PROGRESS IN GEOGRAPHY ›› 2016, Vol. 35 ›› Issue (1): 25-34.doi: 10.18306/dlkxjz.2016.01.004
• Orginal Article • Previous Articles Next Articles
Online:
2016-01-31
Published:
2016-01-31
Contact:
Xunming WANG
E-mail:mawenyong2162@126.com;xunming@igsnrr.ac.cn
Supported by:
Wenyong MA, Xunming WANG. Progress on grassland chlorophyll content estimation by hyperspectral analysis[J].PROGRESS IN GEOGRAPHY, 2016, 35(1): 25-34.
Tab.1
Comparison of six red edge position (REP) techniques"
红边位置技术 | 算法 | 执行难易及光谱类型 | 参考文献 |
---|---|---|---|
最大一阶微分 | 容易 反射率光谱 | Horler et al, 1983 | |
拉格朗日插值 | 适中 导数光谱 | Dawson et al, 1998 | |
线性外推法 | 远红色区直线: 近红外区直线: REP= | 适中 导数光谱 | Cho et al, 2006 |
线性插值 | 容易 反射率光谱 | Guyot et al,1988 | |
倒高斯模型 | 困难 反射率光谱 | Bonham-Carter, 1988 | |
多项式拟合 | 较难 反射率光谱 | Pu et al, 2003 |
Tab.2
Spectral indices developed as chlorophyll indicators"
指数类型 | 指数缩写 | 计算公式 | 参考文献 |
---|---|---|---|
单波谱及其变换形式 | RR | Gitelson et al, 1999 | |
LRR | Yoder et al, 1995 | ||
归一化型光谱指数 | NDI | Richardson et al, 2002; Tucker, 1979; Gitelson , Merzlyak, 1996 | |
mNDI | Sims et al, 2002 | ||
OSAVI | Rondeaux et al, 1996 | ||
比值型光谱指数 | SR | Gitelson, Merzlyak, Lichtenthale,1996, 1999; Sims et al, 2006 | |
CIred-edge | Clevers et al, 2011 | ||
mSR | Sims et al, 2002 | ||
PSSR | PSSRa= PSSRb= | Blackburn, 1998, 1999; Sims et al, 2002 | |
RARS | RARSa= | Chappelle et al, 1992; Blackburn, 1999 | |
多波段光谱指数 | MTCI | Dash et al, 2007 | |
GCI | 肖汉等, 2014 | ||
DCNI | Chen et al, 2010 | ||
CARI | a=( | Kim et al, 1994 | |
MCARI/OSAVI | Wu et al, 2008 | ||
RII | Richardson et al, 2002 | ||
NAOC | Delegido et al, 2010 |
[1] | 陈雪洋, 蒙继华, 吴炳方, 等. 2011. 基于HJ星高光谱数据红边参数的冬小麦叶面积指数反演[J]. 中国科学: 信息科学, 41(S1): 213-220. |
[Chen X Y, Meng J H, Wu B F, et al.2011. Study on monitoring the winter wheat Leaf Area Index based on HJ-1 HSI red edge Parameters[J]. Scientia Sinica Informationis, 41(S1): 213-220.] | |
[2] |
董恒, 孟庆野, 王金梁, 等. 2012. 一种改进的叶绿素提取植被指数[J]. 红外与毫米波学报, 31(4): 336-341.
doi: 10.3724/SP.J.1010.2012.00336 |
[Dong H, Meng Q Y, Wang J L, et al.2012. A modified vegetation index for crop canopy chlorophyll content retrieval[J]. Journal of Infrared and Millimeter Waves, 31(4): 336-341.]
doi: 10.3724/SP.J.1010.2012.00336 |
|
[3] |
王李娟, 牛铮. 2014. PROSAIL模型的参数敏感性研究[J]. 遥感技术与应用, 29(2): 219-223.
doi: 10.11873/j.issn.1004-0323.2014.2.0219 |
[Wang L J, Niu Z.2014. Sensitivity analysis of vegetation parameters based on PROSAIL model[J]. Remote Sensing Technology and Application, 29(2): 219-223.]
doi: 10.11873/j.issn.1004-0323.2014.2.0219 |
|
[4] | 肖汉, 陈秀万, 杨振宇, 等. 2014. 基于光谱分析的草地叶绿素含量估测植被指数[J]. 光谱学与光谱分析, 34(11): 3075-3078. |
[Xiao H, Chen X W, Yang Z Y, et al.2014. Vegetation index estimation by chlorophyll content of grassland based on spectral analysis[J]. Spectroscope and Spectral Analysis, 34(11): 3075-3078.] | |
[5] |
薛利红, 杨林章. 2008. 采用不同红边位置提取技术估测蔬菜叶绿素含量的比较研究[J]. 农业工程学报, 24(9): 165-169.
doi: 10.3321/j.issn:1002-6819.2008.09.033 |
[Xue L H, Yang L Z.2008. Comparative study on estimation of chlorophyll content in spinach leaves using various red edge position extraction techniques[J]. Transactions of the Chinese Society of Agricultural Engineering, 24(9): 165-169.]
doi: 10.3321/j.issn:1002-6819.2008.09.033 |
|
[6] |
姚霞, 田永超, 刘小军, 等. 2010. 不同算法红边位置监测小麦冠层氮素营养指标的比较[J]. 中国农业科学, 43(13): 2661-2667.
doi: 10.3864/j.issn.0578-1752.2010.13.005 |
[Yao X, Tian Y C, Liu X J, et al.2010. Comparative study on monitoring canopy leaf nitrogen status on red edge position with different algorithms in wheat[J]. Scientia Agricultura Sinica, 43(13): 2661-2667.]
doi: 10.3864/j.issn.0578-1752.2010.13.005 |
|
[7] |
张云海, 何念鹏, 张光明, 等. 2013. 氮沉降强度和频率对羊草叶绿素含量的影响[J]. 生态学报, 33(21): 6786-6794.
doi: 10.5846/stxb201207050939 |
[Zhang Y H, He N P, Zhang G M, et al.2013. Nitrogen deposition and Leymus chinensis leaf chlorophyll content in Inner Mongolian grassland[J]. Acta Ecologica Sinica, 33(21): 6786-6794.]
doi: 10.5846/stxb201207050939 |
|
[8] | Amiri R, Beringer J, Isaac P.2011. Narrowband spectral indices for the estimation of chlorophyl along a precipitation gradient[C]//Proceedings of the 3rd workshop on hyperspectral image and signal processing: Evolution in remote sensing (WHISPERS). Lisbon: IEEE: 1-4. |
[9] |
Asner G P, Elmore A J, Flint Hughes R, et al.2005. Ecosystem structure along bioclimatic gradients in Hawai'i from imaging spectroscopy[J]. Remote Sensing of Environment, 96(3-4): 497-508.
doi: 10.1016/j.rse.2005.04.008 |
[10] | Bacour C, Baret F, Jacquemoud S.2002. Information content of HyMap hyperspectral imagery[C]//Proceedings of the 1st international symposium on recent advances in quantitative remote sensing. Valencia, Spain, 16: 503-508. |
[11] |
Blackburn G A.1998. Spectral indices for estimating photosynthetic pigment concentrations: A test using senescent tree leaves[J]. International Journal of Remote Sensing, 19(4): 657-675.
doi: 10.1080/014311698215919 |
[12] |
Blackburn G A.1999. Relationships between spectral reflectance and pigment concentrations in stacks of deciduous broadleaves[J]. Remote Sensing of Environment, 70(2): 224-237.
doi: 10.1016/S0034-4257(99)00048-6 |
[13] |
Bonham-Carter G F.1988. Numerical procedures and computer program for fitting an inverted Gaussian model to vegetation reflectance data[J]. Computers & Geosciences, 14(3): 339-356.
doi: 10.1016/0098-3004(88)90065-9 |
[14] |
Boochs F, Kupfer G, Dockter K, et al.1990. Shape of the red edge as vitality indicator for plants[J]. International Journal of Remote Sensing, 11(10): 1741-1753.
doi: 10.1080/01431169008955127 |
[15] |
Botha E J, Leblon B, Zebarth B J, et al.2010. Non-destructive estimation of wheat leaf chlorophyll content from hyperspectral measurements through analytical model inversion[J]. International Journal of Remote Sensing, 31(7): 1679-1697.
doi: 10.1080/01431160902926574 |
[16] |
Carter G A, Miller R L.1994. Early detection of plant stress by digital imaging within narrow stress-sensitive wavebands[J]. Remote Sensing of Environment, 50(3): 295-302.
doi: 10.1016/0034-4257(94)90079-5 |
[17] |
Chappelle E W, Kim M S, McMurtrey III J E.1992. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll a, chlorophyll b, and carotenoids in soybean leaves[J]. Remote Sensing of Environment, 39(3): 239-247.
doi: 10.1109/IGARSS.1990.688815 |
[18] |
Chen P F, Haboudane D, Tremblay N, et al.2010. New spectral indicator assessing the efficiency of crop nitrogen treatment in corn and wheat[J]. Remote Sensing of Environment, 114(9): 1987-1997.
doi: 10.1016/j.rse.2010.04.006 |
[19] |
Cho M A, Skidmore A K.2006. A new technique for extracting the red edge position from hyperspectral data: The linear extrapolation method[J]. Remote Sensing of Environment, 101(2): 181-193.
doi: 10.1016/j.rse.2005.12.011 |
[20] | Clevers J G P W, Kooistra L.2001. Assessment of heavy metal contamination river floodplains by using the red-edge index[C]//Proceeding of the 3rd EARSeL Workshop on imaging spectroscopy. Hersching: Wageningen University & Research Centre. |
[21] | Clevers J G P W, Kooistra L.2011. Using hyperspectral remote sensing data for retrieving total canopy chlorophyll and nitrogen content[C]//Proceedings of 3rd Workshop on hyperspectral image and signal processing: Evolution in remote sensing (WHISPERS). Lisbon: IEEE: 1-4. |
[22] | Clevers J G P W, Kooistra L, Salas E A L.2004. Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data[J]. International Journal of Remote Sensing, 25(19): 3883-3895. |
[23] | Clifton K E, Bradbury J W, Vehrencamp S L.1994. The fine-scale mapping of grassland protein densities[J]. Grass and Forage Science, 49(1): 1-8. |
[24] | Darvishzadeh R, Skidmore A, Schlerf M, et al.2008. Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland[J]. Remote Sensing of Environment, 112(5): 2592-2604. |
[25] |
Dash J, Curran P J.2007. Evaluation of the MERIS terrestrial chlorophyll index (MTCI)[J]. Advances in Space Research, 39(1): 100-104.
doi: 10.1109/IGARSS.2004.1369009 |
[26] | Dawson T P, Curran P J.1998. Technical note A new technique for interpolating the reflectance red edge position[J]. International Journal of Remote Sensing, 19(11): 2133-2139. |
[27] |
Delegido J, Alonso L, González G, et al.2010. Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC)[J]. International Journal of Applied Earth Observation and Geoinformation, 12(3): 165-174.
doi: 10.1016/j.jag.2010.02.003 |
[28] |
Feret J B, François C, Asner G P, et al.2008. PROSPECT-4 and 5: Advances in the leaf optical properties model separating photosynthetic pigments[J]. Remote Sensing of Environment, 112(6): 3030-3043.
doi: 10.1016/j.rse.2008.02.012 |
[29] |
Gáborčík N.2003. Relationship between contents of chlorophyll (a+b) (SPAD values) and nitrogen of some temperate grasses[J]. Photosynthetica, 41(2): 285-287.
doi: 10.1023/B:PHOT.0000011963.43628.15 |
[30] | Gitelson A A, Buschmann C, Lichtenthaler H K.1999. The chlorophyll fluorescence ratio R735/F700 as an accurate measure of the chlorophyll content in plants[J]. Remote Sensing of Environment, 69(3): 296-302. |
[31] |
Gitelson A A, Merzlyak M N.1996. Signature analysis of leaf reflectance spectra: algorithm development for remote sensing of chlorophyll[J]. Journal of Plant Physiology, 148(3-4): 494-500.
doi: 10.1016/S0176-1617(96)80284-7 |
[32] |
Gitelson A A, Merzlyak M N, Lichtenthaler H K.1996. Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm[J]. Journal of Plant Physiology, 148(3-4): 501-508.
doi: 10.1016/S0176-1617(96)80285-9 |
[33] | Guyot G, Baret F, Major D J.1988. High spectral resolution: Determination of spectral shifts between the red and the near infrared[J]. International Archives of Photogrammetry and Remote Sensing, 11: 750-760. |
[34] |
Haboudane D, Miller J R, Tremblay N, et al.2002. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture[J]. Remote Sensing of Environment, 81(2-3): 416-426.
doi: 10.1016/S0034-4257(02)00018-4 |
[35] |
Horler D N H, Dockray M, Barber J.1983. The red edge of plant leaf reflectance[J]. International Journal of Remote Sensing, 4(2): 273-288.
doi: 10.1080/01431168308948546 |
[36] |
Jacquemoud S, Baret F.1990. PROSPECT: A model of leaf optical properties spectra[J]. Remote Sensing of Environment, 34(2): 75-91.
doi: 10.1016/0034-4257(90)90100-Z |
[37] |
Jacquemoud S, Ustin S L, Verdebout J, et al.1996. Estimating leaf biochemistry using the PROSPECT leaf optical properties model[J]. Remote Sensing of Environment, 56(3): 194-202.
doi: 10.1016/0034-4257(95)00238-3 |
[38] |
Jago R A, Cutler M E J, Curran P J.1999. Estimating canopy chlorophyll concentration from field and airborne spectra[J]. Remote Sensing of Environment, 68(3): 217-224.
doi: 10.1016/S0034-4257(98)00113-8 |
[39] | Kim M S, Daughtry C S T, Chappelle E W, et al.1994. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (APAR)[C]//Proceedings of the 6th Symposium on Physical Measurements and Signatures in Remote Sensing. Val D’Isere, France: ISPRS: 299-306. |
[40] |
Kimes D S, Knyazikhin Y, Privette J L, et al.2000. Inversion methods for physically-based models[J]. Remote Sensing Reviews, 18(2-4): 381-439.
doi: 10.1080/02757250009532396 |
[41] |
Kokaly R F, Asner G P, Ollinger S V, et al.2009. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies[J]. Remote Sensing of Environment, 113(S1): S78-S91.
doi: 10.1016/j.rse.2008.10.018 |
[42] |
Lamb D W, Steyn-Ross M, Schaare P, et al.2002. Estimating leaf nitrogen concentration in ryegrass (Lolium spp.) pasture using the chlorophyll red-edge: Theoretical modelling and experimental observations[J]. International Journal of Remote Sensing, 23(18): 3619-3648.
doi: 10.1080/01431160110114529 |
[43] |
Le Maire G, François C, Dufrêne E.2004. Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements[J]. Remote Sensing of Environment, 89(1): 1-28.
doi: 10.1016/j.rse.2003.09.004 |
[44] | Liang S L.2004. Quantitative remote sensing of land surfaces[M]. Hoboken: Wiley & Sons. |
[45] |
Lichtenhaler H K.1998. The stress concept in plants: An introduction[J]. Annals of the New York Academy of Sciences, 851: 187-198.
doi: 10.1111/j.1749-6632.1998.tb08993.x pmid: 9668620 |
[46] |
Ma Z G, Chen X, Wang Q, et al.2012. Retrieval of leaf biochemical properties by inversed PROSPECT model and hyperspectral indices: An application to Populus euphratica polymorphic leaves[J]. Journal of Arid Land, 4(1): 52-62.
doi: 10.3724/SP.J.1227.2012.00052 |
[47] | Newnham G J, Burt T.2001. Validation of a leaf reflectance and transmittance model for three agricultural crop species[C]//Proceedings of IEEE 2001 international geoscience and remote sensing symposium, 2001. IGARSS'01. Sydney, NSW: IEEE, 7: 2976-2978. |
[48] |
Ni J.2002. Carbon storage in grasslands of China[J]. Journal of Arid Environments, 50(2): 205-218.
doi: 10.1006/jare.2001.0902 |
[49] |
Niinemets Ü, Tenhunen J D.1997. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum[J]. Plant, Cell & Environment, 20(7): 845-866.
doi: 10.1046/j.1365-3040.1997.d01-133.x |
[50] |
Peñuelas J, Filella I.1998. Visible and near-infrared reflectance techniques for diagnosing plant physiological status[J]. Trends in Plant Science, 3(4): 151-156.
doi: 10.1016/S1360-1385(98)01213-8 |
[51] |
Pinar A, Curran P J.1996. Technical note grass chlorophyll and the reflectance red edge[J]. International Journal of Remote Sensing, 17(2): 351-357.
doi: 10.1080/01431169608949010 |
[52] |
Pu R L, Gong P, Biging G S, et al.2003. Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index[J]. IEEE Transactions on Geoscience and Remote Sensing, 41(4): 916-921.
doi: 10.1109/TGRS.2003.813555 |
[53] |
Richardson A D, Duigan S P, Berlyn G P.2002. An evaluation of noninvasive methods to estimate foliar chlorophyll content[J]. New Phytologist, 153(1): 185-194.
doi: 10.1046/j.0028-646X.2001.00289.x |
[54] |
Rock B N, Hoshizaki T, Miller J R.1988. Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline[J]. Remote Sensing of Environment, 24(1): 109-127.
doi: 10.1016/0034-4257(88)90008-9 |
[55] |
Rondeaux G, Steven M, Baret F.1996. Optimization of soil-adjusted vegetation indices[J]. Remote Sensing of Environment, 55(2): 95-107.
doi: 10.1021/ac401871t |
[56] |
Si Y L, Schlerf M, Zurita-Milla R, et al.2012. Mapping spatio-temporal variation of grassland quantity and quality using MERIS data and the PROSAIL model[J]. Remote Sensing of Environment, 121: 415-425.
doi: 10.1016/j.rse.2012.02.011 |
[57] |
Sims D A, Gamon J A.2002. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages[J]. Remote Sensing of Environment, 81(2-3): 337-354.
doi: 10.1016/S0034-4257(02)00010-X |
[58] |
Sims D A, Luo H Y, Hastings S, et al.2006. Parallel adjustments in vegetation greenness and ecosystem CO2 exchange in response to drought in a Southern California chaparral ecosystem[J]. Remote Sensing of Environment, 103(3): 289-303.
doi: 10.1016/j.rse.2005.01.020 |
[59] |
Smith K L, Steven M D, Colls J J.2004. Use of hyperspectral derivative ratios in the red-edge region to identify plant stress responses to gas leaks[J]. Remote Sensing of Environment, 92(2): 207-217.
doi: 10.1016/j.rse.2004.06.002 |
[60] |
Thomas J R, Gausman H W.1977. Leaf reflectance vs. leaf chlorophyll and carotenoid concentrations for eight crops[J]. Agronomy Journal, 60(5): 799-802.
doi: 10.2134/agronj1977.00021962006900050017x |
[61] |
Tucker C J.1979. Red and photographic infrared linear combinations for monitoring vegetation[J]. Remote Sensing of Environment, 8(2): 127-150.
doi: 10.1016/0034-4257(79)90013-0 |
[62] | Ustin S L, Jacquemoud S, Zarco-Tejada P J, et al.2004. Remote sensing of environment: State of the science and new directions[M]//Ustin S L. Remote sensing for natural resource management and environmental monitoring: Manual of remote sensing vol. 4. 3rd ed. New York: John Wiley and Sons, 679-730. |
[63] |
Verhoef W.1984. Light scattering by leaf layers with application to canopy reflectance modeling: The SAIL model[J]. Remote Sensing of Environment, 16(2): 125-141.
doi: 10.1016/0034-4257(84)90057-9 |
[64] |
Vohland M, Jarmer T.2008. Estimating structural and biochemical parameters for grassland from spectroradiometer data by radiative transfer modelling (PROSPECT+SAIL)[J]. International Journal of Remote Sensing, 29(1): 191-209.
doi: 10.1080/01431160701268947 |
[65] |
Vuolo F, Dash J, Curran P J, et al.2012. Methodologies and uncertainties in the use of the terrestrial chlorophyll index for the Sentinel-3 mission[J]. Remote Sensing, 4(5): 1112-1133.
doi: 10.3390/rs4051112 |
[66] | Wong K K, He Y H.2013. Estimating grassland chlorophyll content using remote sensing data at leaf, canopy, and landscape scales[J]. Canadian Journal of Remote Sensing: Journal Canadien de Télédétection, 39(2): 155-166. |
[67] |
Wright I J, Reich P B, Westoby M, et al.2004. The worldwide leaf economics spectrum[J]. Nature, 482: 821-827.
doi: 10.1038/nature02403 pmid: 15103368 |
[68] |
Wu C Y, Niu Z, Tang Q, et al.2008. Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation[J]. Agricultural and Forest Meteorology, 148(8-9): 1230-1241.
doi: 10.1016/j.agrformet.2008.03.005 |
[69] |
Yoder B J, Pettigrew-Crosby R E.1995. Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales[J]. Remote Sensing of Environment, 53(3): 199-211.
doi: 10.1016/0034-4257(95)00135-N |
[70] |
Zhang Y Q, Chen J M, Miller J R, et al.2008. Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery[J]. Remote Sensing of Environment, 112(7): 3234-3247.
doi: 10.1016/j.rse.2008.04.005 |
[1] | JIA Yuanyuan,LI Zhaoliang. Progr ess in Land Sur face Temper atur e Retr ieval from Passive Microwave Remotely Sensed Data [J]. PROGRESS IN GEOGRAPHY, 2006, 25(3): 96-105. |
|