PROGRESS IN GEOGRAPHY ›› 2016, Vol. 35 ›› Issue (1): 35-46.doi: 10.18306/dlkxjz.2016.01.005
• Orginal Article • Previous Articles Next Articles
Weimin XI1,2(), Erfu DAI3, Hongshi HE4,5
Online:
2016-01-31
Published:
2016-01-31
Weimin XI, Erfu DAI, Hongshi HE. Advances in forest landscape modeling: Current research and applications[J].PROGRESS IN GEOGRAPHY, 2016, 35(1): 35-46.
Tab.1
A list of forest landscape models: features, key research questions, and applications"
参考文献 | 模型名称 | 方法和特点 | 关键问题与应用范围 | 空间幅度和解析度 | 空间交互 | 动态模型 |
---|---|---|---|---|---|---|
BEHAVE | 火行为预测和森林可燃物模拟的耦合模型 | 估算森林可燃物与野火扩散方式,用于预测林火的扩散行为并提供有效的林火管理决策 | 不详 | 否 | 否 | |
DISPATCH | 运用GIS管理空间数据 | 探讨不同干扰作用和气候变化对美国明尼苏达州景观结构的效应 | 4000 km2; 200 m栅格 | 是 | 否 | |
ForClim | 模块化模型结构;包括较少的生态假设,具体的土壤过程 | 应用整合环境(ForClim-E),植物(ForClim-P)与土壤(ForClim-S)等模块模拟欧洲阿尔卑斯山区森林结构的长期(约1200年)变化 | 不详 | 否 | 是 | |
ONFIRE | 侧重林火特征(如林火风险和林火发生机率等) | 模拟加拿大安大略省北部林区不同林火干扰情形对森林景观结构的长期影响 | 100 km2; 0.01 km 栅格 | 是 | 否 | |
LANDMAN | 基于GIS的空间数据和景观管理模型 | 探讨不同的初始景观结构和采伐模式导致的加拿大New Brunswick地区未来森林景观变化 | 43 km2; 解析度不详 | 是 | 是 | |
FORMOSAIC | 整合森林管理策略,有机与无机环境因子的森林生长,建立与死亡动态模型 | 探讨小尺度热带森林景观空间变化过程与相邻区域生态条件的交互关系 | 5 km2; 10 m栅格 | 是 | 是 | |
LANDIS | 基于JABOWA-FORET林窗与LANDSIM整合的栅格模型 | 引入概率和空间交互方法模拟森林景观空间变化过程(如演替、森林衰退等),探讨森林景观与干扰(如林火)的交互作用 | 10~10000 km2 | 是 | 是 | |
SAFE FORESTS | 基于非线性回归和栅格模型 | 研究火灾动态以及采伐对于内华达山脉森林景观变迁的影响,并应用于对林火、次生林和林木采伐的管理 | 120 km2; 10~25 km栅格 | 是 | 否 | |
DELTA | 基于土地利用GIS的空间数据和生态系动态过程的整合模型 | 应用概率与空间动态模型探讨人为土地利用政策对改变巴西亚马逊地区森林景观的影响,并估算森林破坏的速率 | 296 km2; 0.53 km 栅格 | 是 | 是 | |
LANDISIM | 采用种类属性/模糊系统模拟方法;空间解译性模型 | 模拟美国犹他州国家森林内树种分布与树龄结构于空间与时间上的变化过程 | 142.5 km2; 解析度不详 | 是 | 是 | |
LADS | 基于树龄级统计特征的景观模拟模型 | 模拟美国俄勒冈州沿岸地区森林的历史变化和林火对森林结构和树种组成的长期(约3000年)影响 | 400~22500 km2;1 km栅格 | 是 | 是 | |
VDDT/TELSA | 空间解译模型;强调森林景观变迁与干扰与森林管理策略的关系 | 研究加拿大英属哥伦比亚地区森林管理策略与自然干扰作用对森林内生物栖息地发展的影响 | 62966 km2 | 是 | 否 | |
SEM-LAND | 空间解译模型;侧重于模拟林火前后森林植被与景观变化 | 模拟不同林火特征(林火面积,发生频率,周期等)对加拿大中西部森林景观结构的效应 | 74.32 km2; 0.01 km栅格 | 是 | 否 | |
EMBYR | 基于GIS空间数据模型 | 运用概率统计模型模拟大尺度林火,并探讨林火对不同景观结构的影响 | 625 km2; 50 m栅格 | 是 | 是 | |
HARVEST | LANDIS模型的采伐模块 | 模拟美国东南部美国密苏里州森林在不同采伐方式下森林景观的变化 | 8.36 km2; 30 m栅格 | 是 | 否 | |
BFOLDS | 建立在时变马尔可夫链方法上的矩阵转换模型 | 研究与预测加拿大北部森林林种长期动态变化趋势,并探讨干扰在其中所起的作用 | 3.7×104 km2; 0.01 km栅格 | 是 | 是 | |
LANDSUM | 空间解译模拟模型 | 模拟美国西北部不同景观尺度上的植被分布随时间尺度变化 | 25~5160 km2; 解析度不详 | 是 | 是 | |
Q-LAND | LANDIS扩展模型;模型林分尺度和景观尺度过程 | 整合种子传播方式与林分树木体积,模拟加拿大魁北克地区北方针阔混交林长期(约1500年)演替与景观结构变化 | 约1 km2;0.01~0.1 km栅格 | 是 | 是 | |
FATELAND | 整合景观特性,干扰作用与植物分布动态变化的栅格模型 | 研究林火和景观模式对于群落结构的影响 | 1 km2; 10 m栅格 | 是 | 是 | |
LANDIS-II | LANDIS扩展和升级模型;包括生物量模块 | 模拟森林演替与干扰交互作用的关系与过程 | 104 km2; 50 m栅格 | 是 | 是 | |
iLand | 以立地为基础的森林景观干扰模型 | 模拟景观尺度上森林生态系统的动态变化 | 100 m栅格 | 是 | 是 | |
LANDIS PRO | 新一代LANDIS模型 | 预测美国中部阔叶森林组成与结构变化,整合了立地与景观过程 | 90 m栅格 | 是 | 是 |
[1] | 郭晋平, 肖扬. 2001. 森林景观模型研究进展[M]//李承森. 植物科学进展: 第四卷. 北京: 高等教育出版社; 海德堡: 施普林格出版社: 255-272. |
[Guo J P, Xiao Y.2001. Senlin jingguan moxing yanjiu jinzhan[M]//Li C S. Advances in plant sciences: Vol. 4. Beijing, China: Higher Education Press; Heidelberg, Germany: Springer: 255-272.] | |
[2] |
胡远满, 徐崇刚, 常禹, 等. 2004. 空间直观景观模型LANDIS在大兴安岭呼中林区的应用[J]. 生态学报, 24(9): 1846-1856.
doi: 10.3321/j.issn:1000-0933.2004.09.004 |
[Hu Y M, Xu C G, Chang Y, et al.2004. Application of spatially explicit landscape model (LANDIS): A case researches in Huzhong area, Mt. Daxing’anling[J]. Acta Ecologica Sinica, 24(9): 1846-1856.]
doi: 10.3321/j.issn:1000-0933.2004.09.004 |
|
[3] | 邵国凡. 1989. 当代森林动态的计算机模型述评[J]. 生态学杂志, 8(2): 34-37. |
[Shao G F.1989. A review on contemporary computer models of forest dynamics[J]. Journal of Ecology, 8(2): 34-37.] | |
[4] | 邵国凡, 赵士洞, 舒噶特. 1996. 森林动态模拟: 兼论红松林的优化经营[M]. 北京: 中国林业出版社. |
[Shao G F, Zhao S D, Shugart H H. 1996. Forest dynamics modeling: Preliminary explanations of optimizing management for Korean pine forests[M]. Beijing: China Forestry Publishing House.] | |
[5] | 奚为民, 钟章成, 毕润成. 1992. 林窗植被研究进展[J]. 西南师范大学学报: 自然科学版, 17(2): 268-274. |
[Xi W M, Zhong Z C, Bi R C.1992. Advance in research of forest gaps vegetation[J]. Journal of Southwest China Teachers University: Natural Science, 17(2): 268-274.] | |
[6] |
Aghnoum M, Feghhi J, Makhdoum M, et al.2014. Assessing the environmental impacts of forest management plan based on matrix and landscape degradation model[J]. Journal of Agricultural Science and Technology, 16(4): 841-850.
doi: 10.1080/713670517 |
[7] | Andrews P L. 1986. BEHAVE: Fire behavior prediction and fuel modeling system: BURN subsystem, part 1[R/OL]. 2015-11-6. . |
[8] |
Baker W L.1989. A review of models of landscape change[J]. Landscape Ecology, 2(2): 111-133.
doi: 10.1007/BF00137155 |
[9] |
Baker W L.1992. The landscape ecology of large disturbances in the design and management of nature reserves[J]. Landscape Ecology, 7(3): 181-194.
doi: 10.1007/BF00133309 |
[10] |
Baskent E Z.1997. Assessment of structural dynamics in forest landscape management[J]. Canadian Journal of Forest Research, 27(10): 1675-1684.
doi: 10.1139/cjfr-27-10-1675 |
[11] |
Berland A, Shuman B, Manson S M.2011. Simulated importance of dispersal, disturbance, and landscape history in long-term ecosystem change in the big woods of Minnesota[J]. Ecosystems, 14(3): 398-414.
doi: 10.1007/s10021-011-9418-x |
[12] |
Birt A G, Xi W M, Coulson R N.2009. LANDISVIEW: A visualization tool for landscape modelling[J]. Environmental Modelling & Software, 24(11): 1339-1341.
doi: 10.1016/j.envsoft.2009.04.007 |
[13] |
Bolliger J, Lischke H, Green D G.2005. Simulating the spatial and temporal dynamics of landscapes using generic and complex models[J]. Ecological Complexity, 2(2): 107-116.
doi: 10.1016/j.ecocom.2004.11.005 |
[14] |
Botkin D B, Bartley H A, Wallis J R.1972. Some ecological consequences of a computer model of forest growth[J]. Journal of Ecology, 60(3): 849-872.
doi: 10.2307/2258570 |
[15] |
Bugmann H K M.1996. A simplified forest model to study species composition along climate gradients[J]. Ecology, 77(7): 2055-2074.
doi: 10.2307/2265700 |
[16] | Costanza R, Voinov A.2004. Landscape simulation modeling: A spatially explicit dynamic approach[M]. New York: Springer. |
[17] |
Dai E F, Wu Z, Wang X F, et al.2015. Progress and prospect of research on forest landscape model[J]. Journal of Geographical Sciences, 25(1): 113-128.
doi: 10.1007/s11442-015-1157-z |
[18] | Dale V H.2003. Ecological modeling for resource management[M]. New York: Springer. |
[19] | Dale V H, Pearson S M.1999. Modeling the driving factors and ecological consequences of deforestation in the Brazilian Amazon[M]//Mladenoff D J, Baker W L. Spatial modeling of forest landscape change: Approaches and applications. Cambridge, UK: Cambridge University Press: 256-276. |
[20] | Fedra K.1993. GIS and environmental modeling[M]//Goodchild M F, Parks B O, Steyaert L T. Environmental modeling with GIS. New York: Oxford University Press: 33-51. |
[21] |
Feng Z L, Alfaro-Murillo J A, DeAngelis D L, et al.2012. Plant toxins and trophic cascades alter fire regime and succession on a boreal forest landscape[J]. Ecological Modelling, 244: 79-92.
doi: 10.1016/j.ecolmodel.2012.06.022 |
[22] |
Garman S L.2004. Design and evaluation of a forest landscape change model for western Oregon[J]. Ecological Modelling, 175(4): 319-337.
doi: 10.1016/j.ecolmodel.2003.10.015 |
[23] | Grimm V, Railsback S F.2013. Individual-based modeling and ecology[M]. New Jersey: Princeton University Press. |
[24] |
Gustafson E J, Shifley S R, Mladenoff D J, et al.2000. Spatial simulation of forest succession and timber harvesting using LANDIS[J]. Canadian Journal of Forest Research, 30(1): 32-43.
doi: 10.1139/cjfr-30-1-32 |
[25] |
Gustafson E J, Shvidenko A Z, Sturtevant B R, et al.2010. Predicting global change effects on forest biomass and composition in south-central Siberia[J]. Ecological Applications, 20(3): 700-715.
doi: 10.1890/08-1693.1 pmid: 20437957 |
[26] |
Hall G M J, Hollinger D Y.2000. Simulating New Zealand forest dynamics with a generalized temperate forest gap model[J]. Ecological Applications, 10(1): 115-130.
doi: 10.2307/2640990 |
[27] |
Hall G M J, McGlone M S.2006. Potential forest cover of New Zealand as determined by an ecosystem process model[J]. New Zealand Journal of Botany, 44(2): 211-232.
doi: 10.1080/0028825X.2006.9513019 |
[28] |
Hargrove W W, Gardner R H, Turner M G, et al.2000. Simulating fire patterns in heterogeneous landscapes[J]. Ecological Modelling, 125(2-3): 243-263.
doi: 10.1016/S0304-3800(00)00368-9 |
[29] |
He H S.2008. Forest landscape models: Definitions, characterization, and classification[J]. Forest Ecology and Management, 254(3): 484-498.
doi: 10.1016/j.foreco.2007.08.022 |
[30] |
He H S, Hao Z Q, Mladenoff D J, et al.2005. Simulating forest ecosystem response to climate warming incorporating spatial effects in north-eastern China[J]. Journal of Biogeography, 32(12): 2043-2056.
doi: 10.1002/qua.20536 |
[31] |
He H S, Larsen D R, Mladenoff D J.2002. Exploring component-based approaches in forest landscape modeling[J]. Environmental Modelling & Software, 17(6): 519-529.
doi: 10.1016/S1364-8152(02)00014-2 |
[32] | He H S, Mladenoff D J.1999. Spatially explicit and stochastic simulation of forest-landscape fire disturbance and succession[J]. Ecology, 80(1): 81-99. |
[33] |
He H S, Shang B Z, Crow T R, et al.2004. Simulating forest fuel and fire risk dynamics across landscapes- LANDIS fuel module design[J]. Ecological Modelling, 180(1): 135-151.
doi: 10.1016/j.ecolmodel.2004.07.003 |
[34] |
He H S, Yang J, Shifley S R, et al.2011. Challenges of forest landscape modeling-Simulating large landscapes and validating results[J]. Landscape and Urban Planning, 100(4): 400-402.
doi: 10.1016/j.landurbplan.2011.02.019 |
[35] | Henne P D, Elkin C M, Reineking B, et al.2011. Did soil development limit spruce (Picea abies) expansion in the Central Alps during the Holocene: Testing a palaeobotanical hypothesis with a dynamic landscape model[J]. Journal of Biogeography, 38(5): 933-949. |
[36] | Horn H S, Shugart H H, Urban D L.1989. Simulators as models of forest dynamics[M]//Roughgarden J, May R M, Levin S A. Perspectives in ecological theory. New Jersey: Princeton University Press: 256-267. |
[37] |
Jahdi R, Salis M, Darvishsefat A A, et al.2014. Calibration of FARSITE fire area simulator in Iranian northern forests[J]. Natural Hazards and Earth System Sciences Discussions, 2(9): 6201-6240.
doi: 10.5194/nhessd-2-6201-2014 |
[38] | Jeltsch F, Moloney K A.2002. Spatially explicit vegetation models: What have we learned[M]//Esser K, Lüttge U, Beyschlag W, et al. Progress in botany: Genetics, physiology, ecology. Berlin, Heidelberg: Springer, 63: 326-343. |
[39] |
Keane R E, Parsons R A, Hessburg P F.2002. Estimating historical range and variation of landscape patch dynamics: Limitations of the simulation approach[J]. Ecological Modelling, 151(1): 29-49.
doi: 10.1016/S0304-3800(01)00470-7 |
[40] |
Klenner W, Kurz W, Beukema S.2000. Habitat patterns in forested landscapes: Management practices and the uncertainty associated with natural disturbances[J]. Computers and Electronics in Agriculture, 27(1-3): 243-262.
doi: 10.1016/S0168-1699(00)00110-1 |
[41] |
Könnyű N, Tóth S F, McDill M E, et al.2014. Temporal connectivity of mature patches in forest planning models[J]. Forest Science, 60(6): 1089-1099.
doi: 10.5849/forsci.12-112 |
[42] | Landsberg J.2003. Modelling forest ecosystems: State of the art, challenges, and future directions[J]. Canadian Journal of Forest Research, 33(3): 385-397. |
[43] |
Li C, Flannigan M D, Corns I G W.2000. Influence of potential climate change on forest landscape dynamics of west-central Alberta[J]. Canadian Journal of Forest Research, 30(12): 1905-1912.
doi: 10.1139/cjfr-30-12-1905 |
[44] |
Li C, Hans H, Barclay H, et al.2008. Comparison of spatially explicit forest landscape fire disturbance models[J]. Forest Ecology and Management, 254(3): 499-510.
doi: 10.1016/j.foreco.2007.07.022 |
[45] | Li C, Perera A H.1997. ON-FIRE: A landscape model for simulating the fire regime of northwest Ontario[M]//Chen X, Dai X, Hu T. Ecological research and sustainable development. Beijing, China: China Environmental Science Press: 369-392. |
[46] |
Liu J G, Ashton P S.1998. FORMOSAIC: An individual-based spatially explicit model for simulating forest dynamics in landscape mosaics[J]. Ecological Modelling, 106(2-3): 177-200.
doi: 10.1016/S0304-3800(97)00191-9 |
[47] |
Loudermilk E L, Stanton A, Scheller R M, et al.2014. Effectiveness of fuel treatments for mitigating wildfire risk and sequestering forest carbon: A case study in the Lake Tahoe Basin[J]. Forest Ecology and Management, 323: 114-125.
doi: 10.1016/j.foreco.2014.03.011 |
[48] |
Mladenoff D J.2004. LANDIS and forest landscape models[J]. Ecological Modelling, 180(1): 7-19.
doi: 10.1016/j.ecolmodel.2004.03.016 |
[49] | Mladenoff D J, Baker W B.1999. Spatial modeling of forest landscape change: Approaches and application[M]. Cambridge, UK: Cambridge University Press. |
[50] | Nyerges T L.1993. Understanding the scope of GIS: Its relationship to environmental modeling[M]//Goodchild M F, Parks B O, Steyaert L T. Environmental modeling with GIS. New York: Oxford University Press: 75-93. |
[51] |
Orsi F, Church R L, Geneletti D.2011. Restoring forest landscapes for biodiversity conservation and rural livelihoods: A spatial optimisation model[J]. Environmental Modelling & Software, 26(12): 1622-1638.
doi: 10.1016/j.envsoft.2011.07.008 |
[52] |
Pausas J G.2006. Simulating Mediterranean landscape pattern and vegetation dynamics under different fire regimes[J]. Plant Ecology, 187(2): 249-259.
doi: 10.1007/s11258-006-9138-z |
[53] |
Pennanen J, Greene D F, Fortin M J, et al.2004. Spatially explicit simulation of long-term boreal forest landscape dynamics: Incorporating quantitative stand attributes[J]. Ecological Modelling, 180(1): 195-209.
doi: 10.1016/j.ecolmodel.2004.02.023 |
[54] |
Pennanen J, Kuuluvainen T.2002. A spatial simulation approach to natural forest landscape dynamics in boreal Fennoscandia[J]. Forest Ecology and Management, 164(1-3): 157-175.
doi: 10.1016/S0378-1127(01)00608-9 |
[55] |
Perry G L W, Enright N J.2002. Spatial modelling of landscape composition and pattern in a maquis-forest complex, Mont Do, New Caledonia[J]. Ecological Modelling, 152(2-3): 279-302.
doi: 10.1016/S0304-3800(02)00004-2 |
[56] |
Perry G L W, Enright N J.2006. Spatial modelling of vegetation change in dynamic landscapes: A review of methods and applications[J]. Progress in Physical Geography, 30(1): 47-72.
doi: 10.1191/0309133306pp469ra |
[57] |
Perry G L W, Millington J D A.2008. Spatial modelling of succession-disturbance dynamics in forest ecosystems: Concepts and examples[J]. Perspectives in Plant Ecology, Evolution and Systematics, 9(3-4): 191-210.
doi: 10.1016/j.ppees.2007.07.001 |
[58] |
Rastetter E B, Aber J D, Peters D P C, et al.2003. Using mechanistic models to scale ecological processes across space and time[J]. BioScience, 53(1): 68-76.
doi: 10.1641/0006-3568(2003)053[0068:UMMTSE]2.0.CO;2 |
[59] | Roberts D W, Betz D W.1999. Simulating landscape vegetation dynamics of Bryce Canyon National Park with the vital attributes/fuzzy systems model VAFS/LANDSIM[M]//Mladenoff D J, Baker W L. Spatial modeling of forest landscape change: Approaches and applications. Cambridge, UK: Cambridge University Press: 99-123. |
[60] | Rykiel E J Jr.1996. Testing ecological models: The meaning of validation[J]. Ecological Modelling, 90(3): 229-244. |
[61] |
Scheller R M, Domingo J B, Sturtevant B R, et al.2007. Design, development, and application of LANDIS-II, a spatial landscape simulation model with flexible temporal and spatial resolution[J]. Ecological Modelling, 201(3-4): 409-419.
doi: 10.1016/j.ecolmodel.2006.10.009 |
[62] |
Scheller R M, Mladenoff D J.2004. A forest growth and biomass module for a landscape simulation model, LANDIS: Design, validation, and application[J]. Ecological Modelling, 180(1): 211-229.
doi: 10.1016/j.ecolmodel.2004.01.022 |
[63] |
Scheller R M, Mladenoff D J.2005. A spatially interactive simulation of climate change, harvesting, wind, and tree species migration and projected changes to forest composition and biomass in northern Wisconsin, USA[J]. Global Change Biology, 11(2): 307-321.
doi: 10.1111/j.1365-2486.2005.00906.x |
[64] |
Scheller R M, Mladenoff D J.2007. An ecological classification of forest landscape simulation models: Tools and strategies for understanding broad-scale forested ecosystems[J]. Landscape Ecology, 22(4): 491-505.
doi: 10.1007/s10980-006-9048-4 |
[65] |
Scheller R M, Spencer W D, Rustigian-Romsos H, et al.2011. Using stochastic simulation to evaluate competing risks of wildfires and fuels management on an isolated forest carnivore[J]. Landscape Ecology, 26(10): 1491-1504.
doi: 10.1007/s10980-011-9663-6 |
[66] |
Schumacher S, Bugmann H, Mladenoff D J.2004. Improving the formulation of tree growth and succession in a spatially explicit landscape model[J]. Ecological Modelling, 180(1): 175-194.
doi: 10.1016/j.ecolmodel.2003.12.055 |
[67] |
Seidl R, Rammer W, Scheller R M, et al.2012. An individual-based process model to simulate landscape-scale forest ecosystem dynamics[J]. Ecological Modelling, 231(1): 87-100.
doi: 10.1016/j.ecolmodel.2012.02.015 |
[68] | Sessions J, Johnson K N, Franklin J F, et al.1999. Achieving sustainable forest structures on fire-prone landscapes while pursuing multiple goals[M]//Mladenoff D J, Baker W L. Spatial modeling of forest landscape change: Approaches and applications. Cambridge, UK: Cambridge University Press: 210-253. |
[69] | Shang Z B, He S H, Crow R T, et al.2004. Fuel load reductions and fire risk in central hardwood forests of the United States: A spatial simulation study[J]. Ecological Modelling, 180(1): 89-102. |
[70] |
Shang Z B, He H S, Lytle D E, et al.2007. Modeling the long-term effects of fire suppression on central hardwood forests in Missouri Ozarks, using LANDIS[J]. Forest Ecology and Management, 242(2-3): 776-790.
doi: 10.1016/j.foreco.2007.02.026 |
[71] | Shugart H H.1984. A theory of forest dynamics: The ecological implications of forest succession models[M]. New York: Springer. |
[72] |
Shugart H H, Smith T M, Post W M.1992. The potential for application of individual-based simulation models for assessing the effects of global change[J]. Annual Review of Ecology and Systematics, 23(1): 15-38.
doi: 10.1146/annurev.es.23.110192.000311 |
[73] |
Staus N L, Strittholt J R, DellaSala D A.2010. Evaluating areas of high conservation value in Western Oregon with a decision-support model[J]. Conservation Biology, 24(3): 711-720.
doi: 10.1111/j.1523-1739.2010.01445.x pmid: 20184658 |
[74] |
Syphard A D, Franklin J.2004. Spatial aggregation effects on the simulation of landscape pattern and ecological processes in southern California plant communities[J]. Ecological Modelling, 180(1): 21-40.
doi: 10.1016/j.ecolmodel.2004.01.017 |
[75] |
Turner M G.1987. Spatial simulation of landscape changes in Georgia: A comparison of 3 transition models[J]. Landscape Ecology, 1(1): 29-36.
doi: 10.1007/BF02275263 |
[76] |
Urban D L.2000. Using model analysis to design monitoring programs for landscape management and impact assessment[J]. Ecological Applications, 10(6): 1820-1832.
doi: 10.1890/1051-0761(2000)010[1820:UMATDM]2.0.CO;2 |
[77] |
Urban D L.2005. Modeling ecological processes across scales[J]. Ecology, 86(8): 1996-2006.
doi: 10.1890/04-0918 |
[78] | Urban D L, Shugart H H.1992. Individual-based models of forest succession[M]//Glennlewin D C, Peet R K, Veblen T T. Plant succession: Theory and prediction. London: Chapman and Hall. |
[79] | Verboom J, Wamelink W.2005. Spatial modeling in landscape ecology[M]//Wiens J A, Moss M R. Issues and perspectives in landscape ecology. Cambridge, UK: Cambridge University Press: 79-89. |
[80] | Walters C J.1993. Dynamic models and large scale field experiments in environmental impact assessment and management[J]. Australian Journal of Ecology, 18(1): 53-61. |
[81] |
Wang W J, He H S, Fraser J S, et al.2014. LANDIS PRO: A landscape model that predicts forest composition and structure changes at regional scales[J]. Ecography, 37(3): 225-229.
doi: 10.1111/j.1600-0587.2013.00495.x |
[82] | Wehmeyer G.2012. Simulations and analysis of a 2012 Kansas Wildland fire using FARSITE[D]. Texas: The University of Texas at Austin. |
[83] |
Wimberly M C, Spies T A, Long C J, et al.2000. Simulating historical variability in the amount of old forests in the Oregon Coast Range[J]. Conservation Biology, 14(1): 167-180.
doi: 10.1046/j.1523-1739.2000.98284.x |
[84] |
Wu J G, Loucks O L.1995. From balance of nature to hierarchical patch dynamics: A paradigm shift in ecology[J]. The Quarterly Review of Biology, 70(4): 439-466.
doi: 10.1086/419172 |
[85] |
Xi W M, Coulson R N, Birt A G, et al.2009. Review of forest landscape models: Types, methods, development and applications[J]. Acta Ecologica Sinica, 29(1): 69-78.
doi: 10.1016/j.chnaes.2009.01.001 |
[86] |
Xi W M, Coulson R N, Waldron J D, et al.2008. Landscape modeling for forest restoration planning and assessment: Lessons from the southern Appalachian Mountains[J]. Journal of Forestry, 106(4): 191-197.
doi: 10.1007/s10310-008-0064-x |
[87] | Xi W M, Waldron J D, Coulson R N, et al.2007. Landscape modeling for forest restoration: Concepts and applications[C]//Stanturf J. Proceedings of the IUFRO conference on forest landscape restoration. Seoul, Korea: Korea Forest Research Institute: 268. |
[88] |
Yang J, He H S, Gustafson E J.2004. A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS[J]. Ecological Modelling, 180(1): 119-133.
doi: 10.1016/j.ecolmodel.2004.03.017 |
[89] |
Yang J, He H S, Shifley S R, et al.2007. Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands[J]. Forest Science, 53(1): 1-15.
doi: 10.1016/j.forpol.2006.07.002 |
[90] | Yemshanov D, Perera A H.2002. A spatially explicit stochastic model to simulate boreal forest cover transitions: General structure and properties[J]. Ecological Modelling, 150(1): 189-209. |
[1] | LIAO Yishan, CAI Qiangguo, ZHUO Muning, ZHENG Mingguo, LUO Xuan. Influence of Channel Networks on the Sediment Yield Under Variant Temporal and Spatial Scales:A Case Study of Chabagou Watershed [J]. PROGRESS IN GEOGRAPHY, 2009, 28(1): 47-54. |
|