PROGRESS IN GEOGRAPHY ›› 2018, Vol. 37 ›› Issue (7): 880-889.doi: 10.18306/dlkxjz.2018.07.002
Special Issue: 地理大数据
• Reviews • Previous Articles Next Articles
Xiping YANG1(), Zhixiang FANG2,*(
)
Received:
2017-09-05
Revised:
2018-01-22
Online:
2018-07-28
Published:
2018-07-28
Contact:
Zhixiang FANG
E-mail:xpyang@snnu.edu.cn;zxfang@whu.edu.cn
Supported by:
Xiping YANG, Zhixiang FANG. Recent progress in studying human mobility and urban spatial structure based on mobile location big data[J].PROGRESS IN GEOGRAPHY, 2018, 37(7): 880-889.
[38] |
Gao S, Janowicz K, Couclelis H.2017. Extracting urban functional regions from points of interest and human activities on location-based social networks[J]. Transactions in GIS, 21(3): 446-467.
doi: 10.1111/tgis.2017.21.issue-3 |
[39] |
Gong L, Liu X, Wu L, et al.2016. Inferring trip purposes and uncovering travel patterns from taxi trajectory data[J]. Cartography and Geographic Information Science, 43(2): 103-114.
doi: 10.1080/15230406.2015.1014424 |
[40] |
Gong Y, Lin Y, Duan Z.2017. Exploring the spatiotemporal structure of dynamic urban space using metro smart card records[J]. Computers, Environment and Urban Systems, 64: 169-183.
doi: 10.1016/j.compenvurbsys.2017.02.003 |
[41] |
Gonzalez M C, Hidalgo C A, Barabasi A-L.2008. Understanding individual human mobility patterns. Nature, 453: 779-782.
doi: 10.1038/nature06958 pmid: 18528393 |
[42] |
Hu Y, Gao S, Janowicz K, et al.2015. Extracting and understanding urban areas of interest using geotagged photos[J]. Computers, Environment and Urban Systems, 54: 240-254.
doi: 10.1016/j.compenvurbsys.2015.09.001 |
[43] |
Hu Y, Miller H J, Li X.2014. Detecting and analyzing mobility hotspots using surface networks[J]. Transactions in GIS, 18(6): 911-935.
doi: 10.1111/tgis.12076 |
[44] |
Huang Q, Wong D W S.2016. Activity patterns, socioeconomic status and urban spatial structure: What can social media data tell us?[J]. International Journal of Geographical Information Science, 30(9): 1873-1898.
doi: 10.1080/13658816.2016.1145225 |
[45] |
Huang W, Li S, Liu X, et al.2015. Predicting human mobility with activity changes[J]. International Journal of Geographical Information Science, 29(9): 1569-1587.
doi: 10.1080/13658816.2015.1033421 |
[1] |
曹瑞, 涂伟, 巢佰崇, 等. 2016. 基于智能卡数据的地铁周边职住用地识别与分析[J]. 测绘地理信息, 41(3): 74-78.
doi: 10.14188/j.2095-6045.2016.03.018 |
[ Cao R, Tu W, Chao B C, et al.2016. Identification and analysis of home and work regions in the vicinity of metro stations using smart card data[J]. Journal of Geomatics, 41(3): 74-78. ]
doi: 10.14188/j.2095-6045.2016.03.018 |
|
[46] |
Jasny B R, Stone R.2017. Prediction and its limits. Science, 355: 468-469.
doi: 10.1126/science.355.6324.468 |
[47] |
Kang C, Qin K.2016. Understanding operation behaviors of taxicabs in cities by matrix factorization[J]. Computers, Environment and Urban Systems, 60: 79-88.
doi: 10.1016/j.compenvurbsys.2016.08.002 |
[2] |
柴彦威, 申悦, 马修军, 等. 2013. 北京居民活动与出行行为时空数据采集与管理[J]. 地理研究, 32(3): 441-451.
doi: 10.11821/yj2013030006 |
[Chai Y W, Shen Y, Ma X J, et al.2013. The collection and management of space-time data of individual behavior based on location-based technologies: A case study of activity-travel survey in Beijing[J]. Geographical Research, 32(3): 441-451. ]
doi: 10.11821/yj2013030006 |
|
[48] |
Kim K S, Kojima I, Ogawa H.2016. Discovery of local topics by using latent spatio-temporal relationships in geo-social media[J]. International Journal of Geographical Information Science, 30(9): 1899-1922.
doi: 10.1080/13658816.2016.1146956 |
[49] |
Liu X, Gong L, Gong Y, et al.2015. Revealing travel patterns and city structure with taxi trip data[J]. Journal of Transport Geography, 43: 78-90.
doi: 10.1016/j.jtrangeo.2015.01.016 |
[3] |
柴彦威, 沈洁. 2008. 基于活动分析法的人类空间行为研究[J]. 地理科学, 28(5): 594-600.
doi: 10.3969/j.issn.1000-0690.2008.05.002 |
[Chai Y W, Shen J.2008. A activity-based approach to human spatial behavior research[J]. Scientia Geographica Sinica, 28(5): 594-600. ]
doi: 10.3969/j.issn.1000-0690.2008.05.002 |
|
[50] |
Liu X, Kang C, Gong L, et al.2016. Incorporating spatial interaction patterns in classifying and understanding urban land use[J]. International Journal of Geographical Information Science, 30(2): 334-350.
doi: 10.1080/13658816.2015.1086923 |
[51] |
Liu Y, Liu X, Gao S, et al.2015. Social sensing: A new approach to understanding our socioeconomic environments[J]. Annals of the Association of American Geographers, 105(3): 512-530.
doi: 10.1080/00045608.2015.1018773 |
[4] |
陈洁, 陆锋, 程昌秀. 2007. 可达性度量方法及应用研究进展评述[J]. 地理科学进展, 26(5): 100-110.
doi: 10.3969/j.issn.1007-6301.2007.05.011 |
[Chen J, Lu F, Cheng C X.2007. Advance in accessibility evaluation approaches and applications[J]. Progress in Geography, 26(5): 100-110. ]
doi: 10.3969/j.issn.1007-6301.2007.05.011 |
|
[52] |
Liu Y, Wang F, Xiao Y, et al.2012. Urban land uses and traffic 'source-sink areas': Evidence from GPS-enabled taxi data in Shanghai[J]. Landscape and Urban Planning, 106(1): 73-87.
doi: 10.1016/j.landurbplan.2012.02.012 |
[53] |
Long Y, Thill J C.2015. Combining smart card data and household travel survey to analyze jobs-housing relationships in Beijing[J]. Computers, Environment and Urban Systems, 53: 19-35.
doi: 10.1016/j.compenvurbsys.2015.02.005 |
[5] |
陈洁, 萧世伦, 陆锋. 2016. 面向人类行为研究的时空GIS[J]. 地球信息科学学报, 18(12): 1583-1587.
doi: 10.3724/SP.J.1047.2016.01583 |
[Chen J, Shaw S-L, Lu F.2016. A space-time GIS approach for human behavior studies[J]. Journal of Geo-information Science, 18(12): 1583-1587. ]
doi: 10.3724/SP.J.1047.2016.01583 |
|
[54] |
Longley P A, Adnan M.2016. Geo-temporal Twitter demographics[J]. International Journal of Geographical Information Science, 30(2): 369-389.
doi: 10.1080/13658816.2015.1089441 |
[55] |
Lu S, Fang Z, Zhang X, et al.2017. Understanding the representativeness of mobile phone location data in characterizing human mobility indicators[J]. ISPRS International Journal of Geo-Information, 6(1): 7.
doi: 10.3390/ijgi6010007 |
[6] | 程静, 刘家骏, 高勇. 2016. 基于时间序列聚类方法分析北京出租车出行量的时空特征[J]. 地球信息科学学报, 18(9): 1227-1239. |
[Chen J, Liu J J, Gao Y.2016. Analyzing the spatio-temporal characteristics of Beijing's OD trip volume based on time series clustering method[J]. Journal of Geo-information Science, 18(9): 1227-1239. ] | |
[56] |
Pei T, Sobolevsky S, Ratti C, et al.2014. A new insight into land use classification based on aggregated mobile phone data[J]. International Journal of Geographical Information Science, 28(9): 1988-2007.
doi: 10.1080/13658816.2014.913794 |
[57] |
Rashidi T H, Abbasi A, Maghrebi M, et al.2017. Exploring the capacity of social media data for modelling travel behaviour: Opportunities and challenges[J]. Transportation Research Part C: Emerging Technologies, 75: 197-211.
doi: 10.1016/j.trc.2016.12.008 |
[7] |
丁亮, 钮心毅, 宋小冬. 2015. 利用手机数据识别上海中心城的通勤区[J]. 城市规划, 39(9): 100-106.
doi: 10.11819/cpr20150917a |
[Ding L, Niu X Y, Song X D.2015. Identifying the commuting area of Shanghai central city using mobile phone data[J]. City Planning Review, 39(9): 100-106. ]
doi: 10.11819/cpr20150917a |
|
[58] |
Sanaullah I, Quddus M, Enoch M.2016. Developing travel time estimation methods using sparse GPS data[J]. Journal of Intelligent Transportation Systems, 20(6): 532-544.
doi: 10.1080/15472450.2016.1154764 |
[59] |
Schneider C M, Belik V, Couronné T, et al.2013. Unravelling daily human mobility motifs[J]. Journal of The Royal Society Interface, 10(84): 20130246.
doi: 10.1098/rsif.2013.0246 |
[8] |
丁亮, 钮心毅, 宋小冬. 2016. 上海中心城就业中心体系测度: 基于手机信令数据的研究[J]. 地理学报, 71(3): 484-499.
doi: 10.11821/dlxb201603011 |
[Ding L, Niu X Y, Song X D.2016. Measuring the employment center system in Shanghai central city: A study using mobile phone signaling data[J]. Acta Geographica Sinica, 71(3): 484-499. ]
doi: 10.11821/dlxb201603011 |
|
[60] |
Sevtsuk A, Ratti C.2010. Does urban mobility have a daily routine? Learning from the aggregate data of mobile networks[J]. Journal of Urban Technology, 17(1): 41-60.
doi: 10.1080/10630731003597322 |
[61] |
Shao H, Zhang Y, Li W.2017. Extraction and analysis of city's tourism districts based on social media data[J]. Computers, Environment and Urban Systems, 65: 66-78.
doi: 10.1016/j.compenvurbsys.2017.04.010 |
[9] | 方志祥, 倪雅倩, 张韬, 等. 2017. 利用终端位置时空转移概率预测通讯基站服务用户规模[J]. 地球信息科学学报, 19(6): 772-781. |
[Fang Z X, Ni Y Q, Zhang T, et al.2017. Using terminal location spatio-temporal transfer probability to predict subscriber base size of communication base station[J]. Journal of Geo-information Science, 19(6): 772-781. ] | |
[62] |
Song C, Qu Z, Blumm N, et al.2010. Limits of predictability in human mobility[J]. Science, 327: 1018-1021.
doi: 10.1126/science.1177170 pmid: 20167789 |
[63] |
Steiger E, Westerholt R, Resch B, et al.2015. Twitter as an indicator for whereabouts of people? Correlating Twitter with UK census data[J]. Computers, Environment and Urban Systems, 54: 255-265.
doi: 10.1016/j.compenvurbsys.2015.09.007 |
[10] | 李君轶, 唐佳, 冯娜. 2015. 基于社会感知计算的游客时空行为研究[J]. 地理科学, 35(7): 814-821. |
[Li J Y, Tang J, Feng N.2015. Tourists' spatio-temporal behavior based on socially aware computing[J]. Scientia Geographica Sinica, 35(7): 814-821. ] | |
[64] |
Sun L, Lu Y, Jin J G, et al.2015. An integrated Bayesian approach for passenger flow assignment in metro networks[J]. Transportation Research Part C: Emerging Technologies, 52: 116-131.
doi: 10.1016/j.trc.2015.01.001 |
[65] |
Sun Y, Fan H, Li M, et al.2016. Identifying the city center using human travel flows generated from location-based social networking data[J]. Environment and Planning B: Planning and Design, 43(3): 480-498.
doi: 10.1177/0265813515617642 |
[11] |
李清泉. 2017. 从 Geomatics 到 Urban Informatics[J]. 武汉大学学报: 信息科学版, 42(1): 1-6.
doi: 10.13203/j.whugis20160200 |
[Li Q Q.2017. From Geomatics to Urban Informatics[J]. Geomatics and Information Science of Wuhan University, 42(1): 1-6. ]
doi: 10.13203/j.whugis20160200 |
|
[66] | Tu W, Cao J, Yue Y, et al.2017. Coupling mobile phone and social media data: A new approach to understanding urban functions and diurnal patterns[J]. International Journal of Geographical Information Science, 1-28. |
[67] |
Wang W, Pan L, Yuan N, et al.2015. A comparative analysis of intra-city human mobility by taxi[J]. Physica A: Statistical Mechanics and its Applications, 420: 134-147.
doi: 10.1016/j.physa.2014.10.085 |
[12] |
李婷, 裴韬, 袁烨城, 等. 2014. 人类活动轨迹的分类、模式和应用研究综述[J]. 地理科学进展, 33(7): 938-948.
doi: 10.11820/dlkxjz.2014.07.009 |
[Li T, Pei T, Yuan Y C, et al.2014. A review on the classification, patterns and applied research of human mobility trajectory[J]. Progress in Geography, 33(7): 938-948. ]
doi: 10.11820/dlkxjz.2014.07.009 |
|
[68] |
Wesolowski A, O’Meara W P, Tatem A J, et al.2015. Quantifying the impact of accessibility on preventive healthcare in sub-Saharan Africa using mobile phone data[J]. Epidemiology, 26(2): 223-228.
doi: 10.1097/EDE.0000000000000239 |
[69] |
Xu Y, Shaw S L, Zhao Z, et al.2015. Understanding aggregate human mobility patterns using passive mobile phone location data: A home-based approach[J]. Transportation, 42(4): 625-646.
doi: 10.1007/s11116-015-9597-y |
[13] | 刘瑜, 肖昱, 高松, 等. 2011. 基于位置感知设备的人类移动研究综述[J]. 地理与地理信息科学, 27(4): 8-13. |
[Liu Y, Xiao Y, Gao S, et al.2011. A review of human mobility research based on location aware devices[J]. Geography and Geo-Information Science. 27(4): 8-13. ] | |
[70] | Xu Y, Shaw S L, Zhao Z, et al.2016. Another tale of two cities: Understanding human activity space using actively tracked cellphone location data[J]. Annals of the American Association of Geographers, 106(2): 489-502. |
[71] |
Yang X, Fang Z, Xu Y, et al.2016. Understanding spatiotemporal patterns of human convergence and divergence using mobile phone location data[J]. ISPRS International Journal of Geo-Information, 5(10): 177.
doi: 10.3390/ijgi5100177 |
[14] |
龙瀛, 孙立君, 陶遂. 2015. 基于公共交通智能卡数据的城市研究综述[J]. 城市规划学刊, (3): 70-77.
doi: 10.16361/j.upf.201503009 |
[Long Y, Sun L J, Tao S.2015. A review of urban studies based on transit smart card data[J]. Urban Planning Forum, (3): 70-77. ]
doi: 10.16361/j.upf.201503009 |
|
[15] | 陆锋, 刘康, 陈洁. 2014. 大数据时代的人类移动性研究[J]. 地球信息科学学报, 16(5): 665-672. |
[Lu F, Liu K, Chen J.2014. Research on human mobility in big data era[J]. Journal of Geo-information Science. 16(5): 665-672. ] | |
[72] |
Yang X, Zhao Z, Lu S.2016. Exploring spatial-temporal patterns of urban human mobility hotspots[J]. Sustainability, 8(7): 674.
doi: 10.3390/su8070674 |
[73] |
Yin L, Wang Q, Shaw S L, et al.2015. Re-identification risk versus data utility for aggregated mobility research using mobile phone location data[J]. PloS One, 10(10): e0140589.
doi: 10.1371/journal.pone.0140589 |
[16] | 牟乃夏, 张恒才, 陈洁, 等. 2015. 轨迹数据挖掘城市应用研究综述[J]. 地球信息科学学报, 17(10): 1136-1142. |
[Mou N X, Zhang H C, Chen J, et al.2015. A review on the application research of trajectory data mining in urban cities[J]. Journal of Geo-information Science, 17(10): 1136-1142. ] | |
[74] |
Yuan Y, Raubal M.2016. Analyzing the distribution of human activity space from mobile phone usage: An individual and urban-oriented study[J]. International Journal of Geographical Information Science, 30(8): 1594-1621.
doi: 10.1080/13658816.2016.1143555 |
[75] | Yue Y, Zhuang Y, Li Q, et al.2009. Mining time-dependent attractive areas and movement patterns from taxi trajectory data[C]//17th International Conference on Geoinformatics. IEEE: 1-6. |
[17] | 钮心毅, 丁亮, 宋小冬. 2014. 基于手机数据识别上海中心城的城市空间结构[J]. 城市规划学刊, 219(6): 61-67. |
[Niu X Y, Ding L, Song X D.2014. Understanding urban spatial structure of Shanghai central city based on mobile phone data[J]. Urban Planning Forum, 219(6): 61-67. ] | |
[76] |
Yue Y, Lan T, Yeh A G O, et al.2014. Zooming into individuals to understand the collective: A review of trajectory-based travel behaviour studies[J]. Travel Behaviour and Society, 1(2): 69-78.
doi: 10.1016/j.tbs.2013.12.002 |
[77] |
Zhao P, Qin K, Ye X, et al.2017. A trajectory clustering approach based on decision graph and data field for detecting hotspots[J]. International Journal of Geographical Information Science, 31(6): 1101-1127.
doi: 10.1080/13658816.2016.1213845 |
[18] |
宋晓晴, 方志祥, 尹凌, 等. 2016. 基于IC卡综合换乘信息的公交乘客上车站点推算[J]. 地球信息科学学报, 18(8): 1060-1068.
doi: 10.3724/SP.J.1047.2016.01060 |
[Song X Q, Fang Z X, Yin L, et al.2016. A method of deriving the boarding station information of bus passengers based on comprehensive transfer information mined from IC card data[J]. Journal of Geo-information Science, 18(8): 1060-1068. ]
doi: 10.3724/SP.J.1047.2016.01060 |
|
[78] |
Zhao Z, Shaw S L, Xu Y, et al.2016. Understanding the bias of call detail records in human mobility research[J]. International Journal of Geographical Information Science, 30(9): 1738-1762.
doi: 10.1080/13658816.2015.1137298 |
[79] |
Zhi Y, Li H, Wang D, et al.2016. Latent spatio-temporal activity structures: A new approach to inferring intra-urban functional regions via social media check-in data[J]. Geo-spatial Information Science, 19(2): 94-105.
doi: 10.1080/10095020.2016.1176723 |
[19] | 唐炉亮, 杨雪, 阚子涵, 等. 2016. 一种基于朴素贝叶斯分类的车道数量探测[J]. 中国公路学报, 29(3): 116-123. |
[Tang L L, Yang X, Kan Z H, et al.2016. Traffic lane numbers detection based on Navie Bayesian Classification[J]. China Journal of Highway and Transport, 29(3): 116-123. ] | |
[80] |
Zhong C, Batty M, Manley E, et al.2016. Variability in regularity: Mining temporal mobility patterns in London, Singapore and Beijing using smart-card data[J]. PloS one, 11(2): e0149222.
doi: 10.1371/journal.pone.0149222 |
[81] |
Zhou Y, Fang Z, Thill J C, et al.2015. Functionally critical locations in an urban transportation network: Identification and space-time analysis using taxi trajectories[J]. Computers, environment and urban systems, 52: 34-47.
doi: 10.1016/j.compenvurbsys.2015.03.001 |
[20] | 王波, 甄峰, 魏宗财. 2014. 南京市区活动空间总体特征研究: 基于大数据的实证分析[J]. 人文地理, 29(3): 14-21. |
[Wang B, Zhen F, Wei Z C.2014. The research on characteristics of urban activity space in Nanjing: An emprical analysis based on big data[J]. Human Geography, 29(3): 14-21. ] | |
[82] |
Zhu D, Wang N, Wu L, et al.2017. Street as a big geo-data assembly and analysis unit in urban studies: A case study using Beijing taxi data[J]. Applied Geography, 86: 152-164.
doi: 10.1016/j.apgeog.2017.07.001 |
[83] |
Zhu X, Guo D.2014. Mapping large spatial flow data with hierarchical clustering[J]. Transactions in GIS, 18(3): 421-435.
doi: 10.1111/tgis.12100 |
[21] |
萧世伦, 方志祥. 2014. 从时空 GIS 视野来定量分析人类行为的思考[J]. 武汉大学学报: 信息科学, 39(6): 667-670.
doi: 10.13203/j.whugis20140127 |
[Shaw S-L, Fang Z X.2014. Rethinking human behavior research from the perspective of space-time GIS[J]. Geomatics and Information Science of Wuhan University, 39(6): 667-670. ]
doi: 10.13203/j.whugis20140127 |
|
[22] |
谢永俊, 彭霞, 黄舟, 等. 2017. 基于微博数据的北京市热点区域意象感知[J]. 地理科学进展, 36(9): 1099-1110.
doi: 10.18306/dlkxjz.2017.09.006 |
[Xie Y J, Peng X, Huang Z, et al.2017. Image perception of Beijing's regional hotspots based on microblog data[J]. Progress in Geography, 36(9): 1099-1110. ].
doi: 10.18306/dlkxjz.2017.09.006 |
|
[23] | 徐金垒, 方志祥, 萧世伦, 等. 2015. 城市海量手机用户停留时空分异分析: 以深圳市为例[J]. 地球信息科学学报, 17(2): 197-205. |
[Xu J L, Fang Z X, Shaw S-L, et al.2015. The spatio-temporal heterogeneity analysis of massive urban mobile phone user's stay behavior: A case study of Shenzhen City[J]. Journal of Geo-information Science, 17(2):197-205. ] | |
[24] | 许宁, 尹凌, 胡金星. 2014. 从大规模短期规则采样的手机定位数据中识别居民职住地[J]. 武汉大学学报: 信息科学版, 39(6): 750-756. |
[Xu N, Yin L, Hu J X.2014. Identifying home-work locations from short-term, large-scale and regularly sampled mobile phone tracking data[J]. Geomatics and Information Science of Wuhan University, 39(6): 750-756. ] | |
[25] |
杨喜平, 方志祥, 赵志远, 等. 2016. 城市人群聚集消散时空模式探索分析: 以深圳市为例[J]. 地球信息科学学报, 18(4): 486-492.
doi: 10.3724/SP.J.1047.2016.00486 |
[Yang X P, Fang Z X, Zhao Z Y, et al.2016. Exploring urban human spatio-temporal convergence-dispersion patterns: A case study of Shenzhen City[J]. Journal of Geo-information Science, 18(4): 486-492. ]
doi: 10.3724/SP.J.1047.2016.00486 |
|
[26] |
余丽, 陆锋, 张恒才. 2015. 网络文本蕴涵地理信息抽取: 研究进展与展望[J]. 地球信息科学学报, 17(2): 127-134.
doi: 10.3724/SP.J.1047.2015.00127 |
[Yu L, Lu F, Zhang H C.2015. Extracting geographic information from Web Texts: Status and development[J]. Journal of Geo-information Science, 17(2): 127-134. ]
doi: 10.3724/SP.J.1047.2015.00127 |
|
[27] | 张希瑞, 方志祥, 李清泉, 等. 2015. 基于浮动车数据的城市道路通行能力时空特征分析[J]. 地球信息科学学报, 17(3): 336-343. |
[Zhang X R, Fang Z X, Li Q Q, et al.2015. A spatio-temporal analysis on the heterogeneous distribution of urban road network capacity based on floating car data[J]. Journal of Geo-information Science, 17(3): 336-343. ] | |
[28] | 张艳, 柴彦威, 郭文伯. 2014. 北京城市居民日常活动空间的社区分异[J]. 地域研究与开发, 33(5): 65-71. |
[Zhang Y, Chai Y W, Guo W B.2014. Community differentiation of residents' daily activity spaces in Beijing City[J]. Areal research and development, 33(5): 65-71. ] | |
[29] | 郑宇. 2015. 城市计算概述[J]. 武汉大学学报: 信息科学版, 40(1): 1-13. |
[Zheng Y.2015. Introduction to urban computing[J]. Geomatics and Information Science of Wuhan University, 40(1): 1-13. ] | |
[30] |
Ahas R, Aasa A, Silm S, et al.2010. Daily rhythms of suburban commuters' movements in the Tallinn metropolitan area: Case study with mobile positioning data[J]. Transportation Research Part C: Emerging Technologies, 18(1): 45-54.
doi: 10.1016/j.trc.2009.04.011 |
[31] |
Ahas R, Aasa A, Yuan Y, et al.2015. Everyday space-time geographies: Using mobile phone-based sensor data to monitor urban activity in Harbin, Paris, and Tallinn[J]. International Journal of Geographical Information Science, 29(11): 2017-2039.
doi: 10.1080/13658816.2015.1063151 |
[32] | Alvares L O, Bogorny V, Kuijpers B, et al.2007. A model for enriching trajectories with semantic geographical information[C]//Proceedings of the 15th annual ACM international symposium on Advances in geographic information systems. ACM: 22. |
[33] |
Andris C.2016. Integrating social network data into GISystems[J]. International Journal of Geographical Information Science, 30(10): 2009-2031.
doi: 10.1080/13658816.2016.1153103 |
[34] |
Chen B Y, Yuan H, Li Q, et al.2017. Measuring place-based accessibility under travel time uncertainty[J]. International Journal of Geographical Information Science, 31(4): 783-804.
doi: 10.1080/13658816.2016.1238919 |
[35] |
Cui J X, Liu F, Janssens D, et al.2016. Detecting urban road network accessibility problems using taxi GPS data[J]. Journal of Transport Geography, 51: 147-157.
doi: 10.1016/j.jtrangeo.2015.12.007 |
[36] |
Diao M, Zhu Y, Ferreira Jr J, et al.2016. Inferring individual daily activities from mobile phone traces: A Boston example[J]. Environment and Planning B: Planning and Design, 43(5): 920-940.
doi: 10.1177/0265813515600896 |
[37] | Furletti B, Cintia P, Renso C, et al.2013. Inferring human activities from GPS tracks[C]//Proceedings of the 2nd ACM SIGKDD International Workshop on Urban Computing. ACM: 5. |
[1] | HU Guojian, LU Yuqi. Progress, thoughts, and prospect of urban network research based on enterprise perspective [J]. PROGRESS IN GEOGRAPHY, 2020, 39(9): 1587-1596. |
[2] | YANG Yanjie, YIN Dan, LIU Ziwen, HUANG Qingxu, HE Chunyang, WU Kang. Research progress on the space of flow using big data [J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1397-1411. |
[3] | REN Jiamin, MA Yanji. Research progress and prospects of green development from the perspective of geography [J]. PROGRESS IN GEOGRAPHY, 2020, 39(7): 1196-1209. |
[4] | XIONG Chenran, WANG Limao, QU Qiushi, XIANG Ning, WANG Bo. Progress and prospect of geopolitical risk research [J]. PROGRESS IN GEOGRAPHY, 2020, 39(4): 695-706. |
[5] | HUANG An, XU Yueqing, LU Longhui, LIU Chao, ZHANG Yibin, HAO Jinmin, WANG hui. Research progress of the identification and optimization of production-living-ecological spaces [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 503-518. |
[6] | ZOU Lilin, LIU Yansui, WANG Yongsheng. Research progress and prospect of land-use conflicts in China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(2): 298-309. |
[7] | YANG Jun, YOU Haolin, ZHANG Yuqing, JIN Cui. Research progress on human settlements: From traditional data to big data+ [J]. PROGRESS IN GEOGRAPHY, 2020, 39(1): 166-176. |
[8] | Hua GUO, Ling'en WANG, Enpu MA. The evolving concept of food system and a geographical paradigm of research [J]. PROGRESS IN GEOGRAPHY, 2019, 38(7): 1034-1044. |
[9] | Alexander DRUZHININ, Yawen DONG, Lei ZHANG, Jinlong GAO. Development of socioeconomic geography in Russia during the past three decades [J]. PROGRESS IN GEOGRAPHY, 2019, 38(6): 941-950. |
[10] | Dongsheng ZHAN, Wenzhong ZHANG, Li Chen, Xiaofen YU, Yunxiao DANG. Research progress and its enlightenment of urban public service facilities allocation [J]. PROGRESS IN GEOGRAPHY, 2019, 38(4): 506-519. |
[11] | DUAN Yaming, LIU Yong, LIU Xiuhua, HE Dong. Measuring polycentric urban structure using Easygo big data: A case study of Chongqing metropolitan area [J]. PROGRESS IN GEOGRAPHY, 2019, 38(12): 1957-1967. |
[12] | Xiaoshu CAO, Peiting HU, Dan LIU. Progress of research on electric vehicle charging stations [J]. PROGRESS IN GEOGRAPHY, 2019, 38(1): 139-152. |
[13] | Yinfeng XU, Degen WANG. Research progress and prospects of high-speed rail effects on urban spatial structure in China [J]. PROGRESS IN GEOGRAPHY, 2018, 37(9): 1216-1230. |
[14] | Wenying FU. Research progress and prospect on the relationship between industrial clusters and local entrepreneurship [J]. PROGRESS IN GEOGRAPHY, 2018, 37(6): 739-749. |
[15] | Liuwen LIAO, Xiaolu GAO. Progress and prospect of research on the impact of population aging on rural development [J]. PROGRESS IN GEOGRAPHY, 2018, 37(5): 617-626. |
|