PROGRESS IN GEOGRAPHY ›› 2016, Vol. 35 ›› Issue (1): 78-88.doi: 10.18306/dlkxjz.2016.01.009
• Orginal Article • Previous Articles Next Articles
Jun PENG1(), Zhibao DONG1, Fengqing HAN2
Online:
2016-01-31
Published:
2016-01-31
Supported by:
Jun PENG, Zhibao DONG, Fengqing HAN. Application of slice sampling method for optimizing OSL age models used for equivalent dose determination[J].PROGRESS IN GEOGRAPHY, 2016, 35(1): 78-88.
Tab.1
A general procedure for applying the Slice sampling method to sampling from a multivariable model"
输入:概率模型,迭代总次数nsim,初始参数状态X0,模型参数总 数N; 输出:随机采样样本及参数估计结果 |
---|
1. 分配用于随机样本储存的数据矩阵(chain):chain=matrix(nrow=nsim, ncol=N); |
2. 通过如下迭代方式对参数轮流更新: do i=1, nsim do j=1, N 根据切片采样算法以条件概率P(Xj/X0[-j])生成随机 变量Xj X0[j] = Xj chain[i,j] = Xj end do end do 3. 根据随机样本数据chain 进行参数估计 |
Tab.2
Estimates of MAM3 obtained from De distributions simulated using known parameters"
样品名称 | 实际参数 | MCMC算法参数估计 | MLE算法参数估计 |
---|---|---|---|
S1-MAM3 | p=0.1 | p=0.09±0.06 (0.005, 0.22) | p=0.08±0.09 (-0.10, 0.25) |
γ=10 | γ=9.92±0.13 (9.64, 10.17) | γ=9.92±0.19 (9.54, 10.29) | |
σ=0.25 | σ=0.25±0.01 (0.23, 0.28) | σ=0.25±0.01 (0.22, 0.28) | |
S2-MAM3 | p=0.3 | p=0.20±0.04 (0.12, 0.28) | p=0.20±0.04 (0.12, 0.28) |
γ=10 | γ=9.82±0.08 (9.66, 9.98) | γ=9.83±0.08 (9.68, 9.98) | |
σ=0.5 | σ=0.54±0.03 (0.48, 0.60) | σ=0.54±0.03 (0.48, 0.59) |
Tab.3
Estimates of FMM3 obtained from De distributions simulated using known parameters"
样品名称 | 实际参数 | MCMC算法参数估计 | MLE算法参数估计 |
---|---|---|---|
S1-FMM3 | p1=0.1; μ1=10 | p1=0.12±0.02 (0.08, 0.17); μ1=10.06±0.11 (9.85, 10.28) | p1=0.12±0.02 (0.08, 0.16); μ1=10.04±0.11 (9.83, 10.26) |
p2=0.5; μ2=15 | p2=0.47±0.03 (0.40, 0.53); μ2=15.08±0.07 (14.94, 15.23) | p2=0.47±0.03 (0.41, 0.54); μ2=15.08±0.07 (14.94, 15.22) | |
p3=0.4; μ3=20 | p3=0.41±0.03 (0.35, 0.47); μ3=20.10±0.11 (19.89, 20.32) | p3=0.41±0.03 (0.34, 0.47); μ3=20.10±0.11 (19.89, 20.32) | |
S2-FMM3 | p1=0.3; μ1=10 | p1=0.27±0.03 (0.22, 0.33); μ1=10.07±0.06 (9.97, 10.18) | p1=0.27±0.03 (0.21, 0.33); μ1=10.07±0.06 (9.96, 10.18) |
p2=0.35; μ2=20 | p2=0.41±0.03 (0.35, 0.47); μ2=20.12±0.09 (19.94, 20.30) | p2=0.41±0.03 (0.35, 0.48); μ2=20.12±0.09 (19.94, 20.30) | |
p3=0.35; μ3=30 | p3=0.32±0.03 (0.26, 0.38); μ3=29.95±0.16 (29.64, 30.26) | p3=0.32±0.03 (0.26, 0.38); μ3=29.95±0.16 (29.64, 30.26) |
Tab.4
Estimates of MAM3 obtained using measured De distributions"
样品名称 | MCMC算法参数估计 | MLE算法参数估计 |
---|---|---|
142/SC08-03 | p=0.14±0.07 (0.01, 0.29) | p=0.14±0.08 (-0.02, 0.30) |
γ=1.06±0.05 (0.95, 1.15) | γ=1.07±0.05 (0.97, 1.18) | |
σ=1.18±0.12 (0.97, 1.44) | σ=1.15±0.11 (0.92, 1.37) | |
L=-59.34 | L=-59.26 | |
AL3 | p=0.22±0.14 (0.01, 0.51) | p=0.20±0.21 (-0.21, 0.60) |
γ=40.56±1.90 (36.78, 44.10) | γ=40.49±2.58 (35.44, 45.54) | |
σ=0.41±0.05 (0.32, 0.52) | σ=0.39±0.05 (0.30, 0.48) | |
L=-9.53 | L=-9.45 |
Tab.5
Estimates of FMM obtained using measured De distributions"
样品名称 | MCMC算法参数估计 | MLE算法参数估计 |
---|---|---|
142/SC08-03 | p1=0.30±0.05 (0.21, 0.40); μ1=1.15±0.03 (1.09, 1.21) | p1=0.30±0.06 (0.19, 0.42) ; μ1=1.14±0.03 (1.08, 1.20) |
p2=0.35±0.05 (0.25, 0.45); μ2=1.94±0.05 (1.86, 2.03) | p2=0.37±0.06 (0.25, 0.49) ; μ2=1.94±0.04 (1.85, 2.02) | |
p3=0.22±0.05 (0.13, 0.31); μ3=4.22±0.14 (3.95, 4.51) | p3=0.20±0.05 (0.10, 0.30) ; μ3=4.19±0.14 (3.93, 4.46); | |
p4=0.13±0.04 (0.06, 0.23); μ4=9.66±0.47 (8.82, 10.65) | p4=0.12±0.04 (0.04, 0.20); μ4=9.54±0.42 (8.72, 10.35) | |
L=-97.82 | L=-97.62 | |
AL3 | p1=0.39±0.11 (0.18, 0.61); μ1=41.31±1.73 (37.69, 44.55) | p1=0.39±0.13 (0.14, 0.65); μ1=41.23±1.77 (37.77, 44.69) |
p2=0.38±0.10 (0.17, 0.58); μ2=52.91±3.42 (47.08, 60.79) | p2=0.40±0.12 (0.15, 0.64); μ2=53.01±3.08 (46.97, 59.05) | |
p3=0.23±0.06 (0.12, 0.36); μ3=79.01±4.41 (70.86, 88.12) | p3=0.21±0.06 (0.10, 0.32); μ3=79.72±4.14 (71.60, 87.83) | |
L=-6.83 | L=-6.74 |
[1] | 彭俊, 董治宝, 韩凤清, 等. 2016. 基于R语言的光释光年代学数据处理程序包numOSL程序设计及应用实例分析[J]. 中国沙漠, 待刊. |
[ Peng J, Dong Z B, Han F Q, et al. 2016.Developing a package numOSL for analyzing optically stimulated luminescence data using the R statistical language and its practical application[J]. Journal of Desert Research, in press.] | |
[2] |
彭俊, 董治宝, 张正偲. 2015. 基于Monte Carlo 方法的释光测年剂量率误差估计[J]. 核技术, 38(7): 070201.
doi: 10.11889/j.0253-3219.2015.hjs.38.070201 |
[Peng, J, Dong Z B, Zhang Z C.2015. Determining the error of dose rate estimates on luminescence dating using Monte Carlo approach[J]. Nuclear Techniques, 38(7): 070201.]
doi: 10.11889/j.0253-3219.2015.hjs.38.070201 |
|
[3] |
Arnold L J, Roberts R G.2009. Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures[J]. Quaternary Geochronology, 4(3): 204-230.
doi: 10.1016/j.quageo.2008.12.001 |
[4] |
Bateman M D, Boulter C H, Carr A S, et al.2007. Detecting post-depositional sediment disturbance in sandy deposits using optical luminescence[J]. Quaternary geochronology, 2(1-4): 57-64.
doi: 10.1016/j.quageo.2006.05.004 |
[5] | Duller G A T, 2007. Assessing the error on equivalent dose estimates derived from single aliquot regenerative dose measurements. Ancient TL, 25(1): 15-24. |
[6] |
Duller G A T.2008. Single-grain optical dating of Quaternary sediments: Why aliquot size matters in luminescence dating[J]. Boreas, 37(4): 589-612.
doi: 10.1111/j.1502-3885.2008.00051.x |
[7] | Galbraith R F.2003. A simple homogeneity test for estimates of dose obtained using OSL[J]. Ancient TL, 21(2): 75-77. |
[8] |
Galbraith R F, Green P F.1990. Estimating the component ages in a finite mixture[J]. International Journal of Radiation Applications and Instrumentation. Part D. Nuclear Tracks and Radiation Measurements, 17(3): 197-206.
doi: 10.1016/1359-0189(90)90035-V |
[9] |
Galbraith R F, Roberts R G.2012. Statistical aspects of equivalent dose and error calculation and display in OSL dating: An overview and some recommendations[J]. Quaternary Geochronology, 11: 1-27.
doi: 10.1016/j.quageo.2012.04.020 |
[10] |
Galbraith R F, Roberts R G, Laslett G M, et al.1999. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part I, experimental design and statistical models[J]. Archaeometry, 41(2): 339-364.
doi: 10.1111/j.1475-4754.1999.tb00987.x |
[11] | Galbraith R F, Roberts R G, Yoshida H.2005. Error variation in OSL palaeodose estimates from single aliquots of quartz: A factorial experiment[J]. Radiation Measurements, 39(3): 289-307. |
[12] | Gelman A, Carlin J B, Stern H S, et al.2013. Bayesian data analysis[M]. 3rd ed. London, Britain: Chapman and Hall Press. |
[13] | Huntriss A.2008. A Bayesian analysis of luminescence dating[D]. Durham, British: Durham University. |
[14] | Huntriss A.2008. A Bayesian analysis of luminescence dating[D]. Durham University. |
[15] |
Keen-Zebert A, Tooth S, Rodnight H, et al.2013. Late Quaternary floodplain reworking and the preservation of alluvial sedimentary archives in unconfined and confined river valleys in the eastern interior of South Africa[J]. Geomorphology, 185: 54-66.
doi: 10.1016/j.geomorph.2012.12.004 |
[16] |
Kunz A, Pflanz D, Weniger T, et al.2013. Optically stimulated luminescence dating of young fluvial deposits of the Middle Elbe River Flood Plains using different age models[J]. Geochronometria, 41(1): 36-56.
doi: 10.2478/s13386-013-0140-7 |
[17] |
Lepper K, McKeever S W S.2002. An objective methodology for dose distribution analysis[J]. Radiation Protection Dosimetry, 101(1-4): 349-352.
doi: 10.1093/oxfordjournals.rpd.a005999 pmid: 12382765 |
[18] | Lunn D, Jackson C, Best N, et al.2013. The BUGS book: A practical introduction to bayesian analysis[M]. London, Britain: Chapman and Hall press. |
[19] |
Murray A S, Wintle A G.2000. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol[J]. Radiation Measurements, 32(1): 57-73.
doi: 10.1016/S1350-4487(99)00253-X |
[20] |
Neal R M.2003. Slice sampling[J]. The Annals of Statistics, 31(3): 705-767.
doi: 10.1214/aos/1056562461 |
[21] |
Neale M C, Miller M B.1997. The use of likelihood-based confidence intervals in genetic models[J]. Behavior Genetics, 27(2): 113-120.
doi: 10.1023/A:1025681223921 pmid: 9145549 |
[22] |
Olley J, Caitcheon G, Murray A.1998. The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: Implications for dating young sediments[J]. Quaternary Science Reviews, 17(11): 1033-1040.
doi: 10.1016/S0277-3791(97)00090-5 |
[23] |
Ou X J, Duller G A T, Roberts H M, et al.2015. Single grain optically stimulated luminescence dating of glacial sediments from the Baiyu Valley, southeastern Tibet[J]. Quaternary Geochronology, 30: 314-319.
doi: 10.1016/j.quageo.2015.02.018 |
[24] | Peng J, Dong Z B, Han F Q, et al.2013. R package numOSL: Numeric routines for optically stimulated luminescence dating[J]. Ancient TL, 31(2): 41-48. |
[25] | Peng J, Dong Z B.2014. A simple Bayesian method for assessing the standard error of equivalent dose estimates[J]. Ancient TL, 32(2): 17-23. |
[26] |
Peng J, Dong Z B, Han F Q, et al.2014. Estimating the number of components in an OSL decay curve using the Bayesian Information Criterion[J]. Geochronometria, 41(4): 334-341.
doi: 10.2478/s13386-013-0166-x |
[27] |
Pietsch T J.2009. Optically stimulated luminescence dating of young (<500 years old) sediments: Testing estimates of burial dose[J]. Quaternary Geochronology, 4(5): 406-422.
doi: 10.1016/j.quageo.2009.05.013 |
[28] | Plummer M, Best N, Cowles K, et al.2006. Coda: Convergence diagnosis and output analysis for MCMC[J]. R News, 6(1): 7-11. |
[29] |
Rhodes E J, Ramsey C B, Outram Z, et al.2003. Bayesian methods applied to the interpretation of multiple OSL dates: High precision sediment ages from Old Scatness Broch excavations, Shetland Isles[J]. Quaternary Science Reviews, 22(10-13): 1231-1244.
doi: 10.1016/S0277-3791(03)00046-5 |
[30] |
Roberts R G, Galbraith R F, Yoshida H, et al.2000. Distinguishing dose populations in sediment mixtures: A test of single-grain optical dating procedures using mixtures of laboratory-dosed quartz[J]. Radiation Measurements, 32(5-6): 459-465.
doi: 10.1016/S1350-4487(00)00104-9 |
[31] |
Rodnight H, Duller G A T, Wintle A G, et al.2006. Assessing the reproducibility and accuracy of optical dating of fluvial deposits[J]. Quaternary Geochronology, 1(2): 109-120.
doi: 10.1016/j.quageo.2006.05.017 |
[32] |
Schmidt S, Tsukamoto S, Salomon E, et al.2012. Optical dating of alluvial deposits at the orogenic front of the Andean Precordillera (Mendoza, Argentina)[J]. Geochronometria, 39(1): 62-75.
doi: 10.2478/s13386-011-0050-5 |
[33] | Schwarz G.1978. Estimating the dimension of a model[J]. The Annals of Statistics, 6(2): 461-464. |
[34] |
Sivia D S, Burbidge C, Roberts R G, et al.2004. A Bayesian approach to the evaluation of equivalent doses in sediment mixtures for luminescence dating[J]. AIP Conference Proceedings, 735: 305-311.
doi: 10.1063/1.1835227 |
[35] |
Sivia D S, Burbidge C, Roberts R G, et al.2004. A Bayesian approach to the evaluation of equivalent doses in sediment mixtures for luminescence dating[J]. Bayesian Inference and Maximum Entropy Methods in Science and Engineering, 735: 305-311.
doi: 10.1063/1.1835227 |
[36] |
Thomsen K J, Murray A S, Bøtter-Jensen L, et al.2007. Determination of burial dose in incompletely bleached fluvial samples using single grains of quartz[J]. Radiation measurements, 42(3): 370-379.
doi: 10.1016/j.radmeas.2007.01.041 |
[37] |
Van Der Touw J W, Galbraith R F, Laslett G M.1997. A logistic truncated normal mixture model for overdispersed binomial data[J]. Journal of Statistical Computation and Simulation, 59(4): 349-373.
doi: 10.1080/00949659708811866 |
[38] |
Zhang J F, Zhou L P, Yue S Y.2003. Dating fluvial sediments by optically stimulated luminescence: Selection of equivalent doses for age calculation[J]. Quaternary Science Reviews, 22(10-13): 1123-1129.
doi: 10.1016/S0277-3791(03)00054-4 |
[39] |
Zink A.2013. A coarse Bayesian approach to evaluate luminescence ages[J]. Geochronometria, 40(2): 90-100.
doi: 10.2478/s13386-013-0105-x |
[1] | OU Xianjiao, ZHANG Biao, LAI Zhongping, ZHOU Shangzhe, ZENG Lanhua. OSL dating study on the glacial evolutions during the Last Glaciation at Dangzi Valley in the eastern Qinghai-Tibetan Plateau [J]. PROGRESS IN GEOGRAPHY, 2013, 32(2): 262-269. |
|