PROGRESS IN GEOGRAPHY ›› 2017, Vol. 36 ›› Issue (5): 597-609.doi: 10.18306/dlkxjz.2017.05.007
• Articles • Previous Articles Next Articles
Chong LIU1,3(), Liping ZHU1,2,3,*(
), Junbo WANG1,2, Baojin QIAO1,3, Jianting JU1, Lei HUANG1,3
Received:
2017-04-01
Online:
2017-05-20
Published:
2017-05-20
Contact:
Liping ZHU
E-mail:liuchong@itpcas.ac.cn;lpzhu@itpcas.ac.cn
Supported by:
Chong LIU, Liping ZHU, Junbo WANG, Baojin QIAO, Jianting JU, Lei HUANG. Remote sensing-based estimation of lake water clarity on the Tibetan Plateau[J].PROGRESS IN GEOGRAPHY, 2017, 36(5): 597-609.
Tab.1
In situ measured Secchi Depth (SD) data and information of corresponding satellite imagery"
序号 | 湖泊名称 | 采样坐标 | MODIS 影像文件名 | SD/m | 采样日期 | 影像日期 | 日期偏差/d | |
---|---|---|---|---|---|---|---|---|
1 | 纳木错 | 90.7456°E | 30.7338°N | MOD021KM.A2016323.0500.006.2016333195247 | 8.0 | 2016.11.19 | 2016.11.19 | 0 |
2 | 塔若错 | 84.1366°E | 31.1403°N | MOD021KM.A2014249.0525.006.2014249130649 | 6.2 | 2014.9.06 | 2014.9.6 | 0 |
3 | 班公错 | 79.8094°E | 33.5509°N | MOD021KM.A2012209.0455.006.2014224155957 | 14.0 | 2012.7.28 | 2012.7.29 | 1 |
4 | 结则茶卡 | 80.8814°E | 33.9417°N | MOD021KM.A2012212.0525.006.2014224201213 | 3.0 | 2012.7.31 | 2012.7.30 | 1 |
5 | 阿翁错 | 81.7586°E | 32.7531°N | MOD021KM.A2012216.0500.006.2014225101108 | 3.0 | 2012.8.5 | 2012.8.3 | 2 |
6 | 别若则错 | 82.9585°E | 32.4378°N | MOD021KM.A2012216.0500.006.2014225101108 | 0.5 | 2012.8.6 | 2012.8.3 | 3 |
7 | 达热布错 | 83.2328°E | 32.4829°N | MOD021KM.A2012216.0500.006.2014225101108 | 3.2 | 2012.8.6 | 2012.8.3 | 3 |
8 | 拉果错 | 84.1647°E | 32.0269°N | MOD021KM.A2012223.0510.006.2014224150200 | 5.0 | 2012.8.8 | 2012.8.10 | 2 |
9 | 洞错 | 84.7651°E | 32.1623°N | MOD021KM.A2012223.0510.006.2014224150200 | 0.8 | 2012.8.8 | 2012.8.10 | 2 |
10 | 达瓦错 | 84.9422°E | 31.2233°N | MOD021KM.A2012223.0510.006.2014224150200 | 1.0 | 2012.8.11 | 2012.8.10 | 1 |
11 | 攸布错 | 84.8241°E | 30.7900°N | MOD021KM.A2012223.0510.006.2014224150200 | 12.5 | 2012.8.12 | 2012.8.10 | 1 |
12 | 昂古错 | 85.4441°E | 31.2053°N | MOD021KM.A2012223.0510.006.2014224150200 | 3.5 | 2012.8.13 | 2012.8.10 | 3 |
13 | 张乃错 | 87.4118°E | 31.5508°N | MOD021KM.A2012229.0430.006.2014220065835 | 3.0 | 2012.8.17 | 2012.8.16 | 1 |
14 | 恰规错 | 88.2445°E | 31.8489°N | MYD021KM.A2012232.0640.006.2012232192302 | 5.0 | 2012.8.19 | 2012.8.19 | 0 |
15 | 错鄂 | 88.7061°E | 31.6598°N | MYD021KM.A2012232.0640.006.2012232192302 | 8.0 | 2012.8.20 | 2012.8.19 | 1 |
16 | 巴木错 | 90.6184°E | 31.2639°N | MOD021KM.A2012238.0425.006.2014220060635 | 3.2 | 2012.8.21 | 2012.8.25 | 4 |
17 | 达则错 | 87.5503°E | 31.8538°N | MOD021KM.A2012228.0525.006.2014220103327 | 6.0 | 2012.8.18 | 2012.8.15 | 3 |
18 | 色林错 | 88.8889°E | 31.8190°N | MYD021KM.A2014218.0745.006.2014220180109 | 3.2 | 2014.8.7 | 2014.8.6 | 1 |
19 | 龙木错 | 80.4734°E | 34.6240°N | MOD021KM.A2015253.0610.006.2015253195641 | 2.5 | 2015.9.10 | 2015.9.10 | 0 |
20 | 邦达错 | 81.5300°E | 34.9575°N | MOD021KM.A2015248.0550.006.2015248134032 | 1.3 | 2015.9.5 | 2015.9.5 | 0 |
21 | 阿克赛钦湖 | 79.7935°E | 35.2456°N | MOD021KM.A2015259.0535.006.2015259134615 | 1.0 | 2015.9.17 | 2015.9.17 | 0 |
22 | 多尔索洞措 | 89.8341°E | 33.3490°N | MOD021KM.A2016298.0510.006.2016298133407 | 7.5 | 2016.10.24 | 2016.10.24 | 0 |
23 | 赤布张错 | 90.2322°E | 33.3813°N | MOD021KM.A2016305.0515.006.2016305133931 | 5.0 | 2016.10.31 | 2016.10.31 | 0 |
24 | 多格错仁 | 88.9916°E | 34.5537°N | MOD021KM.A2016311.0435.006.2016311134330 | 2.0 | 2016.11.6 | 2016.11.6 | 0 |
Tab.2
Basic information of MODIS bands used in this study"
波段名称 | 波段宽度/nm | 信噪比/NE△t | 空间分辨率 |
---|---|---|---|
B8 | 405~420 | 880 | 1 km |
B9 | 438~448 | 838 | 1 km |
B3 | 459~479 | 243 | 500 m合成为1 km |
B10 | 483~493 | 802 | 1 km |
B11 | 526~536 | 754 | 1 km |
B12 | 546~556 | 750 | 1 km |
B4 | 545~565 | 228 | 500 m合成为1 km |
B1 | 620~670 | 128 | 500 m合成为1 km |
B13 | 662~672 | 910 | 1 km |
B14 | 673~683 | 1087 | 1 km |
B15 | 743~753 | 586 | 1 km |
B2 | 841~876 | 201 | 250 m合成为1 km |
B16 | 862~877 | 516 | 1 km |
Tab.3
Fitting formulas between lake SD and remote sensing parameters in other studies"
研究地区 | 反演方法 | 最优拟合形式 | R2 | N | 传感器 | 参考文献 |
---|---|---|---|---|---|---|
美国明尼苏达州、威斯康星州 | 单波段/波段组合、逐步回归、多元线性回归 | ln(SD) = b0 + b1(B2/B4) + b2B1 | 0.82 | 311 | OLI | Olmanson et al, 2016 |
中国吉林省中西部 | 先取相关系数较高的单波段、波段倒数、波段比值,再作多元线性回归 | SD=a(B1/B2)+b(B1/B3)+c(B2/B3)+d | 0.639 | 70 | HJ-1 CCD | 马建行等, 2016 |
SD=aB1+bB2+c(B2/B3)+d | 0.894 | 63 | MODIS | |||
美国五大湖 | 单波段多项式 | 1/SD=aRrs (550)3 + bRrs (550)2 +cRrs (550) +d | 0.74 | 1328 | CZCS, SeaWiFS, MODIS | Binding et al, 2015 |
美国缅因州 | 单波段、波段比值 | SD= a(B1/B3)+bB1+cB7+d | 0.70~0.89 | 24~71 | TM | Courville et al, 2014 |
美国缅因州 | 单波段、波段比值 | SD= aB1+bB3+ c | 0.63~0.83 | 31~117 | TM | McCullough et al, 2012 |
美国明尼苏达州 | 根据前人经验直接利用蓝、红波段 | ln(SD)= aB1+bB3+ c | 0.32~0.71 | 748 | MODIS | Knight et al, 2012 |
中国太湖 | 直接利用前人经验公式 | ln(SD)=a(TM1/TM3)+bTM1+c | 0.77 | 32 | ETM+ | Zhao et al, 2011 |
鄱阳湖 | 取相关性较好的单波段、波段组合,做线性、对数、指数、倒数、开方、多项式回归取最优 取相关性较好的单波段、波段组合,做线性、对数、指数、倒数、开方、多项式回归取最优 | ln(SD)= aBblue+bBred+ c | 0.88 | 71 | MODIS | Wu et al, 2008 |
ln(SD)= aBblue+bBred+ c | 0.83 | 25 | TM | |||
中国东北部 | 取单波段、波段比值、平均作一元回归 | SD= aB3/B2+b 或SD= aB3/B1+b 或SD= a (B1+B4)/2+b 或SD= a (B3+B2)/2+b 及上述方式变量取对数 | 0.69~0.98 | 7~20 | TM | Duan et al, 2009 |
美国明尼苏达州 | 直接利用前人经验公式 | ln(SD)=a(TM1/TM3)+bTM1+c | 0.71~0.96 | 13~278 | MSS, TM, ETM+ | Olmanson et al, 2008 |
美国明尼阿波利斯 | 单波段、波段组合、逐步回归选取关系较强参数,作多元回归 | ln(SD)=a(TM1/TM3)+bTM1+c | 0.70~0.80 | 21~53 | MSS,TM | Kloiber et al, 2002 |
Tab.4
Retrieval accuracy of lake SD with different types of model"
自变量类型 | 因变量 | 最优拟合自变量 | 最优拟合方法 | 最优拟合结果 | R2 | N |
---|---|---|---|---|---|---|
波段比值 | SD | x=B8/B11 | 线性 | SD= 8.8254x - 4.9669 | 0.65 | 24 |
指数 | SD= 0.3635e2.0575x | 0.59 | 24 | |||
对数 | SD= 10.027ln(x) + 4.1792 | 0.63 | 24 | |||
幂 | SD = 3.0486x2.5065 | 0.65 | 24 | |||
多项式 | SD= 0.4808x2 + 7.6165x - 4.2702 | 0.65 | 24 | |||
波段比值 | ln(SD) | x=B8/B4 | 线性 | ln(SD) = 1.5093x - 0.5485 | 0.60 | 24 |
多项式 | y = -0.9299x2 + 4.0536x - 2.0735 | 0.68 | 24 | |||
对数 | ln(SD) = 1.9501ln(x) + 1.04 | 0.68 | 24 | |||
幂 | 变量含负值,无法拟合 | |||||
指数 | 变量含负值,无法拟合 | |||||
主成分 | ln(SD) | 主成分PC1、PC2、PC3、PC4 (PC1-PC4累计贡献率>99%) | 主成分回归 | ln(SD)=-1.5PC1+0.95PC2+10.79PC3-21.55PC4 | 0.88 | 24 |
红绿蓝比值与单波段 | ln(SD) | x1=B1/B3、x2=B3 | 二元回归 | ln(SD)=1.211767x1-13.1984x2+1.149798 | 0.90 | 24 |
红绿蓝加减 | SD | x=B12+B4 | 幂 | SD=0.2187x-1.536 | 0.91 | 24 |
[19] |
Garibaldi L, Anzani A, Marieni A, et al.2003. Studies on the phytoplankton of the deep subalpine Lake Iseo[J]. Journal of Limnology, 62(2): 177-189.
doi: 10.4081/jlimnol.2003.177 |
[20] | Gitelson A A, Yacobi Y Z, Schalles J F, et al.2000. Remote estimation of phytoplankton density in productive waters[J]. Advances in Limnology, 55: 121-136. |
[21] |
Holeck K T, Watkins J M, Mills E L, et al.2008. Spatial and long-term temporal assessment of Lake Ontario water clarity, nutrients, chlorophyll a, and zooplankton[J]. Aquatic Ecosystem Health & Management, 11(4): 377-391.
doi: 10.1080/14634980802515302 |
[22] |
Kloiber S M, Brezonik P L, Olmanson L G, et al.2002. A procedure for regional lake water clarity assessment using Landsat multispectral data[J]. Remote Sensing of Environment, 82(1): 38-47.
doi: 10.1016/S0034-4257(02)00022-6 |
[23] | Knight J F, Voth M L.2012. Application of MODIS imagery for intra-annual water clarity assessment of Minnesota Lakes[J]. Remote Sensing, 4(7): 2181-2198. |
[24] | Lathrop R C, Carpenter S R, Rudstam L G.1996. Water clarity in Lake Mendota since 1900: Responses to differing levels of nutrients and herbivory[J]. Canadian Journal of Fisheries and Aquatic Sciences, 53(10): 2250-2261. |
[25] |
Liang E Y, Wang Y F, Piao S L, et al.2016. Species interactions slow warming-induced upward shifts of treelines on the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 113(16): 4380-4385.
doi: 10.1073/pnas.1520582113 pmid: 27044083 |
[26] |
Ma R H, Yang G S, Duan H T, et al.2011. China’s lakes at present: Number, area and spatial distribution[J]. Science China Earth Sciences, 54(2): 283-289.
doi: 10.1007/s11430-010-4052-6 |
[27] | Malthus T J, Hestir E L, Dekker A G, et al.2012. The case for a global inland water quality product[C]//Proceedings of the 2012 IEEE international geoscience and remote sensing symposium (IGARSS). Munich, Germany: IEEE, 5234-5237, doi: 10.1109/IGARSS.2012.6352429. |
[28] | Mancino G, Nolè A, Urbano V, et al.2009. Assessing water quality by remote sensing in small lakes: The case study of Monticchio lakes in southern Italy[J]. iForest-Biogeosciences and Forestry, 2(1): 154-161. |
[29] |
McCullough I M, Loftin C S, Sader S A.2012. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity[J]. Remote Sensing of Environment, 123: 109-115.
doi: 10.1016/j.rse.2012.03.006 |
[30] |
Olmanson L G, Bauer M E, Brezonik P L.2008. A 20-year Landsat water clarity census of Minnesota's 10000 lakes[J]. Remote Sensing of Environment, 112(11): 4086-4097.
doi: 10.1016/j.rse.2007.12.013 |
[31] |
Olmanson L G, Brezonik P L, Bauer M E, et al.2011. Evaluation of medium to low resolution satellite imagery for regional lake water quality assessments[J]. Water Resources Research, 47(9): W09515.
doi: 10.1029/2011WR011005 |
[32] |
Olmanson L G, Brezonik P L, Finlay J C, et al.2016. Comparison of Landsat 8 and Landsat 7 for regional measurements of CDOM and water clarity in lakes[J]. Remote Sensing of Environment, 185: 119-128.
doi: 10.1016/j.rse.2016.01.007 |
[33] |
Qiao B J, Wang J B, Huang L, et al.2017. Characteristics and seasonal variations in the hydrochemistry of the Tangra Yumco basin, central Tibetan Plateau, and responses to the Indian Summer Monsoon[J]. Environmental Earth Sciences, 76(4): 162, doi: 10.1007/s12665-017-6479-y.
doi: 10.1007/s12665-017-6479-y |
[34] | Qin D H, Liu S Y, Li P J.2006. Snow cover distribution, variability, and response to climate change in western China[J]. Journal of Climate, 19(9): 1820-1833. |
[1] |
勾鹏, 叶庆华, 魏秋方. 2015. 2000-2013年西藏纳木错湖冰变化及其影响因素[J]. 地理科学进展, 34(10): 1241-1249.
doi: 10.18306/dlkxjz.2015.10.004 |
[Gou P, Ye Q H, Wei Q F.2015. Lake ice change at the Nam Co Lake on the Tibetan Plateau during 2000-2013 and influencing factors[J]. Progress in Geography, 34(10): 1241-1249.]
doi: 10.18306/dlkxjz.2015.10.004 |
|
[35] |
Rose K C, Greb S R, Diebel M, et al.2017. Annual precipitation regulates spatial and temporal drivers of lake water clarity[J]. Ecological Applications, 27(2): 632-643.
doi: 10.1002/eap.1471 pmid: 27859882 |
[36] |
Shen M G, Piao S L, Chen X Q, et al.2016. Strong impacts of daily minimum temperature on the green-up date and summer greenness of the Tibetan Plateau[J]. Global Change Biology, 22(9): 3057-3066.
doi: 10.1111/gcb.13301 pmid: 27103613 |
[2] | 何杰, 阳坤. 2011. 中国区域高时空分辨率地面气象要素驱动数据集[Z]. 兰州: 寒区旱区科学数据中心, doi: 10.3972/westdc.002.2014.db. |
[He J, Yang K.2011. China meteorological forcing dataset[Z]. Lanzhou, China: Cold and Arid Regions Science Data Center at Lanzhou, doi: 10.3972/westdc.002.2014.db.] | |
[37] |
Song C Q, Huang B, Ke L H.2013. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data[J]. Remote Sensing of Environment, 135: 25-35.
doi: 10.1016/j.rse.2013.03.013 |
[38] |
Wu G F, De Leeuw J, Skidmore A K, et al.2008. Comparison of MODIS and Landsat TM5 images for mapping tempo-spatial dynamics of Secchi disk depths in Poyang Lake national nature reserve, China[J]. International Journal of Remote Sensing, 29(8): 2183-2198.
doi: 10.1080/01431160701422254 |
[3] |
鲁安新, 姚檀栋, 王丽红, 等. 2005. 青藏高原典型冰川和湖泊变化遥感研究[J]. 冰川冻土, 27(6): 783-792.
doi: 10.3969/j.issn.1000-0240.2005.06.001 |
[Lu A X, Yao T D, Wang L H, et al.2005. Study on the fluctuations of typical glaciers and lakes in the Tibetan Plateau using remote sensing[J]. Journal of Glaciology and Geocryology, 27(6): 783-792.]
doi: 10.3969/j.issn.1000-0240.2005.06.001 |
|
[39] |
Yang J P, Ding Y J, Chen R S, et al.2003. Causes of glacier change in the source regions of the Yangtze and Yellow Rivers on the Tibetan Plateau[J]. Journal of Glaciology, 49(167): 539-546.
doi: 10.3189/172756503781830449 |
[40] |
Yang R M, Zhu L P, Wang J B, et al.2017. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013[J]. Climatic Change, 140(3-4): 621-633, doi: 10.1007/s10584-016-1877-9.
doi: 10.1007/s10584-016-1877-9 |
[4] |
马建行, 宋开山, 邵田田, 等. 2016. 基于HJ-CCD和MODIS的吉林省中西部湖泊透明度反演对比[J]. 湖泊科学, 28(3): 661-668.
doi: 10.18307/2016.0323 |
[Ma J H, Song K S, Shao T T, et al.2016. Comparison of water transparency retrieving of lakes in the mid-east part of Jilin Province based on HJ-CCD and MODIS imagery[J]. Journal of Lake Sciences, 28(3): 661-668.]
doi: 10.18307/2016.0323 |
|
[41] |
Yao X J, Li L, Zhao J, et al.2016. Spatial-temporal variations of lake ice phenology in the Hoh Xil region from 2000 to 2011[J]. Journal of Geographical Sciences, 26(1): 70-82.
doi: 10.1007/s11442-016-1255-6 |
[42] |
Zhang G Q, Xie H J, Yao T D, et al.2013. Water balance estimates of ten greatest lakes in China using ICESat and Landsat data[J]. Chinese Science Bulletin, 58(31): 3815-3829.
doi: 10.1007/s11434-013-5818-y |
[5] |
马荣华, 唐军武, 段洪涛, 等. 2009. 湖泊水色遥感研究进展[J]. 湖泊科学, 21(2): 143-158.
doi: 10.18307/2009.0201 |
[Ma R H, Tang J W, Duan H T, et al.2009. Progress in lake water color remote sensing[J]. Journal of Lake Sciences, 21(2): 143-158.]
doi: 10.18307/2009.0201 |
|
[6] |
潘继征, 熊飞, 李文朝, 等. 2008. 云南抚仙湖透明度的时空变化及影响因子分析[J]. 湖泊科学, 20(5): 681-686.
doi: 10.3321/j.issn:1003-5427.2008.05.019 |
[Pan J Z, Xiong F, Li W C, et al.2008. Spatial-temporal dynamic changes of the water transparency and their influencing factors in Lake Fuxian, Yunnan Province[J]. Journal of Lake Sciences, 20(5): 681-686.]
doi: 10.3321/j.issn:1003-5427.2008.05.019 |
|
[43] |
Zhang G Q, Yao T D, Xie H J, et al.2014a. Estimating surface temperature changes of lakes in the Tibetan Plateau using MODIS LST data[J]. Journal of Geophysical Research: Atmospheres, 119(14): 8552-8567.
doi: 10.1002/2014JD021615 |
[44] |
Zhang G Q, Yao T D, Xie H J, et al.2014b. Lakes’ state and abundance across the tibetan plateau[J]. Chinese Science Bulletin, 59(24): 3010-3021.
doi: 10.1007/s11434-014-0258-x |
[45] |
Zhao D H, Cai Y, Jiang H, et al.2011. Estimation of water clarity in Taihu Lake and surrounding rivers using Landsat imagery[J]. Advances in Water Resources, 34(2): 165-173.
doi: 10.1016/j.advwatres.2010.08.010 |
[46] |
Zhu L P, Xie M P, Wu Y H, et al.2010. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co basin of the Tibetan Plateau[J]. Chinese Science Bulletin, 55(13): 1294-1303.
doi: 10.1007/s11434-010-0015-8 |
[7] |
王君波, 彭萍, 马庆峰, 等. 2010. 西藏当惹雍错和扎日南木错现代湖泊基本特征[J]. 湖泊科学, 22(4): 629-632.
doi: 10.18307/2010.0422 |
[Wang J B, Peng P, Ma Q F, et al.2010. Modern limnological features of Tangra Yumco and Zhari Namco, Tibetan Plateau[J]. Journal of Lake Sciences, 22(4): 629-632.]
doi: 10.18307/2010.0422 |
|
[8] | 姚檀栋. 2014. “第三极环境(TPE)”国际计划: 应对区域未来环境生态重大挑战问题的国际计划[J]. 地理科学进展, 33(7): 884-892. |
[Yao T D.2014. TPE international program: A program for coping with major future environmental challenges of The Third Pole region[J]. Progress in Geography, 33(7): 884-892.] | |
[9] |
张晓晶, 李畅游, 贾克力, 等. 2009. 乌梁素海水体透明度分布及影响因子相关分析[J]. 湖泊科学, 21(6): 879-884.
doi: 10.18307/2009.0619 |
[Zhang X J, Li C Y, Jia K L, et al.2009. Spatial-temporal changes in water transparency and its impact factors in Lake Wuliangsuhai[J]. Journal of Lake Sciences, 21(6): 879-884.]
doi: 10.18307/2009.0619 |
|
[10] |
张运林, 秦伯强, 陈伟民, 等. 2003. 太湖水体透明度的分析、变化及相关分析[J]. 海洋湖沼通报, (2): 30-36.
doi: 10.3969/j.issn.1003-6482.2003.02.005 |
[Zhang Y L, Qin B Q, Chen W M, et al.2003. Distribution, seasonal variation and correlation analysis of the transparency in Taihu Lake[J]. Transactions of Oceanology and Limnology, (2): 30-36.]
doi: 10.3969/j.issn.1003-6482.2003.02.005 |
|
[11] | 中国科学院青藏高原综合科学考察队. 1984. 西藏河流与湖泊[M]. 北京: 科学出版社. |
[The Qinghai-Tibet Plateau Comprehencive Scientific Expedition of Chinese Academy of Sciences. 1984. Xizang heliu yu hupo[M]. Beijing, China: Science Press.] | |
[12] |
Barbiero R P, Tuchman M L.2004. Long-term dreissenid impacts on water clarity in Lake Erie[J]. Journal of Great Lakes Research, 30(4): 557-565.
doi: 10.1016/S0380-1330(04)70371-8 |
[13] |
Binding C E, Greenberg T A, Watson S B, et al.2015. Long term water clarity changes in North America's Great Lakes from multi-sensor satellite observations[J]. Limnology and Oceanography, 60(6): 1976-1995.
doi: 10.1002/lno.10146 |
[14] |
Courville B C, Jensen J L R, Dixon R W, et al.2014. A landsat-based evaluation of lake water clarity in Maine lakes[J]. Physical Geography, 35(4): 355-368.
doi: 10.1080/02723646.2014.909716 |
[15] |
Delgadillo-Hinojosa F, Gaxiola-Castro G, Segovia-Zavala J A, et al.1997. The effect of vertical mixing on primary production in a bay of the gulf of California[J]. Estuarine, Coastal and Shelf Science, 45(1): 135-148.
doi: 10.1006/ecss.1996.0167 |
[16] |
Duan H T, Ma R H, Zhang Y Z, et al.2009. Remote-sensing assessment of regional inland lake water clarity in northeast China[J]. Limnology, 10(2): 135-141.
doi: 10.1007/s10201-009-0263-y |
[17] |
Fee E J, Hecky R E, Kasian S E M, et al.1996. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes[J]. Limnology and Oceanography, 41(5): 912-920.
doi: 10.4319/lo.1996.41.5.0912 |
[18] |
Fukushima T, Matsushita B, Oyama Y, et al.2016. Semi-analytical prediction of Secchi depth using remote-sensing reflectance for lakes with a wide range of turbidity[J]. Hydrobiologia, 780(1): 5-20.
doi: 10.1007/s10750-015-2584-7 |
[1] | SHI Xiao, WANG Guojie, SUN Ming, LI Yvtao, WANG Boni, SHEN Jie. Evaluation of the long-term high-resolution infrared radiation sounder land surface temperature during 1980-2009 in Jiangsu Province, China [J]. PROGRESS IN GEOGRAPHY, 2020, 39(8): 1283-1295. |
[2] | SUN He, SU Fengge. Evaluation of multiple precipitation datasets and their potential utilities in hydrologic modeling over the Yarlung Zangbo River Basin [J]. PROGRESS IN GEOGRAPHY, 2020, 39(7): 1126-1139. |
[3] | LIAO Xiaohan. Advance of geographic sciences and new technology applications [J]. PROGRESS IN GEOGRAPHY, 2020, 39(5): 709-715. |
[4] | HU Xu, NIE Yong, XU Xia, JIANG Sheng, ZHANG Yili. Monitoring land-use change in Hetian Tarim Basin, China using satellite remote sensing observation between 1990 and 2016 [J]. PROGRESS IN GEOGRAPHY, 2020, 39(4): 577-590. |
[5] | TANG Yin, WANG Zhonggen, WANG Wanqing, HUANG Huojian, YUAN Yong. Multifunctional classification of aquatic habitats for remote sensing data [J]. PROGRESS IN GEOGRAPHY, 2020, 39(3): 454-460. |
[6] | CHEN Rui, YANG Meixue, WAN Guoning, WANG Xuejia. Soil freezing-thawing processes on the Tibetan Plateau: A review based on hydrothermal dynamics [J]. PROGRESS IN GEOGRAPHY, 2020, 39(11): 1944-1958. |
[7] | JIANG Kaisi,LIU Zhengjia,LI Yurui,WANG Yongsheng,WANG Yu. Land use change of typical villages in the loess hilly and gully region and implications for regional rural transformation and development [J]. PROGRESS IN GEOGRAPHY, 2019, 38(9): 1305-1315. |
[8] | GAO Jungfeng,GAO Yongnian,ZHANG Zhiming. Theory and application of aquatic ecoregion delineation in lake-basin [J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1159-1170. |
[9] | XU Ligang,LAI Xijun,WAN Rongrong,WANG Xiaolong,LI Xianghu. Review of the development of lake wetlands eco-hydrology and case studies [J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1171-1181. |
[10] | DUAN Hongtao,LUO Juhua,CAO Zhigang,XUE Kun,XIAO Qitao,LIU Dong. Progress in remote sensing of aquatic environments at the watershed scale [J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1182-1195. |
[11] | MA Mingguo,TANG Xuguang,HAN Xujun,SHI Weiyu,SONG Lisheng,HUANG Jing. Research progress and prospect of observation and simulation of carbon cycle in the karst areas of Southwest China [J]. PROGRESS IN GEOGRAPHY, 2019, 38(8): 1196-1205. |
[12] | Jun LI, Yu YE, Xueqiong WEI. Reconstruction of cropland change in the southern area of the Daqing River Basin over the past 300 years [J]. PROGRESS IN GEOGRAPHY, 2019, 38(6): 883-895. |
[13] | Yuke ZHOU. Detecting Granger effect of vegetation response to climatic factors on the Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2019, 38(5): 718-730. |
[14] | Yang LIU, Jianshu LV, Jun BI. Characterizing water purification services and quantifying their driving factors in watershed terrestrial ecosystems [J]. PROGRESS IN GEOGRAPHY, 2019, 38(4): 588-599. |
[15] | Yingbiao CHEN, Zihao ZHENG, Zhifeng WU, Qinglan QIAN. Review and prospect of application of nighttime light remote sensing data [J]. PROGRESS IN GEOGRAPHY, 2019, 38(2): 205-223. |
|