PROGRESS IN GEOGRAPHY ›› 2019, Vol. 38 ›› Issue (10): 1535-1544.doi: 10.18306/dlkxjz.2019.10.009
• Special Issue | Empirical Study • Previous Articles Next Articles
GAO Boyang1,GUO Lingyu1,HUANG Zhiji2,*(),FENG Rui3
Received:
2019-06-06
Revised:
2019-09-10
Online:
2019-10-28
Published:
2019-11-01
Contact:
HUANG Zhiji
E-mail:skyhuangzj@126.com
Supported by:
GAO Boyang,GUO Lingyu,HUANG Zhiji,FENG Rui. Firm heterogeneity, technological relatedness and location choice of outward foreign direct investment[J].PROGRESS IN GEOGRAPHY, 2019, 38(10): 1535-1544.
Tab. 1
Assessment of simulation results"
方案名称 | R | MBE(mm/d) | MAE(mm/d) | RMSE(mm/d) | 评分 | |
---|---|---|---|---|---|---|
试验(1) | BMJ | 0.4756 | 0.5412 | 1.0757 | 1.4653 | 16 |
KF | 0.6859 | 3.4537 | 3.4537 | 4.3084 | 10 | |
GF | 0.6438 | 1.2021 | 1.5951 | 1.8990 | 15 | |
试验(2) | BMJ_2 km | 0.3792 | 0.1989 | 0.9201 | 1.2377 | 21 |
KF_2 km | 0.5928 | 2.5415 | 2.5518 | 3.2045 | 11 | |
GF_2 km | 0.4532 | 0.4384 | 0.9935 | 1.4683 | 18 | |
NON_2 km | 0.5887 | 0.5399 | 1.0061 | 1.2311 | 21 |
[1] | Zhang Xiaolong, Huang Lingmei, Shen Bing . Characteristics of runoff and its responses to rainfall change in typical basins of northern and southern regions of Qinling Mountains. Water Resources and Power, 2015,33(1):11-14. |
[ 张晓龙, 黄领梅, 沈冰 . 秦岭南北典型流域径流特征及其降水变化响应. 水电能源科学, 2015,33(1):11-14.] | |
[2] | Zhang Liwei, Yan Junping, Geng Huijuan , et al. The shifts of annual average temperature and precipitation belts in the south and north region of Qinling Mountains, Shaanxi province. Journal of Shaanxi Normal University (Natural Science Edition), 2011,39(6):81-85. |
[ 张立伟, 延军平, 耿慧娟 , 等. 陕西秦岭南北年均气温及降水量带的移动. 陕西师范大学学报(自然科学版), 2011,39(6):81-85.] | |
[3] | Li Shuangshuang, Lu Jiayu, Yan Junping , et al. Spatiotemporal variability of temperature in northern and southern Qinling Mountains and its influence on climatic boundary. Acta Geographica Sinica, 2018,73(1):13-24. |
[ 李双双, 芦佳玉, 延军平 , 等. 1970-2015年秦岭南北气温时空变化及其气候分界意义. 地理学报, 2018,73(1):13-24.] | |
[4] | Song Chunying, Yan Junping, Zhang Liwei . Temporal and spatial trends of drought and flood in the south and north of the Qinling Mountains in Shaanxi province. Arid Zone Research, 2011,28(6):944-949. |
[ 宋春英, 延军平, 张立伟 . 陕西秦岭南北旱涝灾害时空变化趋势分析. 干旱区研究, 2011,28(6):944-949.] | |
[5] | Li Minmin, Yan Junping . Drought and flood spatial and temporal variation in the Qinling Mountains. Resources Science, 2013,35(3):638-645. |
[ 李敏敏, 延军平 . 全球变化下秦岭南北旱涝时空变化格局. 资源科学, 2013,35(3):638-645.] | |
[6] | Li Yingjie, Yan Junping, Liu Yonglin . Relationship between dryness/wetness and precipitation heterogeneity in the north and south of the Qinling Mountains. Arid Zone Research, 2016,33(3):619-627. |
[ 李英杰, 延军平, 刘永林 . 秦岭南北气候干湿变化与降水非均匀性的关系. 干旱区研究, 2016,33(3):619-627.] | |
[7] |
Peng Yan, Wang Zhao, Dong Yan , et al. Characteristics and reasons of local change of precipitation over Shaanxi during 1960-2012. Plateau Meteorology, 2016,35(4):1050-1059.
doi: 10.7522/j.issn.1000-0534.2015.00023 |
[ 彭艳, 王钊, 董妍 , 等. 1960-2012年陕西降水变化特征及可能成因分析. 高原气象, 2016,35(4):1050-1059.]
doi: 10.7522/j.issn.1000-0534.2015.00023 |
|
[8] | Li Shuangshuang, Yang Saini, Liu Xianfeng . Spatiotemporal variability of extreme precipitation in north and south of the Qinling-Huaihe region and influencing factors during 1960-2013. Progress in Geography, 2015,34(3):354-363. |
[ 李双双, 杨赛霓, 刘宪锋 . 1960-2013年秦岭—淮河南北极端降水时空变化特征及其影响因素. 地理科学进展, 2015,34(3):354-363.] | |
[9] | Pan Liujie, Zhang Hongfang, Chen Xiaoting , et al. Dominant modes of summer precipitation in Qinling and surrounding areas. Transactions of Atmospheric Sciences, 2018,41(3):377-387. |
[ 潘留杰, 张宏芳, 陈小婷 , 等. 秦岭及周边地区夏季降水的主模态分析. 大气科学学报, 2018,41(3):377-387.] | |
[10] | Yang Jiao, Shi Lan, Miao Qilong , et al. Precision evaluation of three sets of remote sensing precipitation data in Qinling-Daba Mountains. Journal of Jiangsu Normal University (Natural Science Edition), 2017,35(2):73-78. |
[ 杨娇, 史岚, 缪启龙 , 等. 3套遥感降水资料在秦岭大巴山区精度评估分析. 江苏师范大学学报(自然科学版), 2017,35(2):73-78.] | |
[11] | Ren Liang, Wang Xiaofeng, Zeng Zhaozhao . The accuracy evaluation of TRMM 3B42 precipitation data in Shaanxi Qinling-Daba Mountains. Journal of Shaanxi Normal University (Natural Science Edition), 2017,45(1):87-97. |
[ 任亮, 王晓峰, 曾昭昭 . 陕西秦巴山区TRMM3842卫星降水数据精度评价. 陕西师范大学学报(自然科学版), 2017,45(1):87-97.] | |
[12] | Tian J, Liu J, Wang J , et al. A spatio-temporal evaluation of the WRF physical parameterisations for numerical rainfall simulation in semi-humid and semi-arid catchments of Northern China. Atmospheric Research, 2017,191:141-155. |
[13] | Wang Xiaojun, Ma Hao . Progress of application of the Weather Research and Forecast (WRF) model in China. Advances in Earth Science, 2011,26(11):1191-1199. |
[ 王晓君, 马浩 . 新一代中尺度预报模式(WRF)国内应用进展. 地球科学进展, 2011,26(11):1191-1199.] | |
[14] | Zhang Xuezhen, Zheng Jingyun, He Fanneng , et al. Application of MODIS BRDF/Albedo Dataset in the regional temperature simulation of China. Acta Geographica Sinica, 2011,66(3):356-366. |
[ 张学珍, 郑景云, 何凡能 , 等. MODIS BRDF/Albedo数据在中国温度模拟中的应用. 地理学报, 2011,66(3):356-366.] | |
[15] | Norris J, Carvalho L M V, Jones C , et al. The spatiotemporal variability of precipitation over the Himalaya: Evaluation of one-year WRF model simulation. Climate Dynamics, 2017,49(5/6):2179-2204. |
[16] |
Xiong Zhe . Impact of different convective parameterization on simulation of precipitation for the Heihe River Basin. Advances in Earth Science, 2014,29(5):590-597.
doi: 10.11867/j.issn.1001-8166.2014.05.0590 |
[ 熊喆 . 不同积云对流参数化方案对黑河流域降水模拟的影响. 地球科学进展, 2014,29(5):590-597.]
doi: 10.11867/j.issn.1001-8166.2014.05.0590 |
|
[17] | Ratna S B, Ratnam J V, Behera S K , et al. Performance assessment of three convective parameterization schemes in WRF for downscaling summer rainfall over South Africa. Climate Dynamics, 2014,42(11/12):2931-2953. |
[18] | Yu E T, Wang H J, Gao Y Q , et al. Impacts of cumulus convective parameterization schemes on summer monsoon precipitation simulation over China. Acta Meteorologica Sinica, 2011,25(5):581-592. |
[19] | Xu J, Koldunov N, Remedio A R C , et al. On the role of horizontal resolution over the Tibetan Plateau in the REMO regional climate model. Climate Dynamics, 2018,51(11/12):4525-4542. |
[20] | Lin C G, Chen D L, Yang K , et al. Impact of model resolution on simulating the water vapor transport through the central Himalayas: Implication for models' wet bias over the Tibetan Plateau. Climate Dynamics, 2018,51(9/10):3195-3207. |
[21] | Li Pingyun, Wang Nan, Dai Changming , et al. Simulation analysis of terrain effect in Qinba Mountain area during the rainstorm in southern Qinling Mountains. Shaanxi Meteorology, 2018(1):1-9. |
[ 李萍云, 王楠, 戴昌明 , 等. 一次秦岭南麓暴雨中秦巴山区地形作用模拟分析. 陕西气象, 2018(1):1-9.] | |
[22] |
Mu Jianli, Li Zechun, Chen Yun , et al. Feature analyses of mesoscale convective system of a heavy rainfall in the Central Shaanxi Plain. Plateau Meteorology, 2014,33(1):148-161.
doi: 10.7522/j.issn.1000-0534.2013.00049 |
[ 慕建利, 李泽椿, 谌芸 , 等. 一次陕西关中强暴雨中尺度系统特征分析. 高原气象, 2014,33(1):148-161.]
doi: 10.7522/j.issn.1000-0534.2013.00049 |
|
[23] |
Liu Yanfei, Long Xiao, Wang Hui . Numerical simulation studies on a rainstorm in central western Shaanxi. Plateau Meteorology, 2015,34(2):378-388.
doi: 10.7522/j.issn.1000-0534.2013.00182 |
[ 刘燕飞, 隆霄, 王晖 . 陕西中西部地区一次暴雨过程的数值模拟研究. 高原气象, 2015,34(2):378-388.]
doi: 10.7522/j.issn.1000-0534.2013.00182 |
|
[24] | Kain J S, Fritsch J M . The role of the convective "trigger function" in numerical forecasts of mesoscale convective systems. Meteorology and Atmospheric Physics, 1992,49(1/4):93-106. |
[25] | Kain J S . The Kain-Fritsch convective parameterization: An update. Journal of Applied Meteorology, 2004,43(1):170-181. |
[26] |
Liu Weiguang, Chen Haishan, Yu Miao , et al. Impacts of cumulus convective parameterization schemes on simulation of East Asian summer circulation and rainfall. Chinese Journal of Atmospheric Sciences, 2019,43(1):64-74.
doi: 10.3878/j.issn.1006-9895.1801.17222 |
[ 刘伟光, 陈海山, 俞淼 , 等. 积云对流参数化方案对东亚夏季环流和降水模拟的影响. 大气科学, 2019,43(1):64-74.]
doi: 10.3878/j.issn.1006-9895.1801.17222 |
|
[27] | Huang D L, Gao S B . Impact of different cumulus convective parameterization schemes on the simulation of precipitation over China. Tellus A: Dynamic Meteorology and Oceanography, 2017,69(1):1406264. doi: 10.1080/16000870.2017.1406264. |
[28] | Cretat J, Pohl B . How physical parameterizations can modulate internal variability in a regional climate model. Journal of the Atmospheric Sciences, 2012,69(2):714-724. |
[29] | Cretat J, Pohl B, Richard Y , et al. Uncertainties in simulating regional climate of Southern Africa: Sensitivity to physical parameterizations using WRF. Climate Dynamics, 2012,38(3/4):613-634. |
[30] | Janjic Z I . The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Monthly Weather Review, 1994,122(5):927-945. |
[31] | Janjic Z I . Comments on "Development and evaluation of a convection scheme for use in climate models". Journal of the Atmospheric Sciences, 2000,57(21):3686-3686. |
[32] | Mukhopadhyay P, Taraphdar S, Goswami B N , et al. Indian summer monsoon precipitation climatology in a high-resolution regional climate model: Impacts of convective parameterization on systematic biases. Weather and Forecasting, 2010,25(2):369-387. |
[33] | Li L F, Li W H, Jin J M . Improvements in WRF simulation skills of southeastern United States summer rainfall: Physical parameterization and horizontal resolution. Climate Dynamics, 2014,43(7/8):2077-2091. |
[34] | Grell G A, Devenyi D . A generalized approach to parameterizing convection combining ensemble and data assimilation techniques. Geophysical Research Letters, 2002,29(14):1693. doi: 10.1029/2002GL015311. |
[35] | Grell G A, Freitas S R . A scale and aerosol aware stochastic convective parameterization for weather and air quality modeling. Atmospheric Chemistry and Physics, 2014,14(10):5233-5250. |
[36] | Gbode I E, Dudhia J, Ogunjobi K O , et al. Sensitivity of different physics schemes in the WRF model during a West African monsoon regime. Theoretical and Applied Climatology, 2019,136(1/2):733-751. |
[37] | Gao Y, Leung L R, Zhao C , et al. Sensitivity of US summer precipitation to model resolution and convective parameterizations across gray zone resolutions. Journal of Geophysical Research: Atmospheres, 2017,122(5):2714-2733. |
[38] | Wu L, Li J L F, Pi C J , et al. An observationally based evaluation of WRF seasonal simulations over the Central and Eastern Pacific. Journal of Geophysical Research: Atmospheres, 2015,120(20):10664-10680. |
[39] | Liao Jie, Xu Bin, Zhang Hongzheng . Assessment of experiment of merging gauge observations with cmorph. Journal of Tropical Meteorology, 2013,29(5):865-873. |
[ 廖捷, 徐宾, 张洪政 . 地面站点观测降水资料与CMORPH卫星反演降水产品融合的试验效果评估. 热带气象学报, 2013,29(5):865-873.] | |
[40] | Bi Baogui, Liu Yuewei, Li Zechun . Study on influence of the mechanical forcing of mesoscale topography on the extremely heavy rainfall in southern Shaanxi on 8-9 June 2002. Plateau Meteorology, 2006,25(3):131-140. |
[ 毕宝贵, 刘月巍, 李泽椿 . 秦岭大巴山地形对陕南强降水的影响研究. 高原气象, 2006,25(3):131-140.] | |
[41] | Wang A H, Zeng X B . Evaluation of multireanalysis products with in situ observations over the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2012,117:D05102. doi: 10.1029/2011JD016553. |
[42] | Arakawa A . The cumulus parameterization problem: Past, present, and future. Journal of Climate, 2004,7(13):2493-2525. |
[1] | CHEN Zhuo, LIANG Yi, JIN Fengjun. Simulation of city network accessibility and its influence on regional development pattern in China based on integrated land transport system [J]. PROGRESS IN GEOGRAPHY, 2021, 40(2): 183-193. |
[2] | JIANG Wanbei, LIU Weidong, LIU Zhigao, HAN Mengyao. Inequality and driving forces of energy-related CO2 emissions intensity in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1425-1435. |
[3] | HUANG Yingze, QIU Bingwen, HE Yuhua, ZHANG Ke, ZOU Fengli. Optimal elevation interval of rice expansion in Northeast China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1557-1564. |
[4] | HU Guojian, LU Yuqi. Progress, thoughts, and prospect of urban network research based on enterprise perspective [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1587-1596. |
[5] | LIU Ye, XIAO Tong, LIU Yuqi, QIU Yingzhi, LIU Yi, LI Zhigang. Impacts of urban built environments on residents’ subjective well-being: An analysis based on 15-minute walking distance [J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1270-1282. |
[6] | FU Zhanhui, MEI Lin, ZHENG Rumin, WANG Tongtong. Spatial differentiation mechanism of urban female employment rate in Northeast China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1308-1318. |
[7] | ZHU Shengjun, HUANG Yongyuan, HU Xiaohui. Research framework and prospect of industrial value chain upgrading and spatial upgrading based on a multiple scale perspective [J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1367-1384. |
[8] | DU Xinru, LU Zi, LI Renjie, DONG Yaqing, GAO Wei. Estimation of time delay cost of hub airports in China, air routes effect and comparison with the United States [J]. PROGRESS IN GEOGRAPHY, 2020, 39(7): 1160-1171. |
[9] | ZHANG Jinping, LIN Dan, ZHOU Xiangli, YU Zhenxin, SONG Wei, CHENG Yeqing. Spatial difference of multidimensional poverty and its influencing factors in the rural areas of Hainan Province [J]. PROGRESS IN GEOGRAPHY, 2020, 39(6): 1013-1023. |
[10] | LIU Xiaopeng, CHENG Jing, ZHAO Xiaoyong, MIAO Hong, WEI Jingyi, ZENG Duan, MA Cunxia. Sustainable poverty reduction of China in a view of development geography [J]. PROGRESS IN GEOGRAPHY, 2020, 39(6): 892-901. |
[11] | ZHOU Guohua, ZHANG Rujiao, HE Yanhua, DAI Liuyan, ZHANG Li. Optimization of rural settlements and the governance of rural relative poverty [J]. PROGRESS IN GEOGRAPHY, 2020, 39(6): 902-912. |
[12] | TAN Xuelan, JIANG Lingxiao, WANG Zhenkai, AN Yue, CHEN Min, REN Hui. Rural poverty in China from the perspective of geography: Origin, progress, and prospect [J]. PROGRESS IN GEOGRAPHY, 2020, 39(6): 913-923. |
[13] | GUO Jianke, HOU Yajie, HE Yao. Characteristics of change of the China-Europe port shipping network under the Belt and Road Initiative [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 716-726. |
[14] | SUN Na, ZHANG Meiqing. Network structure and evolution characteristics of cities in China based on high-speed railway transport flow [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 727-737. |
[15] | DU Delin, WANG Jiaoe, WANG Yi. Market structure and competition of the three major airlines in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 367-376. |
|