37] | Best M J, Pryor M, Clark D B , et al. The Joint UK Land Environment Simulator (JULES), model description: Part 1: Energy and water fluxes[J]. Geoscientific Model Development, 2011,4(3):677-699. |
[38] | Niu G Y, Yang Z L, Mitchell K E , et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements[J]. Journal of Geophysical Research: Atmospheres, 2011,116(D12). doi: 10.1029/2010JD015140. |
[39] | Xie Z H, Liu S, Zeng Y J , et al. A high-resolution land model with groundwater lateral flow, water use and soil freeze-thaw front dynamics and its applications in an endorheic basin[J]. Journal of Geophysical Research: Atmospheres, 2018,123(14):7204-7222. |
[40] | Trusilova K, Jung M, Churkina G , et al. Urbanization impacts on the climate in Europe: Numerical experiments by the PSU-NCAR Mesoscale Model (MM5)[J]. Journal of Applied Meteorology and Climatology, 2008,47(5):1442-1455. |
[41] | Hamdi R, Deckmyn A, Termonia P , et al. Effects of historical urbanization in the Brussels capital region on surface air temperature time series: A model study[J]. Journal of Applied Meteorology and Climatology, 2009,48(10):2181-2196. |
[42] | Feng J M, Wang Y L, Ma Z G , et al. Simulating the regional impacts of urbanization and anthropogenic heat release on climate across China[J]. Journal of Climate, 2012,25(20):7187-7203. |
[43] | Wang J, Feng J, Yan Z , et al. Nested high-resolution modeling of the impact of urbanization on regional climate in three vast urban agglomerations in China[J]. Journal of Geophysical Research: Atmospheres, 2012,117(D21). doi: 10.1029/2012JD018226. |
[44] | Feng J, Wang J, Yan Z . Impact of anthropogenic heat release on regional climate in three vast urban agglomerations in China[J]. Advances in Atmospheric Sciences, 2014,31(2):363-373. |
[45] | Quah A K L, Roth M . Diurnal and weekly variation of anthropogenic heat emissions in a tropical city, Singapore[J]. Atmospheric Environment, 2012,46:92-103. |
[46] | Narumi D, Kondo A, Shimoda Y . Effects of anthropogenic heat release upon the urban climate in a Japanese megacity[J]. Environmental Research, 2009,109(4):421-431. |
[47] | Oleson K W, Bonan G B, Feddema J . Effects of white roofs on urban temperature in a global climate model[J]. Geophysical Research Letters, 2010,37(3). doi: 10.1029/2009GL042194. |
[48] | Parizotto S, Lamberts R . Investigation of green roof thermal performance in temperate climate: A case study of an experimental building in Florianópolis city, Southern Brazil[J]. Energy and Buildings, 2011,43(7):1712-1722. |
[49] | Ouldboukhitine S E, Belarbi R, Sailor D J . Experimental and numerical investigation of urban street canyons to evaluate the impact of green roof inside and outside buildings[J]. Applied Energy, 2014,114:273-282. |
[50] | Ouldboukhitine S E, Belarbi R, Jaffal I , et al. Assessment of green roof thermal behavior: A coupled heat and mass transfer model[J]. Building and Environment, 2011,46(12):2624-2631. |
[51] | Vahmani P, Hogue T S . Incorporating an urban irrigation module into the Noah land surface model coupled with an urban canopy model[J]. Journal of Hydrometeorology, 2014,15(4):1440-1456. |
[52] | Adegoke J O, Pielke Sr R A, Eastman J , et al. Impact of irrigation on midsummer surface fluxes and temperature under dry synoptic conditions: A regional atmospheric model study of the US High Plains[J]. Monthly Weather Review, 2003,131(3):556-564. |
[53] | Soulis K X, Valiantzas J D, Ntoulas N , et al. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model[J]. Journal of Environmental Management, 2017,200:434-445. |
[54] | Zirkelbach D, Mehra S R, Sedlbauer K P , et al. A hygrothermal green roof model to simulate moisture and energy performance of building components[J]. Energy and Buildings, 2017,145:79-91. |
[55] | Lawston P M, Santanello Jr J A, Zaitchik B P , et al. Impact of irrigation methods on land surface model spinup and initialization of WRF forecasts[J]. Journal of Hydrometeorology, 2015,16(3):1135-1154. |
[56] | Vahmani P, Hogue T S . Urban irrigation effects on WRF-UCM summertime forecast skill over the Los Angeles metropolitan area[J]. Journal of Geophysical Research: Atmospheres, 2015,120(19):9869-9881. |
[57] | Zhang C L, Chen F, Miao S G , et al. Impacts of urban expansion and future green planting on summer precipitation in the Beijing metropolitan area[J]. Journal of Geophysical Research: Atmospheres, 2009,114(D2). doi: 10.1029/2008JD010328. |
[58] | Khain A P . Notes on state-of-the-art investigations of aerosol effects on precipitation: A critical review[J]. Environmental Research Letters, 2009,4(1). doi: 10.1088/1748-9326/4/1/015004. |
[59] | Cen G P, Shen J, Fan R S . Research on rainfall pattern of urban design storm[J]. Advances in Water Science, 1998,9(1):41-46. |
[60] | Shao W, Zhang H, Liu J , et al. Data integration and its application in the sponge city construction of China[J]. Procedia Engineering, 2016,154:779-786. |
[61] | 秦彤, 艾晓秋, 翟永梅 . 基于数值风场的高层建筑对临近低层建筑群影响分析[J]. 灾害学, 2010,25(S1):212-215. |
[ Qin Tong, Ai Xiaoqiu, Zhai Yongmei . Analysis in wind field around low-rise building impacted by high-rise building. Journal of Catastrophology, 2010,25(S1):212-215. ] | |
[62] | Kang G, Kim J J, Kim D J , et al. Development of a computational fluid dynamics model with tree drag parameterizations: Application to pedestrian wind comfort in an urban area[J]. Building and Environment, 2017,124:209-218. |
[63] | 汪光焘, 王晓云, 苗世光 , 等. 城市规划大气环境影响多尺度评估技术体系的研究与应用[J]. 中国科学D辑, 2005,35(S1):145-155. |
[ Wang Guangtao, Wang Xiaoyun, Miao Shiguang , et al. Research and application of multi-scale assessment technology system for urban planning atmospheric environmental impact. Science in China Series D, 2005,35(S1):145-155. ] | |
[64] | Yuan C . Urban wind environment: Integrated climate-sensitive planning and design[M]. Singapore: Springer, 2018. |
[65] | 王晓飞 . 基于降低雾霾影响的寒地城市通风廊道构建研究[D]. 长春: 吉林建筑大学, 2018. |
[ Wang Xiaofei . The research of the construction of urban ventilation corridor in the winter cities bases on reducing the influence of the haze: Take ChangChun for instance. Changchun, China: Jilin Jianzhu University, 2018. ] | |
[66] | Park S J, Choi W, Kim J J , et al. Effects of building-roof cooling on the flow and dispersion of reactive pollutants in an idealized urban street canyon[J]. Building and Environment, 2016,109:175-189. |
[67] | 魏一鸣, 米志付, 张皓 . 气候变化综合评估模型研究新进展[J]. 系统工程理论与实践, 2013,33(8):1905-1915. |
[ Wei Yiming, Mi Zhifu, Zhang Hao . Progress of integrated assessment models for climate policy. System Engineering: Theory and Practice, 2013,33(8):1905-1915. ] | |
[68] | Nordhaus W D . The 'DICE' model: Background and structure of a dynamic integrated climate-economy model of the economics of global warming [R]. New Haven, USA: Cowles Foundation for Research in Economics, Yale University, 1992. |
[69] | Manne A, Mendelsohn R, Richels R . MERGE: A model for evaluating regional and global effects of GHG reduction policies[J]. Energy Policy, 1995,23(1):17-34. |
[70] | Tol R S J . On the optimal control of carbon dioxide emissions: An application of FUND[J]. Environmental Modeling and Assessment, 1997,2(3):151-163. |
[71] | Kainuma M, Matsuoka Y, Morita T , et al. Analysis of post-Kyoto scenarios: The Asian-Pacific integrated model[J]. The Energy Journal, 1999,20(1):207-220. |
[72] | Jorgenson D W, Goettle R J, Hurd B H , et al. US market consequences of global climate change [R]. Washington DC, USA: Pew Center on Global Climate Change, 2004. |
[73] | Gerlagh R . A climate-change policy induced shift from innovations in carbon-energy production to carbon-energy savings[J]. Energy Economics, 2008,30(2):425-448. |
[74] | Hope C, Anderson J, Wenman P . Policy analysis of the greenhouse effect: An application of the PAGE model[J]. Energy Policy, 1993,21(3):327-338. |
[75] | Rotmans J, De Boois H, Swart R J . An integrated model for the assessment of the greenhouse effect: The Dutch approach[J]. Climatic Change, 1990,16(3):331-356. |
[76] | Blond N, Carnevale C, Douros J , et al. A framework for integrated assessment modelling[M]// Giorgio G, Marialuisa V. Air Quality Integrated Assessment. Cham, Switzerland: Springer, 201:9-35. |
[77] | Żeliński J, Telenga-Kopyczyńska J . Social consequences associated with the use of various optimization methods in the protection of air quality[J]. Journal of Environmental Planning and Management, 2019,62(6):960-978. |
[78] | Miranda A I, Relvas H, Turrini E , et al. Urban air quality plans and integrated assessment methodologies[J]. Journal of Environmental Science and Engineering B, 2014,3:70-78. |
[79] | Hall J W, Dawson R J, Barr S L , et al. City-scale integrated assessment of climate impacts, adaptation and mitigation[M] // Ranjan K B. Energy efficient cities: Assessment tools and benchmarking practices, Washington, DC, USA: The World Bank, 2010: 43-64. |
[80] | Sairinen R . Assessing social impacts of urban land-use plans: From theory to practice[J]. Boreal Environment Research, 2004,9(6):509-517. |
[81] | Rottensteiner F, Briese C. A new method for building extraction in urban areas from high-resolution LIDAR data [C]// International Archives of Photogrammetry Remote Sensing and Spatial Information Sciences. Vol. 34/3A. Graz, Austria, 2002: 295-301. |
[82] | Dell'Acqua F, Gamba P, Ferrari A , et al. Exploiting spectral and spatial information in hyperspectral urban data with high resolution[J]. IEEE Geoscience and Remote Sensing Letters, 2004,1(4):322-326. |
[83] | 孟春雷 . 城市陆面模式研究进展与展望[J]. 气象科技进展, 2015,5(1):23-28. |
[ Meng Chunlei . Review and prospect of urban land surface model research. Advances in Meteorological Science and Technology, 2015,5(1):23-28. ] | |
[84] | Zeng Y, Xie Z, Yu Y , et al. Effects of anthropogenic water regulation and groundwater lateral flow on land processes[J]. Journal of Advances in Modeling Earth Systems, 2016,8(3):1106-1131. |
[85] | 董文杰, 袁文平, 滕飞 , 等. 地球系统模式与综合评估模型的双向耦合及应用[J]. 地球科学进展, 2016,31(12):1215-1219. |
[ Dong Wenjie, Yuan Wenping, Teng Fei , et al. Coupling earth system model and integrated assessment model. Advances in Earth Science, 2016,31(12):1215-1219. ] | |
[86] | 曾庆存 . 自然控制论[J]. 科技导报, 1996,14(11):3-8. |
[ Zeng Qingcun . Natural cybernetics. Science and Technology Review, 1996,14(11):3-8. ] | |
[87] | 方创琳 . 城市多规合一的科学认知与技术路径探析[J]. 中国土地科学, 2017,31(1):28-36. |
[ Fang Chuanglin . Scientific cognition and technical paths of urban multiple planning integration in China. China Land Sciences, 2017,31(1):28-36. ] |
[1] | DENG Guofu, LI Mingqi. Advances of study on the relationship between tree-ring density and climate and climate reconstruction [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 343-356. |
[2] | AO Xue, ZHAI Qingfei, CUI Yan, ZHOU Xiaoyu, SHEN Lidu, ZHAO Chunyu, Ning Xilong. Detection of urbanization effect on the climate change in Liaoning Province based on empirical orthogonal function methods [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1532-1543. |
[3] | ZHOU Meijun, LI Fei, SHAO Jiaqi, YANG Haijuan. Change characteristics of maize production potential under the background of climate change in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 443-453. |
[4] | SONG Zhen, SHI Xingmin. Path analysis of influencing factors of farmers’ adaptive behaviors to climate change in the rain-fed agricultural areas [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 461-473. |
[5] | ZHANG Xuezhen, ZHENG Jingyun, HAO Zhixin. Climate change assessments for the main economic zones of China during recent decades [J]. PROGRESS IN GEOGRAPHY, 2020, 39(10): 1609-1618. |
[6] | Jiayi FANG, Peijun SHI. A review of coastal flood risk research under global climate change [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 625-636. |
[7] | Yuke ZHOU. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 718-730. |
[8] | Hui ZHANG, Cheng LI, Jiong CHENG, Zhifeng WU, Yanyan WU. A review of urban flood risk assessment based on the framework of hazard-exposure-vulnerability [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 175-190. |
[9] | Yanxi ZHAO, Dengpan XIAO, Huizi BAI, Fulu TAO. Research progress on the response and adaptation of crop phenology to climate change in China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 224-235. |
[10] | Lingbo XIAO. Spatiotemporal distribution of high flood risk areas in China, 1736-1911 [J]. PROGRESS IN GEOGRAPHY, 2018, 37(4): 495-503. |
[11] | Bojie FU. Thoughts on the recent development of physical geography [J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 1-7. |
[12] | Jingyun ZHENG, Xiuqi FANG, Shaohong WU. Recent progress of climate change research in physical geography studies from China [J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 16-27. |
[13] | Shaohong WU, Jiangbo GAO, Haoyu DENG, Lulu LIU, Tao PAN. Climate change risk and methodology for its quantitative assessment [J]. PROGRESS IN GEOGRAPHY, 2018, 37(1): 28-35. |
[14] | Junhui YAN, Haolong LIU, Quansheng Ge, Jingyun ZHENG, Zhixin HAO, Yimin WANG. Reconstruction and analysis of annual mean temperature of Wuhan for the 1906-2015 period [J]. PROGRESS IN GEOGRAPHY, 2017, 36(9): 1176-1183. |
[15] | Wenjie HUANG, Quansheng GE, Junhu DAI, Huanjiong WANG. Sensitivity of first flowering dates to temperature change for typical woody plants in Guiyang City, China [J]. PROGRESS IN GEOGRAPHY, 2017, 36(8): 1015-1024. |
|